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Abstract: The purpose of this paper is to develop a data augmentation technique for statistical
inference concerning stochastic cusp catastrophe model subject to missing data and partially observed
observations. We propose a Bayesian inference solution that naturally treats missing observations as
parameters and we validate this novel approach by conducting a series of Monte Carlo simulation
studies assuming the cusp catastrophe model as the underlying model. We demonstrate that this
Bayesian data augmentation technique can recover and estimate the underlying parameters from the
stochastic cusp catastrophe model.

Keywords: cusp catastrophe model; stochastic differential equation; transition density; Bayesian
inference; data augmentation; Hamiltonian Monte Carlo

1. Introduction

In real-world system dynamics, a bifurcation is defined when a small change to a
system’s parameter values generates a sudden change in its system behavior. Catastrophe
theorists are then to study the mathematical characteristics of bifurcation phenomena in
order to solve real-life applications associated with these catastrophe changes.

Catastrophe theory, a branch of dynamic systems in mathematics was initially pro-
posed by Thom [1–3] in the 1970s. Cobb [4–7] along with other researchers [8–10] popular-
ized catastrophe in the following decades in statistics and statistical modeling.

Cusp catastrophe model is one of the elementary catastrophe models under catastro-
phe theory. The deterministic catastrophe model is often expressed as

dx
dt

= −dV(x, α, β)

dx
, (1)

where V(x, α, β) is some potential function. When V is specified as

−V(x; α, β) = αx +
1
2

βx2 − 1
4

x4,

it this the cusp catastrophe model,

dx
dt

= α + βx− x3 (2)

where model parameters α and β are referred to as the asymmetry and bifurcation parame-
ters, respectively. Additionally, the system’s equilibria can be obtained by finding the roots
of the cubic function in Equation (2).
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Associated with the roots in this cubic function, an important concept in cusp catas-
trophe model is the Cardan’s discriminant, which is defined as5 = 27α2 − 4β3 and often
used to classify the solutions. Specifically,

1. If5 < 0, for example α = 1, β = 3, Equation (2) has three distinct real roots;
2. If5 = 0, for example α = 2, β = 3, Equation (2) has two distinct real roots with one

of the two being a double root;
3. If5 > 0, for example α = 3, β = 3, Equation (2) has only one real root.

The stochastic cusp catastrophe model is further developed to incorporate measure-
ment errors in real-world applications with the stochastic differential equation as follows:

dX =
(

α + βX− X3
)

dt + σdW, (3)

where dW is a Wiener process with dispersion parameter σ.
Generally, time-series data, such as financial time-series data and health bio-marker

time-series data in this big data era, are often collected sequentially in time. Stochastic
differential equations, such as the stochastic cusp catastrophe models, are used to model the
underlying data generating process. Developing rigorous statistical methods to calibrate
the underlying model of the measured observations becomes important.

In our recent work, we proposed a Bayesian approach inference method that com-
bines Hamiltonian Monte Carlo with two different transition density approximation meth-
ods, namely Euler method and Hermite expansion [11]. By extensive simulation studies
and empirical example, we showed that the proposed methods achieved satisfactory re-
sults in statistical inference to stochastic cusp catastrophe models with different model
parameter settings.

To better illustrate the contributions of this paper, including how this paper addresses
a different problem from our recent work [11], Figure 1 shows a sample trajectory of
stochastic cusp catastrophe model with parameters α = 1, β = 3. The upper plot is a
sample trajectory assuming no missing values, and our recent work [11] has addressed the
statistical inference problem under this so-called “complete” observations settings. The
lower plot is the same sample trajectory assuming missing values. In this paper, we focus
on tackling the inference problem assuming missing values. Our solution is a Bayesian
approach that naturally incorporates the missing values as parameters to be estimated,
which is a one data augmented approach. Our simulation results implemented the Bayesian
approach to cusp catastrophe model shows feasible solution by using only the observed
observations.

Figure 1. A sample trajectory of stochastic cusp catastrophe model with parameters α = 1, β = 3.
(top) Inference with complete observations; (bottom) inference with partial observations.
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2. Inference from Partial Observations

In reality, complete observations may not be possible or not be available all the time
due to different missing mechanisms, resulting in partial observation scenario; therefore, a
fundamental question is how valid the statistical inference developed for the scenario of
complete observations is for the scenario of partially observed data.

