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Abstract: In this work, we are discussing the solvability of an implicit hybrid delay nonlinear
functional integral equation. We prove the existence of integrable solutions by using the well known
technique of measure of noncompactnes. Next, we give the sufficient conditions of the uniqueness of
the solution and continuous dependence of the solution on the delay function and on some functions.
Finally, we present some examples to illustrate our results.
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1. Introduction

The study of implicit differential and integral equations has received much atten-
tion over the last 30 years or so. For instance, Nieto et al. [1] have studied IFDE via the
Liouville–Caputo Derivative. The integrable solutions of IFDEs has been studied in [2].
Moreover, IFDEs have recently been studied by several researchers; Dhage and Laksh-
mikantham [3] have proposed and studied hybrid differential equations. Zhao et al. [4]
have worked at hybrid fractional differential equations and expanded Dhage’s approach to
fractional order. A fractional hybrid two-point boundary value problem had been studied
by Sun et al. [5]. The technique of measure of noncompactness is found to be a fruitful
one to obtain the existence results for a variety of differential and integral equations, for
example, see [6–14].

Srivastava et al. [15] have studied the existence of monotonic integrable a.e. solution
of nonlinear hybrid implicit functional differential inclusions of arbitrary fractional orders
by using the measure of noncompactness technique.

Here, we investigate the existence of integrable solutions of an implicit hybrid delay
functional integral equation

x(t)− h(t, x(t))
g(t, x(t))

= f1

(
t,

x(t)− h(t, x(t))
g(t, x(t))

,
∫ ϕ(t)

0
f2
(
t, s,

x(s)− h(s, x(s))
g(s, x(s))

)
ds
)

, t ∈ [0, 1]. (1)

where ϕ : [0, 1] → [0, 1], ϕ(t) ≤ t is nondecreasing continuous function. The main tool
of our study is the technique of measure noncompactness. Furthermore, we studied the
continuous dependence on the delay function ϕ and on the two functions f1 and f2.

Our article is organized as follows: In Section 2 we introduce some preliminaries.
Existence results are presented in Section 3. Section 4 contains the continuous dependence
of the unique solution on the delay function ϕ and of the two functions f1 and f2.
Section 5 presents two examples to verify our theorems. Lastly, conclusions are stated.
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2. Preliminaries

We present here some definitions and basic auxiliary results that will be needed to
achieve our aim.

Let L1 = L1(I) be the class of Lebesgue integrable functions on the interval I = [a, b],
where 0 ≤ a < b < ∞, with the standard norm

‖x‖ =
∫ b

a
|x(t)|dt.

Now, let (E, ‖.‖) denote an arbitrary Banach space with zero element θ and X a nonempty
bounded subset of E. Moreover, denote by Br = B(θ, r) the closed ball in E centered at θ
and with the radius r.

The measure of weak noncompactness defined by De Blasi [16] is given by

β(X) = in f (r > 0; there exists a weakly compact subset Y of E such that X ⊂ Y + Br). (2)

The function β(X) possesses several useful properties that may be found in De Blasi’s
paper [16]. The convenient formula for the function β(X) in L1 was given by Appell and
De Pascale [17] as follows:

β(X) = lim
ε→0

(
sup
x∈X

(
sup
[∫

D
|x(t)|dt : D ⊂ [a, b], meas D ≤ ε

]))
, (3)

where the symbol meas D stands for Lebesgue measure of the set D.
Next, we shall also use the notion of the Hausdorff measure of noncompactness χ [6]

defined by

χ(X) = in f (r > 0; there exist a finite subset Y of E such that X ⊂ Y + Br). (4)

In the case when the set X is compact in measure, the Hausdorff and De Blasi measures of
noncompactness will be identical. Namely, we have the following [16].

Theorem 1. Let X be an arbitrary nonempty bounded subset of L1. If X is compact in measure,
then β(X) = χ(X).

Now, we will recall the fixed point theorem from Banaś [18].

Theorem 2. Let Q be a nonempty, bounded, closed, and convex subset of E, and let T : Q → Q
be a continuous transformation, which is a contraction with respect to the Hausdorff measure of
noncompactness χ, that is, there exists a constant α ∈ [0, 1] such that χ(TX) ≤ αχ(X) for any
nonempty subset X of Q. Then, T has at least one fixed point in the set Q.

We present some criterion for compactness in measure in the next section; the complete
description of compactness in measure was given in Banaś [6], but the following sufficient
condition will be more convenient for our purposes [6].

