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Abstract: This paper retrieves highly dispersive optical solitons to complex Ginzburg-Landau
equation having six forms of nonlinear refractive index structures for the very first time. The enhanced
version of the Kudryashov approach is the adopted integration tool. Thus, bright and singular soliton
solutions emerge from the scheme that are exhibited with their respective parameter constraints.

Keywords: solitons; refractive index; Kudryashov

1. Introduction

The physics and technology of optical solitons in telecommunications industry has
totally revolutionized the modern world of quantum communications. The dynamics of
soliton propagation through a variety of waveguides [1-3], as well as the modern study of
meta-optics covers it all. Later, the concept of highly dispersive (HD) optical solitons [4-8]
that was conceived during 2019 has theoretically addressed a growing problem in the
modern telecommunications industry. This is the low count of chromatic dispersion
(CD) that is a key element in sustaining the much needed balance between it and the
self-phase modulation (SPM). HD solitons provide additional sources of dispersion to
maintain this key balance between CD and SPM for the smooth propel of solitons through
optical fibers for trans-continential and trans-oceanic distances. These additional sources
of dispersion are from inter-modal dispersion (IMD), third-order dispersion (30D), fourth-
order dispersion (40OD), fifth-order dispersion (50D), and sixth-order dispersion (60D).
These lead to the concept of HD solitons although, technically, dispersive effects would
dominate the soliton propagation. Another shortcoming would be the drastic slow-down
of solitons with such a collective dispersive count.

When HD solitons first came into existence, it was on the platform of nonlinear
Schrodinger’s equation (NLSE) [9-12]. After the concept of HD solitons was first reported,
several works from this area have flooded a variety of journals over the last couple of
years [13-17]. This, in fact, includes addressing of solitons with eighth-order dispersion.

Mathematics 2021, 9, 3270. https:/ /doi.org/10.3390 /math9243270

https://www.mdpi.com/journal /mathematics


https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5542-8694
https://orcid.org/0000-0002-8131-6044
https://doi.org/10.3390/math9243270
https://doi.org/10.3390/math9243270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9243270
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9243270?type=check_update&version=3

Mathematics 2021, 9, 3270

20f19

The current paper is addressing, for the first time, HD solitons on a different platform,
namely the complex Ginzburg-Landau equation (CGLE) [18-26]. There are six forms of
nonlinear refractive index structures that are considered. The integration scheme is the
enhanced Kudryashov approach that reveals bright and singular optical solitons for each
of these six nonlinear forms. These are exhibited and their respective parameter constraint
conditions are also displayed. The detailed analysis are pen-pictured after a quick intro to
the model.

Governing Model

The perturbed HD-CGLE that is considered for the very first time in this paper is
indicated below

igy +ia1qy + axqxx + 143G xxx + A4Gxxxx + 145G xxxxx + A6Gxxxxxx + F (|Q|2>q

2
= ol o (), (o))

+ ya+i[A(la*"q) +n(la") q+vlaP"a], (1)

where g = g(x, t) denotes the wave profile and g* represents the complex conjugate of the
field g = q(x,t), while t and x represents temporal and spatial variables, sequentially. a;
(j=1,2,---,6) are the coefficients of IMD, CD, 30D, 40D, 50D, and 60D. The first term
is linear temporal evolution and i = v/—1. 7 gives the detuning effect. A is the coefficient
of self-steepening. yu is the coefficient of higher-order dispersion. v is the coefficient of

nonlinear dispersion. § and « are the coefficients of nonlinear term. Lastly, F (\q|2) stands

for nonlinear form.
Equation (1) is a generalized version of the perturbed CGLE [27-31]

iq: + iaqus + F(J ) g = a|2,;|2 + 4|q'|82q* {Zfilz(qlz)xx - [(Iql2)x]z}
+ ya+i[oqe+ A (Il™"a) +u(laP™) g+ vlgP"as]. @

This paper studies the perturbed HD-CGLE (1) with six nonlinear forms using
the integration methodology. The current paper is structured as: In Section 2, the per-
turbed HD-CGLE (1) is analyzed. In Section 3, the integration methodology is presented.
In Sections 4-9, we arrive soliton solutions with the proposed models. The results of the
paper are discussed in Section 10.