One apparent situation is when two consecutive observations in time series can
be considerably sparse with partial observations where time interval (denoted by ∆obs)
between these two consecutive observations are large. As ∆obs increases, the discrepancy
between models with the complete data and partially observed data can be substantial
and should not be neglected since it could lead to inconsistent estimators as pointed out
in [12–14].

In this paper, we propose a Bayesian data augmentation technique to tackle the
statistical inference problem with partially observed data for stochastic cusp catastrophe
model by a series of Monte Carlo simulation studies.

2.1. Bayesian Data Augmentation

Under the partial observations scenario, data points are assumed to be observed
more sparsely in time than the complete observations scenario studied by the work of [11].
Figure 1 is a simulated sample trajectory of stochastic cusp catastrophe model with param-
eters α = 1, β = 3.

One approach to tackle the problem is to formulate this partial observations scenario
as a missing value problem and attempt to improve the estimation accuracy with Bayesian
data augmentation. Simply saying, this Bayesian data augmentation treats those unob-
served or missing data points between two consecutive observed as unknown parameters
in addition to the unknown parameters in the stochastic cusp catastrophe model (i.e., α
and β) so that we can estimate them simultaneously.

That being said, Bayesian inference treats unknowns as random variables and naturally
associates them to probability distributions. In notation,

p(θ, x̃|x) ∝ p(θ, x̃, x) ∝ p(θ)p(x̃, x|θ), (4)

where x = {x1, · · · , xn} is the actual observed data points, x̃ is latent or unobserved
data points.

By doing so, the unknown model parameters θ (α and β in our stochastic cusp catas-
trophe model) are to be estimated along with the incorporation x̃, potentially a very high
dimensional estimation problem; therefore, the complexity, as well as the computational
cost, can increase substantially due to the introduction of high dimensional missing values;
however, the approximated transition density would have a much smaller discretization
∆obs, which would lead to a less biased approximation—we hope that a more “accurate”
estimation result could be attained.

To better illustrate how data augmentation works, particularly how the latent variable
x̃ are incorporated into the parameter estimation algorithm, we will now look at a concrete
example: as depicted in Figure 2.
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Figure 2. Illustration of Bayesian data augmentation.

In the above plot, two endpoints in blue, namely xi,0 and xi,4 denote two consecutive
observed data points. Further, there are three points in red, namely xi,1, xi,2 , and xi,3,
representing unobserved data points. They are “synthetic” data in the sense that we do not
have the actual observation, either because we were not able to do so, or we just simply
did not do so, but these three data points have been generated at those time points.



Mathematics 2021, 9, 3245 4 of 9

By incorporating those unobserved data points into our model, (1) the dimension of
parameters increased substantially. To see this, let us suppose we have n observed data
points. Now for each time interval between two consecutive observed data points, we
introduced three unobserved data points. Consequently, we introduced (n− 1)× 3 new
unknowns to be estimated in addition to the two unknown model parameters α and β.
(2) The time difference two the combined data points (i.e., both the actual observed and the
synthetic data points) is becoming smaller. To see this, without introducing synthetic data,
consider that the time difference between the measurement of two consecutive data points is
∆obs, then by introducing additional three synthetic data points and inserting them into one
observation interval, the difference becomes δ = ∆obs/4. Hence, a better approximation to
the true transition density since ∆obs has been reduced to δ = ∆obs/4. From this perspective,
we would expect an improvement in the accuracy of the approximation due to a better-
approximated transition density, hence, likelihood function.

2.2. General Case

The above example showed how data augmentation works by giving a simple illus-
tration with three synthetic observations inserted between two consecutive observed data
points. Of course the number of synthetic observation can be generalized to mi for each
consecutive observed data points.

Let {xi,j}mi
j=1 be mi (mi is a non-negative integer) unobserved hence synthetic ob-

servations between two consecutive observed data points xi = xi,0 and xi+1 = xi+1,0.
Furthermore, let us assume i = {1, · · · .n} and let ∆obs be the time difference between two
observed data points, and let δ = ∆obs

mi+1 .
Without assuming any synthetic data points between observed data points, the log-

likelihood function given only the observed ones is:

`n(θ) ≡
n

∑
i=1

ln{px(∆, xi|xi−1; θ)}, (5)

where the log-likelihood function given both observed and synthetic data points is

`n(θ; x̃) ≡
n

∑
i=1

mi

∑
j=1

ln
{

px
(
δ, xi,j|xi,j−1; θ

)}
, (6)

where δ = ∆
mi+1 .