Theorem 3. Let X be a bounded subset of L1. Assume that there is a family of measurable subsets
(Ωc)0≤c≤b−a of the interval (a, b) such that meas Ωc = c. If for every c ∈ [0, b− a], and for every
x ∈ X,

x(t1) ≤ x(t2), (t1 ∈ Ωc, t2 6∈ Ωc)

then, the set X is compact in measure.

3. Main Results

Now, let I = [0, 1] and consider the following:
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(H1) (i) f1 : I × R× R → R is a Carathéodory function which is measurable in t ∈ I,
∀u, v ∈ R×R and continuous in u, v ∈ R×R, ∀t ∈ I.
(ii) There exists a measurable and bounded function m1 : I → I and nonnegative
constant b1 such that

| f1(t, u, v)| ≤ m1(t) + b1(|u|+ |v|), t ∈ I.

(iii) f1 is nondecreasing on the set I ×R×R with respect to all the three variables,
i.e., for almost all (t1, t2) ∈ I2 such that t1 ≤ t2 and for all u1 ≤ u2 and v1 ≤ v2

f1(t1, u1, v1) ≤ f1(t2, u2, v2).

(H2) f2 : I × I × R → R is a Carathéodory function, and a continuous function m2 :
I × I → R, and nonnegative constant b2 such that such that

| f2(t, s, x)| ≤ m2(t, s) + b2|x|.

Moreover, f2 is nondecreasing on the set I × R× R with respect to all the three
variables.

(H3) ϕ : I → I, ϕ(t) ≤ t is nondecreasing. function.
(H4) g : I ×R→ R \ {0} and h : I ×R→ R satisfy the following:

(i) They are nondecreasing on the set I ×R with respect to both variables, i.e., for
almost all (t1, t2) ∈ I2 such that t1 ≤ t2 and for all x1 ≤ x2

h(t1, x1) ≤ h(t2, x2), and g(t1, x1) ≤ g(t2, x2);

(ii) They are measurable in t ∈ I for every x ∈ R and continuous in x ∈ R for
every t ∈ I, and there exist two integrable functions ai ∈ L1(I) and two positive
constants li, (i = 1, 2.) such that

|h(t, x)| ≤ |a1(t)| + l1|x| and |g(t, x)| ≤ |a2(t)| + l2|x|.

Let

y(t) =
x(t)− h(t, x(t))

g(t, x(t))
, (5)

then the integral Equation (1) can be reduced to

y(t) = f1
(
t, y(t),

∫ ϕ(t)

0
f2(t, s, y(s))ds

)
, t ∈ I (6)

where x satisfies the Equation.

x(t) = h(t, x(t)) + y(t) g(t, x(t)), t ∈ I. (7)

Thus, we have proved the following result.

Theorem 4. Assume that (H1)-(H3) be satisfied and assume that b1 + b1b2 < 1. Then the
Equation (6) has at least one a.e. nondecreasing solution y ∈ L1.

Proof. Define the set
Qρ = {y ∈ L1 : ||u||L1 ≤ ρ},

Consider the integral Equation (6) and define the operator

zy(t) = f1
(
t, y(t),

∫ ϕ(t)

0
f2(t, s, y(s))ds

)
, t ∈ I.
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Let y ∈ Qρ, then

‖zy(t)‖ =
∫ 1

0
|zy(t)| dt

=
∫ 1

0
| f1
(
t, y(t),

∫ ϕ(t)

0
f2(t, s, y(s))ds

)
| dt

≤
∫ 1

0

[
m1(t) + b1ρ + b1

∫ ϕ(t)

0
| f2(t, s, y(s))ds|

]
dt

≤
∫ 1

0
|m1(t)| dt + b1ρ + b1

∫ 1

0

∫ ϕ(t)

0

[
m2(t, s) + b2|y(s)|ds

]
dt

≤
∫ 1

0
|m1(t)| dt + b1ρ + b1

∫ 1

0

∫ ϕ(t)

0

[
m2(t, s) + b2|y(s)|ds

]
dt

≤
∫ 1

0
|m1(t)| dt + b1ρ + b1

∫ 1

0

∫ 1

0

[
m2(t, s) + b2|y(s)|ds

]
dt

≤ ‖m1‖ + b1‖m2‖+ b1ρ + b1 b2‖y‖
≤ ‖m1‖ + b1‖m2‖+ b1ρ + b1 b2 ρ ≤ ρ.

Hence the operator z maps the ball Bρ into itself where

ρ =
(
‖m1‖+ b1 ‖m2‖

)(
1−

[
b1 + b1b2

])−1.