2. Mathematical Preliminaries

We presume the traveling wave transformation
4(x, 1) = P(E)eTHHN), &= x —ct, ®)

where ¢(¢) is the amplitude of the traveling wave, « is the frequency, c is the velocity, w is
the wave number and 0 is the phase constant. Substituting (3) into (1) gives the real part

11647<P(6) + (5a5x +ay— 151161(2)(;7(;;(4)
+ (15a6x4 — 10a51c3 — 6a4K2 + 3azx + a; — ﬁ) (p(p”
- “(4’/)2 —¢ [ﬂ6’<6 — a5 — agxt + a3 + (e +ap)k? — Kk +y +w

— K(v+A)g*" 2+ F(9?)9? =0, @)
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and the imaginary part
[6agk — as)p®) + (6(16;(5 — 4a413 — Bask* 4 2apx + 3azk* — ag + c) ¢
+ 7Y QmA+2mpu+A+0)+ ¢ (—201161(3 + 10as5x? + 4agx — a3) =0. (5

Equation (5) yields the velocity

¢ = —6agk’ + 4agk’ + 5115K4 — 2a0k — 3ask* +aq, 6)
and the frequency
as
= -—, 7
: 6(16 ( )

and the constraint conditions
2mA 4+ 2mu+A+v =0, —20a6x> + 10asx> 4 4agk — az = 0. 8)

Equation (4) can be written as

¢ ©) + Mg + Mo’ + 83 (¢')% + Aag? + Asp?" 2+ F (4’2)472 =0, ©)

where
_ 2
A = 5asx + a4 — 15a6K As = _K(U—F/\), As = —E,
ae ae ae
A 15a¢x* — 10asx>® — 6a4x> + 3azk +ar — B
2 — ﬂ6 7
A — a3k® — ask® 4 agk® — age? + (a + a)i® + ¥ —ax + w (10)
de
3. Enhanced Kudryashov Method
The integration approach permits the formal solution
N
9(8) = L %[R@)F, o5 #0, (11)
§=0

where N is the order of the pole, 7g (¢ = 0,1,2,---,N) are arbitrary constants and R({)
satisfies the ordinary differential equation

R2(8) = R¥(@)[1— xR¥(@)]In*K, 0 <K #1, (12)
along with the analytical solution

B 4A ,
4A%expy(pg) + xexpi(—pd) |

R(¢) (13)

Here X, p and A are non-zero real constants and expg (p&) = K¥¢. Plugging (11) along
with (12) into (9) yields the coefficients oy (¢ = 0,1,2,- -, N). Substituting the coefficients
0g (§=0,1,2,---,N) together with (13) into (11), we arrive the analytical solution of the
model Equation (1).

4. Kerr Law

The Kerr law of nonlinearity is considered as

F(¢?) = e¢?, e #0, (14)
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where e is an arbitrary constant. Therefore, Equation (1) turns into

iQt + ialﬂx + axqxx + ia3%cxx + a4 xxxx + iaSﬂxxxxx + aeGxxxxxx + e|Q|2q

N “qu*z - 4|qf2q* {2‘7|2<‘7|2)xx - {(W)xr}

+ yg+i[A(laP"a) +u(1a") a+vlalax], (15)

while Equation (9) simplifies to
0 + A1pp™® + Ay + Az () + Aag? + Asd?" 2 + ep* = 0. (16)
Setting m = 1, Equation (16) collapses to
$0©) + Mg + Aspd” + Az (¢))” + Asg? + (A5 +e)p* = 0. (17)
Balancing $¢(®) and ¢* gives rise to
2N + 6p = 4N = N = 3p. (18)
Case 1: With the help of p = 1, Equation (11) turns into
$(&) = 00 + 01R() + 2R*(&) + 03R*(8), 03 # 0, (19)

where 0y, 01, 03 and o3 are arbitrary constants. Substituting (19) along with (12) into (17)
causes the coefficients to