2.3. Hamiltonian Monte Carlo

Theoretically, Bayesian inference is a natural choice for providing an accurate esti-
mation of cusp model parameters, this is because the Bayesian approach explores the
entire distribution region rather than searching for the optimal of a given function, such
as likelihood function, which is achieved by associating model parameters to probability
distributions. Consequently, a natural and direct estimation for the uncertainty over the
range of model parameter values can be obtained. Besides providing an accurate estimation
to model parameters α and β for the cusp catastrophe model, Bayesian inference naturally
incorporates the missing observations as additional parameters—see Section 2.1.

The Hamiltonian Monte Carlo (HMC) has been developed under the framework of
Markov Chain Monte Carlo (MCMC). By adopting and utilizing a Hamiltonian dynamic
between states, samples obtained by using HMC have a much reduced autocorrelation
than those obtained using Metropolis–Hastings algorithm. This is because HMC utilizes
the gradient information in addition to the probability distribution, so that HMC is able to
explore the target distribution more efficiently, which results in reduced autocorrelation
and faster convergence [15,15,16].

The implementation of this Hamiltonian Monte Carlo is illustrated in six steps as
illustrated in Algorithm 1 as follows:
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Algorithm 1: Implementation of Hamiltonian Monte Carlo.

Start with a collection of samples {x(1), · · · , x(s)} with x(s) being the latest draw;
Let x0 be x(s);
Sample a new initial momentum variable p0 from π(p);
Run the Leap Frog algorithm Algorithm 2 starting at [x0, p0] for L steps with
step-size δ to obtain proposed states x∗ and x∗ :

Compute the acceptance ratio:

r = exp(−U(x∗) + U(x0)− K(x∗) + K(p0))

Accept y with following acceptance–rejection criterion:

x(s+1) =

{
x∗ with probability min(r, 1)
x(s) with probability 1−min(r, 1)

Algorithm 2: Leap Frog algorithm.
Take a half step forward in time δ/2 to update the momentum variable while

fixing position variable at t:

pi(t + δ/2) = pi(t)− (δ/2)
∂U
∂xi

(t);

Take a full step forward in time to update the position variable while fixing
momentum variable computed at time t + δ/2 from the previous step:

xi(t + δ) = xi(t) + δ
∂K
∂pi

(t + δ/2);

Take the remaining half step in time to finish updating the momentum variable
while fixing position variable at time t + δ:

pi(t + δ) = pi(t + δ/2)− (δ/2)
∂U
∂xi

(t + δ).

Samples generated from Hamiltonian Monte Carlo are the empirical posterior distri-
butions to unknown parameters which include both model parameters α, β and missing
observations x̃.

3. Simulation Study

To validate the proposed Bayesian data augmentation, we make use of simulation
studies. The most common and intuitive method of the simulation study is to generate
data with known model parameter values and then use these simulated data to estimate
the model parameters using the developed parameter estimation algorithm to see whether
or not the model can recover these parameters from the simulated data.

3.1. Simulation Design

The simulation experiment is designed to test the parameter estimation algorithms for
different number of augmented points under different parameter settings.

To do so, we first choose a combination of α and β values as seen in Table 1. We fix
β to be 3 and select α to be 1, 2, and 3, which correspond to the three cases of Cardan’s
discriminant5 = 27α2 − 4β3 to be less than zero, equal to zero, and great than zero. We
also choose the number of augmented points to be 0, 1, 3, and 7 in this simulation study.
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Table 1. Simulation settings.

Factors Values

Parameters (α, β) (1,3), (2,3), (3,3)
Augmented points 0, 1, 3, 7

We then perform trajectory simulation for 30 units of time with discretization step-
size ∆ being 0.125 using Euler–Maruyama method [17,18] to obtain 240 (i.e., 30/0.125)
data points, which is considered a nearly “continuous" sample trajectory. We then take
observations for every m points (m = 8), and discard the rest. We pretend that we were
only able to observe 1 observation per unit time, which leads us to a total number of
30 observed data points.

The goal is to use this 30 data points as observations to perform parameter estimations.
We repeat this sample trajectory generating process M = 500 times. So eventually we will
have M = 500 sample trajectories and 30 observation points per sample trajectory.