Now, Qρ contains all positive and nondecreasing functions a.e. on I. obviously the set
Qρ is nonempty, bounded and convex. To prove that Qρ is closed we have {xm} ⊂ Qρ,
which converges strongly to x. Then {xm} converges in measure to x and we deduce
the existence of a subsequence {xk} of {xm} which converges to x a.e. on I (see [19]).
Therefore, x is nondecreasing a.e. on I which means that x ∈ Qρ. Hence the set Qρ is
compact in measure(see Lemma 2 in [7], p. 63).

Using (H1)–(H3), then z maps Qρ into itself, is continuous on Qρ, and transforms a
nondecreasing a.e. and positive function into a function with same type (see [7]).

To show that the operator z is a contraction with respect to the weak noncompactness
measure β. Let us start by fixing ε > 0 and X ⊂ Qρ. Furthermore, if we select a measurable
subset D ⊂ I as such meas D ≤ ε, then for any x ∈ X using the same assumptions and
argument as in [6,7], we obtain

‖zy‖L1(D) =
∫

D
| f1
(
t, y(t),

∫ ϕ(t)

0
f2(t, s, y(s))ds

)
| dt

≤
∫

D

[
m1(t) + b1|y(t)|+ b1

∫ ϕ(t)

0
| f2(t, s, y(s))ds|

]
dt

≤
∫

D
(|m1(t)| + b1|y(t)|)dt + b1

∫
D

∫ ϕ(t)

0

[
m2(t, s) + b2|y(s)|ds

]
dt

≤
∫

D
(|m1(t)| + b1|y(t)|)dt + b1

∫
D

∫ ϕ(t)

0

[
m2(t, s) + b2|y(s)|ds

]
dt

≤
∫

D
(|m1(t)| + b1|y(t)|)dt + b1

∫
D

∫ ϕ(t)

0

[
m2(t, s) + b2|y(s)|ds

]
dt

≤ ‖m1‖L1(D) + b1||y||D + b1‖m2‖L1(D) + b1 b2‖y‖L1(D)

≤ ‖m1‖L1(D) + b1‖m2‖L1(D) + (b1 + b1 b2) ‖y‖L1(D).

But
lim
ε→0
{sup{

∫
D
|mi(t)|dt : D ⊂ I, measD ≤ ε}} = 0, i = 1, 2.
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Then we find
β(zy(t)) ≤ (b1 + b1 b2) β(y(t)).

This implies
β(zX) ≤ (b1 + b1 b2) β(X), (8)

with β is the De Blasi measure of weak noncompactness. The set X is compact in measure,
so Hausdorff and De Blasi measures of noncompactness will be identical [16], then

χ(zX) ≤ (b1 + b1 b2) χ(X)

where χ is the Hausdorff measure of noncompactness. Since b1 + b1 b2 < 1, it follows,
from fixed point theorem [18], that z is a contraction with regard to the measure of
noncompactness χ and has at least one fixed point in Qρ which show that Equation (6)
has at least one positive a.e. nondecreasing solution y ∈ L1.

Solvability of Equation (4)

In this section, the existence of a.e. nondecreasing solutions x ∈ L1 for the Equation (7)
will be studied

x(t) = h(t, x(t)) + y(t) g(t, x(t)), t ∈ I

Theorem 5. Let the assumptions (H2), (H4) be satisfied. Let the assumptions of Theorem 4 be
satisfied. Assume that l1 + M l2 < 1. Then there is at least one a.e. nondecreasing solution x ∈ L1
to (7).

Proof. Interpret the set in the form

Br = {x ∈ L1 : ‖x‖ ≤ r}

and by

(Ax)(t) = h(t, x(t)) + y(t)g(t, x(t)). (9)

Let x ∈ L1 and M = sup
t∈I
|y(t)|, then by assumptions (H2)–(H4), we find that

|(Ax)(t)| = |h(t, x(t)) + y(t)g(t, x(t))|
≤ |h(t, x(t))|+ |y(t)||g(t, x(t))|
≤ [|a1(t)| + l1|x(t)|] + |y(t)|[|a2(t)| + l2|x(t)|].

Then for t ∈ I, we have

‖Ax‖ =
∫ 1

0
|(Ax)(t)| dt

≤
∫ 1

0
[|a1(t)| + l1|x(t)|] dt + M

∫ 1

0
[|a2(t)| + l2|x(t)|] dt

≤ ‖a1‖+ l1
∫ 1

0
|x(t)| dt + M ‖a2‖+

M l2
k2

∫ 1

0
|x(t)| dt

≤ ‖a1‖+ M ‖a2‖+
(
l1 + M l2

)
‖x‖.

Hence Amaps Br into itself where

r =
(
‖a1‖+ M ‖a2‖

)(
1−

[
l1 + M l2

])−1.