35
op =01 =0y = 0, 03 = 248)( A5 j_Ce 11"[3 K, (20)

and the constraint conditions
Ay — 75641n* K
3 7
Ay = (3A2 ~ 16698 In? K) In2K, x(As+e) >0, ¢ = £1. 1)

Ay = —83In’K, Az = —

Plugging (20) together with (13) and (21) into (19), the straddled soliton is formulated

35x 4A ’
. 3
q(x,t) = 248)((11’1 K)\/;{4A28XPK(JC—C7})+XeXPK(_(x_Ct))

Xei(ka+wt+90). (22)

as

By the aid of A5 + e > 0 and x = 4A?, the bright soliton is indicated below

g(x,t) = 24e (1n3 K) \/ %sech:‘"[(x — ct) InK]ef(-rxtwt+6o) (23)

By the usage of As + e < 0 and y = —4A?, the singular soliton is considered as

q(x,t) = 24e (1n3 K) - A:i —csch?[(x — ef) In K]/ -0t (24)
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Case 2: With the help of p = 2, Equation (11) transforms to
$(§) = 00 + 1R (§) + 2R* (&) + 03R*(§) + 0uR*(§) + 05R° (&) + 06R*(8), 06 # 0, (25)
where 0; (i =0,1,---,6) are arbitrary constants and R(&) changes to
R2(¢) = R(¢) {1 - xR4(§')} In?K, 0 <K, K # 1. (26)

Inserting (25) along with (26) into (17) yields the coefficients

| 35
0p =01 =03 =03 =04 =05 = 0, O = *1928)( Ai—‘,)—(elna K, (27)
4

and the parameter constraints
4A, — 121024 1n* K
3 7
Ay = (12A2 — 1068672 In* K) In2K, x(As+e) >0, ¢ = £1. (28)

Ay = —3321n°K, Az = —

Putting (27) together with (13) and (28) into (25), the straddled soliton is structured as

o 3 35x 4A °
g(x,t) = —192ex (ln K) \/; {4A2 expy[2(x — ct)] + x expg[2(x — ct)]

Xei(—Kx—l—wt—i—Qo). (29)

By the aid of As +¢ > 0and x = 4A2, the bright soliton is formulated as

g(x,t) = —192¢ (ln3 K) \/ A:i— esech3 2(x — ct) InK]e/ (- twttéo), (30)

By virtue of As +e¢ < Oand x = —4A2? the singular soliton is indicated below

g(x,t) = 192¢ (ln3 K) V- A5Sj— ecsch3 [2(x — ct) In K]e!(— x¥+wt+bo), (31)

5. Power Law

The power law of nonlinearity is structured as

F(¢?) = e¢?, e #0, (32)

where e is an arbitrary constant. Thus, Equation (1) simplifies to

iQt + ialﬂx + axqxx + ia3Qxxx + a4qxxxx + iﬂSﬂxxxxx + a6 xxxxxx + e|Q|2nq

2
s A COM (RN,

+ ya+i[A(laP"a) +u(1a") a+vlalax], (33)

while Equation (9) collapses to

90 + 2190 + Asgp” +83(¢f)" + Bag? + A5 e R =0 (34)
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Setting n = m, Equation (34) transforms to

¢p©) + M19pp®) + Arpg” + D3 (¢) + Aag? + (A5 +e)p?" 2 = 0.

Balancing ¢¢(®) and ¢?"*?2 yields N = % Setting

G
Equation (35) turns into
—9(m —1)(2m — 3)(4m — 3)(5m — 3) (m — 3)U’6
+ 135m(m —1)(2m — 3)(4m — 3)(m 3)uu” u'
— 9Mm?(m —1)(2m = 3)(m - 3)U*
—  180m?(m —1)(2m — 3)(m — 3)U? uu + AymOU°
) u

—  405m?(m —1)(2m —3)(m — 3

+ 3mOUBUO) 4+ 45m3 (2m — 3) (m — HUBUDU” + 3 [3A3—(m—3)A2

— 128wt — 3 U U+ 180m3 (2m — 3)(m — 3)WPU"U U’

— 18mi(m = 3)UUBU + 45m° (2m — 3)(m — 3)uP(U")?
— 9Am(m = 3)UHU")? — 45m* (m — 3)UUPU + 3mdA,UU
+ m®(As+e) U — 30m*(m — 3)U*(U" )2 + 3m’ A UPUW = 0.