Model parameters are estimated based on the empirical posterior distributions that
are sampled using HMC, as described in Section 2.3. A non-informative flat prior was used
as the choice of prior distribution. Furthermore, to ensure the retained posterior samples
obtained by HMC are fine empirical representations of the true posterior distribution, the
HMC hyper-parameters, including burn-in and the total number of HMC runs, have been
fine-tuned following the standard MCMC convergence diagnostic criteria [19]. Table 2
computes and records the following statistics for both α and β estimates.

Table 2. Major statistics used for posterior analysis.

Notation Description Operation Level

αMAP, βMAP posterior mode per replication
SEα , SEβ standard error of posterior α and β per replication

Mean αMAP, βMAP mean of posterior modes all replications
SE standard error for αMAP and βMAP all replications

ESE mean standard error of posterior α and β all replications
CP coverage probability using 95% HCI among all replications

3.2. Results

Table 3 summarizes the simulation study. The simulation was designed in a way
that to first generate a large number of sample trajectories with each pre-selected model
parameter pair α and β, and then only keep one observation for every eight generated
points on the trajectory. The goal is to use only the observed data points (hide all remaining
generated points) to perform an inference by using the proposed Bayesian inference
method. Moreover, in Table 3, for each pre-selected parameter pair, we compare across
a different number of augmented points in the Bayesian approach. For example, zero
augmented points assume no missing values between two observations; similarly, seven
augmented points assume seven missing values between two observations—which is the
actual number of data points being generated at the sample trajectory generation process
but assumed to be not observed.

The Bayesian inference method estimates model parameters α and β and naturally
incorporates the missing observations as additional parameters. As seen from Table 3, the
“Mean” estimate for both α and β approach their true values as the number of augmented
data points being inserted increases from 0 to 1 to 3 to 7. Further, the “SE” and “ESE” are
moving closer, resulting in the increase in the coverage probability (CP) for both α and β.
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Table 3. Summary of simulations.

αMAP βMAP

Parameters Aug. Pts Mean SE ESE Mean SE ESE Both CP

α = 1, β = 3

0 0.247 0.686 0.422 3.958 0.827 0.280 0.189
1 0.441 0.582 0.898 2.699 0.841 0.474 0.613
3 1.258 0.850 0.736 1.943 1.000 0.791 0.658
7 1.149 0.761 0.771 2.897 0.701 0.767 0.902

α = 2, β = 3

0 −0.336 1.182 0.508 4.917 1.129 0.307 0.019
1 0.198 1.015 0.749 3.513 1.237 0.530 0.249
3 2.241 0.854 0.840 1.673 1.046 0.775 0.505
7 2.559 1.487 1.475 2.731 0.955 1.121 0.812

α = 3, β = 3

0 −1.122 1.641 0.572 5.843 1.338 0.321 0.029
1 −0.494 1.582 0.862 4.370 1.488 0.550 0.024
3 2.648 0.813 0.907 1.835 1.072 0.747 0.466
7 4.435 2.722 1.864 2.194 1.687 1.353 0.715

Additionally, we are providing the distributions of posterior MAP estimators as shown
in Figure 3–5. The results in Table 3 can be further graphically illustrated in Figure 3 for
parameters α = 1 and β = 3, Figure 4 for parameters α = 2 and β = 3, and Figure 5 for
parameters α = 3 and β = 3. The distributions in each figure are generated from M = 500
simulations for their posterior mode used in Table 3. As seen from these figures, we observe
that as the number of augmented points increase (to 7), the distribution of the estimated α
and β are less biased to the true values (as shown in the vertical dashed lines).

The simulation is based on this simulation study; by increasing the number of aug-
mented data points per unit time interval, we have gained the increasing coverage proba-
bilities as well as unbiased estimates for both α and β under all three different parameter
pair settings—this might be more practically desirable in reality.

Figure 3. Distribution of estimated parameters when α = 1, β = 3.
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Figure 4. Distribution of estimated parameters when α = 2, β = 3.

Figure 5. Distribution of estimated parameters when α = 3, β = 3.
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4. Conclusions

In this paper we present a Bayesian solution for statistical inference concerning stochas-
tic cusp catastrophe model subject to partially observed observations. Theoretically, the
Bayesian inference solution naturally treats missing observations as parameters. We val-
idated this approach using a series of simulation studies, and the simulation studies
demonstrated that the Bayesian data augmentation can satisfactorily recover the parameter
estimation and statistical inference for the stochastic cusp catastrophe models subject to
missing values.
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