Allowing Qr to be a subset of Br containing all functions that are nonnegative and a.e.
nondecreasing on I, we may conclude that Qr is nonempty, closed, convex, bounded,
and compact in measure ([6], p. 780). Now Qr is a bounded subset of L1 that contains
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all positive and nondecreasing a.e. functions on I, then Qr is compact in measure (see
Lemma 2 in [7], p. 63). As a result of assumption (H4), A maps Qr into itself, is continuous
on Qr, and turns a nondecreasing a.e. and positive function into a function of the same
type (see [7]).

Thus,A is shown to be a contraction with regard to the weak noncompactness measure
β. Let us start by fixing ε > 0 and X ⊂ Qr. Furthermore, if we select a measurable subset
D ⊂ I as such meas D ≤ ε, then for any x ∈ X using the same assumptions and argument
as in [6,7], we obtain

‖Ax‖L1(D) =
∫

D
|(Ax)(t)| dt

≤
∫

D
[|a1(t)| + l1|x(t)|] dt + M

∫
D
[|a2(t)| + l2|x(t)|] dt

≤ ‖a1‖L1(D) + l1
∫

D
|x(t)| dt + M ‖a2‖L1(D) + M l2

∫
D
|x(t)| dt

≤ ‖a1‖L1(D) + M ‖a2‖L1(D) +
(
l1 + M l2

)
‖x‖L1(D).

But
lim
ε→0
{sup{

∫
D
|ai(t)|dt : D ⊂ I, measD ≤ ε}} = 0, i = 1, 2.

Then we find
β(Ax(t)) ≤ (l1 + M l2) β(x(t)).

This implies
β(AX) ≤ (l1 + M l2) β(X), (10)

with β is the De Blasi measure of weak noncompactness. The set X is compact in measure,
so Hausdorff and De Blasi measures of noncompactness will be identical [16], then

χ(AX) ≤ (l1 + M l2) χ(X)

where χ is the Hausdorff measure of noncompactness. Since l1 + M l2 < 1, it follows,
from fixed point theorem [18], that A is a contraction with regard to the measure of
noncompactness χ and has at least one fixed point in Qr which show that Equation (7)
has at least one positive nondecreasing a.e. solution x ∈ L1.

Now, we are in position to state an existence result for the hybrid implicit functional
Equation (1).

Theorem 6. Let the assumptions of Theorems 4 and 5 be satisfied. Then the implicit hybrid delay
functional integral Equation (1) has at least one nondecreasing a.e. solution x ∈ L1 which satisfies
(7) where y ∈ L1 is the nondecreasing a.e. solution of (6).

4. Continuous Dependence

Here, we investigate the continuous dependence of the unique solution x ∈ L1 on the
delay function ϕ and on the two functions f1 and f2.

4.1. Uniqueness of the Solution

Consider the assumptions:

(H∗1 ) (i) f1 : I × R × R → R is measurable in t ∈ I, ∀ u, v ∈ R × R and satisfies the
Lipschitz condition

| f1(t, u1, v1)− f1(t, u2, v2)| ≤ b1(|u1 − u2|+ |v1 − v2|), b1 > 0.

(ii) From assumption (i) we can deduce

| f1(t, u, v)| ≤ m1(t) + b1(|u|+ |v|), t ∈ I, m1(t) = sup
t∈I

f1(t, 0.0).
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(iii) f1 is nondecreasing on the set I ×R×R with respect to all the three variables,
i.e., for almost all (t1, t2) ∈ I2 such that t1 ≤ t2 and for all u1 ≤ u2 and v1 ≤ v2

f1(t1, u1, v1) ≤ f1(t2, u2, v2).

(H∗2 ) f2 : I × I ×R→ R is Lipschitz function with a Lipschitz constant b2 > 0, as a result

| f2(t, s, u)− f2(t, s, v)| ≤ b2|u− v|.

Hence
| f2(t, s, u)| ≤ m2 + b2|u|, where m2 = sup

t∈I
| f2(t, s, 0)|.

Moreover, f2 is nondecreasing on the set I × R× R with respect to all the three
variables.

(H∗3 ) g : I ×R→ R \ {0}, and h : I ×R→ R, are measurable in t ∈ I for every x, y ∈ R as
well as meet the Lipschitz condition

|h(t, u)− h(t, v)| ≤ l1|u− v|,
|g(t, u)− g(t, v)| ≤ l2|u− v|,

for all t ∈ I and u, v ∈ R. Moreover h, g are nondecreasing a.e. in the two arguments.
Note

|h(t, u)| ≤ l1|u(t)|+ H, |g(t, u)| ≤ l2|u(t)|+ G,

where H = sup
t∈I
|h(t, 0)| and G = sup

t∈I
|g(t, 0)|.