Balancing U°U(®) and U"? leads to
6N +6p = 12N = N = p.
Case 1: By virtue of p = 1, Equation (11) collapses to

U(g) = 0g+aiR(g), o1 #0,

0'0:0,0'1: A5—‘r€

and the parameter constraints

2 2
A= — (20m +36:;2+ 27) In K, Clbste) >0,
64m° 4 480m* + 1512m3 i K
( +2592m2 + 2187m + 729 ) n (m+3)A;
3m4 B 3
3 ( 64m° + 480m* + 1512m3 ) 16
+2052m? + 1215m + 243 LY In® K

mo m

wury” +18A1m (2m —3)(m — 3)u3u u”

]u4u

elnK (9(4m+3)(5m+3)(2m+3)(m+3)(m+1)x3>"

(35)

(36)

(37)

(38)

(39)

where 0y and oy are arbitrary constants. Plugging (39) along with (12) into (37), we arrive
the coefficients

(40)

(41)
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Inserting (40) together with (13) and (41) into (39), the straddled soliton is modeled as

3
m

sea (2o NG om0t IV
As+e n
AP ) + Xexpy(— (v~ D)

q(x,t) =

Xei(foerH»Qo)‘ (42)
By the usage of As + e > 0 and y = 4A?, the bright soliton is structured as

3
m

semi ((O(4m +3)(2m +3) (5m +3) (m + 1) (m +3) \ &
q(x/ t) = m ( As+e )
xsech[(x — ct) InK]

w« pl(—xxtwt+0p) (43)

With the help of As + e < 0 and x = —4A2, the singular soliton is indicated below

3
sk [ 9@m+3)2m +3)(5m +3)(m+1)(m+3)\+ | "
axt) = { w Ds+e
xcsch[(x — ct) InK]
Xei(—KX-’rwt-FGg)' (44)
Case 2: By virtue of p = 2, Equation (11) becomes
U(g) = oo+ o1R(E) + R (Z), 02 #0, (45)

where 0y, 01 and 0, are arbitrary constants. Putting (45) along with (12) into (37) causes to
the coefficients

1

2eInK (9(4m+3)(2m+3)(5m+3)(m+1)(m+3))(3)6 )
m As+e 4

op=0=0 0=

and the constraints

4(20m? 27)In’ K
A, = H20m +3?n"§+ )In , x> (D5 +e) >0,
64m° + 480m* + 1512m3 4
16 5 In*K
+2592m2 + 2187m + 729 (m +3)Ay

A prm—
3 3mA 3 7
5 4 3
192< —6F42n(;52_'1—n%8£1;l2;nl15—41—221§3 >ln6K 12A; In?K
n
Ay = — + : ’ (47)

mo m

Plugging (46) together with (13) and (47) into (45), the straddled soliton is considered
as
N
9(4m +3)(2m +3)(5m +3) (m + 1) (m + 3)x>\ ®
e+ As
m[4A? exp[2(x — ct)] + x expg [—2(x — ct)]]

8cA an(

q(x,t) =

w« pl(—xx+wt+0p) (48)
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By the usage of As + e > 0 and y = 4A?, the bright soliton is modeled as

e ((O(4m +3)(5m +3) (2m +3) (m +3) (m + 1)\ &
g(x,t) = m ( e+ As )
xsech[2In K(x — ct)]

Xei(foertnL@o). (49)

With the help of As + e < 0 and x = —4A?, the singular soliton is formulated as

3
m

q(x' t) = m e+ As
xcsch[2In K(x — ct)]

Xel’(—KX"rwt'i'Go). (50)