Theorem 7. Let the assumptions of Theorem 4 be satisfied with replace conditions (H1),(H2) by
(H∗1 ), (H∗2 ). If b1 + b1 b2 < 1, Then the functional integral Equation (6) has a unique solution.

Proof. Let y1, y2 be solutions of Equation (6), then

|y1(t)− y2(t)| =
∣∣ f1
(
t, y1(t),

∫ ϕ(t)

0
f2(t, s, y1(s))ds

)
− f1

(
t, y2(t),

∫ ϕ(t)

0
f2(t, s, y2(s))ds

)∣∣
≤ b1|y1(t)− y2(t)|+ b1

∫ ϕ(t)

0

∣∣ f2(t, s, y1(s))− f2(t, s, y2(s))
∣∣ds

≤ b1|y1(t)− y2(t)|+ b1 b2

∫ ϕ(t)

0

∣∣y1(s)− y2(s)
∣∣ds.

Taking supermum for t ∈ I, we have

‖y1 − y2‖ ≤ b1||y1 − y2||+ b1 b2

∫ 1

0

∫ ϕ(t)

0

∣∣y1(s)− y2(s)
∣∣ds dt

≤ (b1 + b1 b2)‖y1 − y2‖.

Therefore

(1− (b1 + b1 b2))‖y1 − y2‖ ≤ 0,

which implies y1 = y2. Hence the solution of the problem (6) is unique.

Next, we prove the following result.

Theorem 8. Let the assumptions of Theorems 5 and 7 be satisfied, with replace condition (H3)
by (H∗3 ) equipped with

(
l1 + M l2

)
< 1. Then the solution x ∈ L1 of the functional Equation (7)

is unique.
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Proof. Firstly, Theorem 5 proved that the functional Equation (7) has at least one solution.
Now let x1, x2 ∈ L1(I) be two solutions of (7). Then for t ∈ I, we have

|x1(t)− x2(t)| = |h(t, x1(t)) + y(t)g(t, x1(t))− h(t, x2(t))− y(t)g(t, x2(t))|
≤
∣∣h(t, x1(t))− h(t, x2(t))

∣∣+ |y(t)||g(t, x1(t))− g(t, x2(t))|
≤ |l1(t)||x1(t)− x2(t)|+ |y(t)| l2(t)|x1(t)− x2(t)|.

Then for t ∈ I, and |y(t)| < M, we obtain

‖x1 − x2‖ ≤ l1
∫ 1

0
|x1(t)− x2(t)| dt + M l2

∫ 1

0
|x1(t)− x2(t)| dt

≤ l1‖x1 − x2‖+ M l2‖x1 − x2‖ ≤
(
l1 + M l2

)
‖x1 − x2‖.

Hence [
1−

(
l1 + M l2

)]
‖x1 − x2‖ ≤ 0,

and then the solution of (7) is unique.

Now, we are in position to state an existence result for the uniqueness of solution for
the hybrid implicit functional Equation (1).

Theorem 9. Let the assumptions of Theorems 7 and 8 be satisfied. Then the solution x ∈ L1 of the
implicit hybrid delay functional integral Equation (1) is unique.

4.1.1. Continuous Dependence on the Delay Function

Definition 1. The solution y ∈ L1 of the functional integral Equation (6) depends continuously
on the function ϕ, if ∀ ε > 0, ∃ δ > 0, such that

|ϕ(t)− ϕ∗(t)| ≤ δ ⇒ ‖y− y∗‖ ≤ ε, t ∈ I.

Theorem 10. Assume that assumptions of Theorem 7 are verified. Then the solution y ∈ L1 of the
Equation (6) depends continuously on ϕ.

Proof. Let y be the unique solution of the functional integral Equation (6) and y∗ is the one
of the equation

y∗(t) = f1
(
t, y∗(t),

∫ ϕ∗(t)

0
f2(t, s, y∗(s))ds

)
, t ∈ I. (11)

Then

|y(t)− y∗(t)| =
∣∣ f1
(
t, y(t),

∫ ϕ(t)

0
f2(t, s, y(s))ds− f1

(
t, y∗(t),

∫ ϕ∗(t)

0
f2(t, s, y∗(s))ds

∣∣
≤ b1|y(t)− y∗(t)|+ b1

∣∣ ∫ ϕ(t)

0
f2(t, s, y(s))ds−

∫ ϕ∗(t)

0
f2(t, s, y(s))ds|

+ b1
∣∣ ∫ ϕ∗(t)