MK<_9<4m+3><5m+3><2m+3><m+3>(m+1>>é

6. Parabolic Law

The parabolic law of nonlinearity is indicated below

F(9?) = 1 + e29", 02 £0, (51)
where e; and e are arbitrary constants. Consequently, Equation (1) turns into

igy +iajqy + a2qxx + 1a3Gxxx + A4Gxxxx + iaSﬂxxxxx + agGxxxxxx

+ (€1|¢7|2 +62|‘7|4>q = aqux*|2 + 4|q'[|%2q* {2q|2<q|2>xx B [(|q|2)x}2}

+ ya+i[A(laP"g) +u(1a") q+vlalax], (52)

while Equation (9) decreases to

90 + 2199 + Aagp” +83(¢f)" + Dag? + A5+ ergt +eag® =0. (53)

Setting m = 1, Equation (53) becomes
09 + 8199 + 829" +83(9/)" + As” + (85 +e)gt +ea® =0 (54)

Balancing ¢¢®) and ¢° causes to N = % Setting

$(8) = U@, (55)
Equation (54) collapses to
315[U')° + 36, L2U" — 1350uU" U + 720020 U + 162002U"U"
— A BT U = 3600PUBU” + 48305 + AJUAU + 1928, utU U

" "

/ . M
288U LU’ — 1440U3U" U U — 360U (U")? + 1440, UH(U )2

n

960, UL+ 72004UM U + 480U (U™)? + 964, UPUM) + 96L5 U ©)
64e, U2 + 64(e1 + As)U° + 64A4U° = 0. (56)

+ + +

Balancing USU(®) and U2 gives rise to

6N +6p = 12N = N = p. (57)
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Case 1: By the usage of p = 1, Equation (56) permits the solution (39). Substituting
(39) along with (12) into (56) gives rise to the coefficients

1
3\ 6
00 =0, 0y = (%) InK, (58)

and the parameters

2 4
Ay — 7179111 K, A — 37295In* K LAY

4 48 3’
98115In° K 3A,In*K
y= R IR A= o, P> 0 59)

Plugging (58) together with (13) and (59) into (39), we arrive the straddled soliton

3
2

1

1351353 ©

4A( ——2 ) InK
( 64e) ) "

4A% expy(x —ct) + x expg(—(x —ct))

ei(—Kx+wt+90) (60)

q(x,t) =
Setting e > 0 and x = 4A2, Equation (60) transforms to the bright soliton
3
2

1
q(x,t) = {(an) (1‘2212’5) 6sech[(x ct)an]} el (—rxtwi+6o) (61)

Ife; < 0and x = —4A2?, Equation (60) yields the singular soliton

1 2
g(x,t) = {(an) (— 1?;235) 6Csc:h[(x —ct) an]} gl (—rxtwi+bo) (62)
2

Case 2: By the aid of p = 2, Equation (56) holds the solution (45). Substituting (45)
along with (12) into (56) leads to the coefficients

1
135135;(3) 6 nK

oo=01=0, 00 = ( (63)
€2
and the constraints
4
Ay = 179102 K, A = 220K S8
3 3
Ay = (6A2 — 98115 In* K) 2K, As = —ey, x3e > 0. (64)

Inserting (63) together with (13) and (64) into (45), the straddled soliton is formulated

1

3\ 6

4A<1351€35X) InK
2

4A% expy[2(x —ct)] + xexpg[—2(x — ct)]

as
3
2

ei(fo+wt+90). (65)

q(x,t) =
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Ife; > 0and x = 4A2, Equation (65) becomes the bright soliton
135135\ & :
g(x,t) = {(1n[<)< ; > sech[2InK(x — ct)]} gl (—rx+wtt6o), (66)
2
When e, < 0and y = —4A2?, Equation (65) turns into the singular soliton
1 2
6 .
q(x, t) = {(ln K) (— 132135> csch[2In K(x — ct)] } et (—rxtwi+6o) (67)
2
7. Dual Power Law
The dual power law of nonlinearity is considered as
F(¢?) = e1¢™" + 2™, €2 # 0, (68)
where e and e, are arbitrary constants. Hence, Equation (1) simplifies to
iQt + ial‘/]x + a2qxx + m3’/7xxx + a4Gxxxx + iaSﬂxxxxx + A xxxxxx
2
2n 4n |qx| ﬁ 2 2 2 2
=g P )y —
v (el +eala)g = el B {2l ()~ [(1F),]
. 2 2 2
+ yq+i[A(lal*"q) +nu(1a") a+vlaP"a], (69)
while Equation (9) collapses to
90 + 8199®) + 829" +85(¢/)" + A4 + Asg?" T + 19?2 +epg™ 2 = 0. (70)
Setting n = m, Equation (70) decreases to
09 + 2199 + 2299 + 83(¢/)” + Bag? + (A5 + €)™ eapt" 2 =0 (71)
Balancing ¢¢(©) and ¢*"+2 gives N = 53.. Setting
3
¢(6) = [U(5)]>, (72)
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Equation (71) turns into

—9(2m — 3)(2m — 1) (4m — 3)(10m — 3)[U']°
+ 270m(2m — 3)(2m — 1) (8m — 3)(4m —3yuU' U’
_ 36m2(2m — 3) (4m — 3) (2m — )M UPU
— 720m2(2m — 3)(2m — 1) (dm — 32U U
—1620m2(2m — 1) (2m — 3)(4m — 3)URU"PU”

"2
144A1m3 (2m — 3) (4m — 3)UPU U

2

n

n
+360m3(2m — 3)(4m — HUPUDU” — a8m*[(2m — 3); — 33| UU
+ 14403 (2m — 3)(dm — 3)WPU"U U — 1928m* 2m — 3)UAU" U’
— 288m*(2m — 3)UAUO U + 360m> (2m — 3)(4m — 3)UP (U )?

— 144t 2m — B UAU)? — 720mt 2m — B)UFUBU

b 96mP AU — 480m* (2m — 3)UA (U™ )2 + 96mP A UP UM

+ 96m°UPU®) + 64mOe, U + 64m®(e1 + As)U° + 64mOALU° = 0. (73)
Balancing U°U(®) and U"? leads to
6N +6p = 12N = N = p. (74)

Case 1: By the usage of p = 1, Equation (73) satisfies the solution (39). Putting (39)
along with (12) into (73), we arrive the coefficients

1
3 6
o= 0, oy = lr:nK(%( (8m+3)(4m+3)(22:1+3)(2m+3)(2m—0—1)) )
2

and the constraints

(80m? + 72m + 27) In* K 3
Al = - 4m2 ’ A5 = —e1, X e > 0/

2048m° + 7680m* + 12096m> K
An +10368m? + 4374m + 729 (2m +3)A,

> 48m* 3
3 2048m° + 7680m* + 12096m> 16 K
+8208m? + 2430m + 243 30, 5
Ay =— + ——1In’K. (76)
64m° 2m

Inserting (75) together with (13) and (76) into (39), we arrive the straddled soliton

3
2m

9x3(8m + 3) (dm + 3)(10m + 3) (2m + 3) 2m + 1)\
4A< 6de ) InK
m[4A? expy (x — ct) + x expy (—(x —ct))]

q(x,t) =

w pl(—rxtwt+6o) (77)
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By virtue of e; > 0 and x = 4A?, Equation (77) simplifies to the bright soliton

3
2m

i (9(8m -+ 3) (4m +3) (10m +3)(2m + 3) (2m + 1) \ &
q(x,t) = m( 64e, )
xsech[(x — ct) InK]

X€i(7 Kx+wt+90). (78)

By the aid of ¢; < 0 and y = —4A2, Equation (77) collapses to the singular soliton

3
k[ 9(8m+3)(dm +3)(10m +3)2m +3)(2m+ 1)\ | ™"
q(x,t) = m 64e,
xcsch[(x — ct) InK]
w gl (= Kx+wi+6y) (79)

Case 2: With the help of p = 2, Equation (73) presumes the solution (45). Plugging
(45) along with (12) into (73) yields the coefficients

o100 - K <9X3(8m+3)(4m+3)(10m+3)(2m +3)(2m+1)>é1 50

m (5]

and the conditions

2 2

A= — (80m= + 72nn112+ 27) In K/ As = —e1, s >0,

2048m° + 7680m* + 12096m3 K

+10368m? + 4374m + 729 (2m +3)A,
Az = _ )
3m4 3
3< 2048m° + 7680m* + 12096m> ) 1 K
8208m2 + 2430m + 243