0
f2(t, s, y(s))ds−

∫ ϕ∗(t)

0
f2(t, s, y∗(s))ds

∣∣
≤ b1|y(t)− y∗(t)|

+ b1

∫ ϕ(t)

ϕ∗(t)
| f2(t, s, y(s))|ds + b1

∫ ϕ∗(t)

0
| f2(t, s, y(s))− f2(t, s, y∗(s))|ds.
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Now, |ϕ(t)− ϕ∗(t)| ≤ δ and by Lebesgue Theorem [20], we have

‖y− y∗‖L1 ≤ b1||y(t)− y∗(t)||+ b1

∫ 1

0

∫ ϕ(t)

ϕ∗(t)
| f2(t, s, y(s))|ds

+ b1 b2

∫ 1

0

∫ ϕ∗(t)

0
|y(s)− y∗(s)|ds

≤ b1||y(t)− y∗(t)||+ b1

∫ 1

0
ε1 ds + b1 b2

∫ 1

0

∫ 1

0
|y(s)− y∗(s)|ds

≤ ε1 b1 + (b1 + b1 b2)‖y− y∗‖L1 .

Hence

‖y− y∗‖L1 ≤ ε1 b1(1− (b1 + b1 b2))
−1 = ε.

Therefore, y ∈ L1 of the problem (6) depends continuously on ϕ. This completes the
proof.

4.1.2. Continuous Dependence on the Functions f1 and f2

Definition 2. (i) The solution y ∈ L1 of the functional integral Equation (6) depends continuously
on the function f1, if ∀ ε > 0, ∃ δ > 0, such that

| f1
(
t, y(t),

∫ ϕ(t)

0
f2(t, s, y(s))ds

)
− f ∗1

(
t, y(t),

∫ ϕ(t)

0
f2(t, s, y(s))ds

)
| ≤ δ

⇒ ‖y− y∗‖ ≤ ε, t ∈ I.

(ii) The solution y ∈ L1 of Equation (6) depends continuously on the function f2, if ∀ ε > 0, ∃ δ > 0,
such that

| f1
(
t, y(t),

∫ ϕ(t)

0
f2(t, s, y(s))ds

)
− f1

(
t, y(t),

∫ ϕ(t)

0
f ∗2 (t, s, y(s))ds

)
| ≤ δ

⇒ ‖y− y∗‖ ≤ ε, t ∈ I.

Theorem 11. Assume that assumptions of Theorem 7 are verified. Then the solution y ∈ L1 of
Equation (6) depends continuously on the function f1.

Proof. Let y be the unique solution of the functional integral Equation (6) and y∗ is the
solution of the functional integral equation

y∗(t) = f ∗1
(
t, y∗(t),

∫ ϕ(t)

0
f2(t, s, y∗(s))ds

)
, t ∈ I. (12)

Then

|y(t)− y∗(t)| =
∣∣ f1
(
t, y(t),

∫ ϕ(t)

0
f2(t, s, y(s))ds

)
− f ∗1

(
t, y∗(t),

∫ ϕ(t)

0
f2(t, s, y∗(s))ds

)∣∣
≤ b1|y(t)− y∗(t)|+

∣∣∣∣ f1
(
t,
∫ ϕ(t)

0
f2(t, s, y(s))ds

)
− f ∗1

(
t,
∫ ϕ(t)

0
f2(t, s, y(s))ds

)∣∣∣∣
+

∣∣∣∣ f ∗1 (t, ∫ ϕ(t)

0
f2(t, s, y(s))ds

)
− f ∗1

(
t,
∫ ϕ(t)

0
f2(t, s, y∗(s))ds

)∣∣∣∣
≤ b1|y(t)− y∗(t)|+ δ + b1

∫ ϕ(t)

0

∣∣ f2(t, s, y(s))− f2(t, s, y∗(s))
∣∣ ds

≤ b1|y(t)− y∗(t)|+ δ + b1 b2

∫ ϕ(t)

0
|y(s)− y∗(s)| ds.
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Taking supermum for t ∈ I, we have

‖y− y∗‖ ≤ b1||y− y∗||+
∫ 1

0
δ dt + b1 b2

∫ 1

0

∫ ϕ(t)

0
|y(s)− y∗(s)| ds dt

≤ b1||y− y∗||+ δ + b1 b2

∫ 1

0

∫ 1

0
|y(s)− y∗(s)| ds dt

≤ δ + (b1 + b1 b2)‖y− y∗‖.

Now

‖y− y∗‖ ≤ δ

1− (b1 + b1 b2)
= ε. (13)

Hence
||y− y∗|| ≤ ε.

Hence, the solution of (6) depends continuously on the function f1. This completes the
proof.

By the same way we can prove the following theorem.

Theorem 12. Assume that assumptions of Theorem 7 are verified. Then the solution y ∈ L1 of the
functional integral Equation (6) depends continuously on the function f2.

Definition 3. The solution of functional Equation (7) depends continuously on the function y, if
∀ ε > 0, ∃ δ > 0, such that

‖y− y∗‖ ≤ δ ⇒ ‖x− x∗‖ ≤ ε.

Theorem 13. Let the assumptions of Theorem 7 be satisfied. Then the solution of the Equation (7)
depends continuously on the function y.

Proof. Let x, x∗ be the solution of the functional Equation (7)

x(t) = h(t, x(t)) + y(t) g(t, x(t)), t ∈ I.

Then

|x(t)− x∗(t)| = |h(t, x(t)) + y(t)g(t, x(t))− h(t, x∗(t))− y∗(t)g(t, x∗(t))|
≤ |h(t, x(t))− h(t, x∗(t))|+ |g(t, x(t))||y(t)− y∗(t)|
+ |y∗(t)||g(t, x(t))− g(t, x∗(t))|
≤ l1|x(t)− x∗(t)|+ [l2|x(t)|+ G]|y(t)− y∗(t)|+ l2 |y∗(t)| |x(t)− x∗(t)|.

Then for t ∈ I, |x(t)| < N and |y∗(t)| < M, we have

‖x1 − x2‖

≤ l1
∫ 1

0
|x(t)− x∗(t)|dt + [l2N + G]

∫ 1

0
|y(t)− y∗(t)|dt + l2 M

∫ 1

0
|x(t)− x∗(t)|dt

≤ l1‖x− x∗‖L1 + [ł2 N + G] ‖y− y∗‖L1 + l2 M ‖x− x∗‖L1

≤ l1‖x− x∗‖L1 + [ł2 N + G] δ + l2 M ‖x− x∗‖L1

Hence

‖x− x∗‖L1 ≤ δ (ł2 N + G)
[
1− (l1 + l2 M )

]−1
= ε.

Hence the solution of problem (7) depends continuously on the function y.
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Now, from Theorems 10–13, we have the following corollaries

Corollary 1. The solution of the hybrid implicit integral Equation (1) depends continuously on the
delay function ϕ.

Corollary 2. The solution of the the hybrid implicit integral Equation (1) depends continuously on
a function f1.

Corollary 3. The solution of the the hybrid implicit integral Equation (1) depends continuously on
a function f2.

5. Special Cases and Examples

We can deduce the following particular cases.

• Taking ϕ(t) = t, then we have

x(t)− h(t, x(t))
g(t, x(t))

= f1

(
t,

x(t)− h(t, x(t))
g(t, x(t))

,
∫ t

0
f2

(
t, s,

x(s)− h(s, x(s))
g(s, x(s)

) )
ds
)

, t ∈ I.

• For g(t, x) = 1, the following equation is obtained

(x(t)− h(t, x(t)) = f1

(
t, (x(t)− h(t, x(t)),

∫ t

0
f2

(
t, s,

(
x(s)− h(s, x(s))

)
ds
)

, t ∈ I.

• For h(t, x) = 0, the following equation is obtained

x(t)
g(t, x(t))

= f1

(
t,

x(t)
g(t, x(t))

,
∫ ϕ(t)

0
f2

(
t, s,

x(s)
g(s, x(s))

)
ds
)

, t ∈ I. (14)

Furthermore, taking f1(t, x, y) = f1(t, x) and g(t, x) = 1, in Equation (14), then we
have the functional equation, which is studied in [6].

• Putting f1(t, x, y) = a(t) + x(t).y(t) and g(t, x) = 1, in Equation (14), then we have
the quadratic Urysohn integral equation

x(t) = a(t) + x(t)
∫ ϕ(t)

0
f2(t, s, x(s))ds, t ∈ I,

where a ∈ L1(I).
• Putting f1(t, x, y) = a(t) + y(t) and g(t, x) = 1, in Equation (14), then we have the

Urysohn integral equation

x(t) = a(t) +
∫ ϕ(t)

0
f2(t, s, x(s))ds, t ∈ I,

where a ∈ L1(I) and taking ϕ(t) = t, which is the same result obtained in [7]

Example 1. Consider a nonlinear implicit hybrid functional integral equation

x(t)− [ e−t

20+t2 +
1
2

√
x(t)]

1√
16+t

+ e−t

200 x(t)
(15)

=
1
2

( ∫ t

0

[
e−(t+s)

√√√√( x(s)− [ e−s

20+s2 +
1
2

√
|x(s)|]

1√
16+s

+ e−s

200 x(s)

)
+

s
2(s + 1)

]
ds
)

+
x(t)− [ e−t

20+t2 +
1
2

√
x(t)]

2
( 1√

16+t
+ e−t

200 |x(t)|
) +

1
2et .
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Set

h(t, x(t)) =
e−t

20 + t2 +
1
2

√
x(t),

g(t, x(t)) =
1√

16 + t
+

e−t

200
x(t),

f1(t, y(t), z(t)) =
1
2
( 1

et + y(t) + z(t)
)

where

y(t) =
x(t)− [ e−t

20+t2 +
1
2

√
x(t)]

1√
16+t

+ e−t

200 x(t)
,

z(t) =
∫ t

0
f2(t, s, y(s)) ds =

∫ t

0
[

1
et+s

√
y(s) +

s
2(s + 1)

] ds.

It is easy to obtain that

∣∣ f1(t, y(t), z(t))
∣∣ ≤ 1

2
(

1
e
+ |y(t)|+ |z(t)|),

∣∣ f2(t, s, x(s))
∣∣ ≤ e−t

√
x(s) +

s
2(s + t)

,

∣∣h(t, x(t))
∣∣ ≤ 1

20
+

x(t)
2

,

∣∣g(t, x(t))
∣∣ ≤ 1

4
+

x(t)
200

.

By setting

m1(t) =
1
2

x(t), m2(t) =
1
et

√
x(t), a1(t) =

e−t

20 + t2 ,

a2(t) =
1√

16 + t
∈ L1[0, 1], b1 =

1
2e

, b2 =
1
2

, l1 =
1
2

, l2 =
1

200
, M =

1
e

we can find that

l1 + M l2 = 0.5018393972 < 1 and b1 b2 =
1
4e

< 1.

The conclusion of Theorem 6 can be implied that the implicit hybrid functional integral Equation (15)
has at least one solution.

Example 2. Consider a nonlinear implicit hybrid functional integral equation

x(t)− 5et

7
x(t)

1+|x(t)|

e−πt + e− ln(t+1)x(t)

1+|x(t)|

=
1
60

et
( x(t)− 5et

7
x(t)

1+|x(t)|

e−πt + e− ln(t+1)x(t)

1+|x(t)|

+
∫ t

0

1
et+s

( x(t)− 5et

7
x(t)

1+|x(t)|

e−πt + e− ln(t+1)x(t)

1+|x(t)|

)
ds
)

. (16)

Set

h(t, x) =
5et

7
x(t)

1 + |x(t)| ,

g(t, x) = e−πt +
e− ln(t+1)x(t)

1 + |x(t)| ,

f1(t, y(t), z(t)) =
1

60
et(y(t) + z(t)),
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where

y(t) =
x(t)− 5et

7
x(t)

1+|x(t)|

e−πt + e− ln(t+1)x(t)

1+|x(t)|

,

z(t) =
∫ t

0
f2(t, s, y(s)) ds =

∫ t

0
e−(t+s) y(s) ds.

It is easy to obtain that

| f1(t, y1, z1)− f1(t, y2, z1)| ≤
1
60

et(|y1 − y2|+ |z1 − z2|),

| f2(t, s, y1)− f2(t, s, y2)| ≤
1
e2 |y1 − y2|,

|h(t, x1)− h(t, x2)| ≤
5et

7
|x1 − x2|,

and
|g(t, x1)− g(t, x2)| ≤ e− ln(t+1)|x1 − x2|,

for all x1, x2 ∈ R and t ∈ [0, 1].
If

l1(t) = e− ln(t+1), l2(t) =
5et

7
, b1(t) =

1
60

et, b2(t) = e−(t+s),

then
l1 =

1
2

, l2 =
5e
7

and b1 =
e

60
, b2 =

1
e2 .

Hence, conditions b1 b2 = 1
60e ≈ 0.00613 < 1 and l1 + M l2 ≈ 0.8151174656 < 1, holds.

Now by using Theorem 9, the implicit hybrid integral Equation (16) has unique solution.

6. Conclusions

The solvability of functional equations have gained much attention. Many researchers
have obtained existence results in different classes. In this work, we have proved the
existence of nondecreasing a.e. integrable solutions of an implicit hybrid delay nonlinear
functional equation. The technique of measures of noncompactness is utilized to obtain
our main result. A sufficient condition is presented for the uniqueness of the solution. The
continues dependence of solution on the delay function ϕ and on the functions f1 and f2
have been obtained. Additionally, some particular cases and examples are given to support
the main results.
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