A= Uit + P2k (81)

Substituting (80) together with (13) and (81) into (45), we attain the straddled soliton

3
2m

e
€2
m[4A2 expy [2(x — ct)] + x expg[—2(x — ct)]

q(x,t) =

X ei(—KX-i-wt-‘rGg) . (82)
With the help of e; > 0 and x = 4A2, Equation (82) changes to the bright soliton

3
2m

ok 9(8m +3) (4m +3) (10m + 3) (2m + 3) (2m + 1) \ &
Q(x/ t) = m( () )
xsech[2In K(x — ct)]

w pl(—xx+wt+bo) (83)



Mathematics 2021, 9, 3270 13 of 19

By the aid of e; < 0 and y = —4A2, Equation (82) collapses to the singular soliton

3
2m

k{98 +3)(4m +3)(10m + 3)(2m + 3)(2m + 1)\ &
q(xt) = m(_ e )
xcsch[2In K(x — ct)]

Xei(*KxJFWtJFGO)' (84)

8. Polynomial Law

The polynomial law of nonlinearity is modeled as
F(¢?) = e1¢” + ex¢p* + e3¢°, e3 # 0, (85)
where e, e; and e3 are arbitrary constants. Therefore, Equation (1) simplifies to

iQt + ial‘]x + axqxx + ia3‘7xxx + a4Gxxxx + Z‘115‘7xxxxx + AgGxxxxxx

b (o gt vela®)a =B o B Lo ()~ [(oF) '}

+ ya+i[A(laP"g) +u(la") qa+vlalax, (86)

while Equation (9) collapses to

9p® + 2199 + 209" + A3 (¢)” + Dag?
+ D¢ et +eag® +esg® = 0. (87)

Setting m = 1, Equation (87) transforms to
$0®) + Mg + Mo + Az ()" + As? + (A5 + e1)p* + e2p® +e30° = 0. (88)
Balancing $¢(®) and ¢® gives

2N +6p =8N =— N =p. (89)

Case 1: By virtue of p = 1, Equation (88) holds the solution (39). Putting (39) along
with (12) into (88) causes to the coefficients

1
720 x3\ ¢
0 =0, 0 = ( 637‘ ) InK, (90)

and the constraint conditions

1 2/3
A = [ei (720°€3) " + 8402 2 K|, x5 >0,

S 24)2 |

1

6631 (90x°€3)" " (e1 -+ 8s) + 10(In? K ) 2 (90 x°e3)
" ocd '

—3x%e4 (A3 — 518In* K)

2
p_ 3K 2631(902°6) P e1 + 25) + (In? K ) ex (907°¢3) " -
2x%¢; +1x2e4(As + 450 In* K)
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Plugging (90) together with (13) and (91) into (39) gives rise to the straddled soliton

1
3\ 6
4A(720X> InK

€3

i(fxx+wt+90)‘ 92
4A% expy (x — ct) + xexpg(—(x —ct)) ¢ ©2)

q(x,t) =

When ez > 0and y = 442, Equation (92) becomes the bright soliton

q(x,t) = { (720> "In Ksech[(x —ct)In K]} i(—rextwt+y) (93)

€3

Ifes < Oand y = —4A?, Equation (92) turns into the singular soliton

1
g(x,t) = { (—720> "In Kesch[(x — ct) InK] }ei("”wtwﬂ). (94)

Case 2: When p = 2, Equation (88) permits the solution (45). Substituting (45) along
with (12) into (88) yields the coefficients

l
72
0 =01 =0, 2_2< 337() Ink, (95)

and the parameter conditions

_ 1 2/3 2,2 3
M=-5ia (720 ) 133602 In2 K|, x3e3 > 0,
3,5 3,5)2/3
o L[ 663x(90x%3) " (e1 + As) + 40 (1n? I<)e2 (90x3¢3)
2= 57 /
6x2¢3 —3x%e3(A; — 82881n*K)
5 _ 6K 3 20(902°e3) 7 (o1 + As) + 4(1n? K)62(90X3 &)*? o6)
X% +1x2e4 (A3 + 7200 In* K)
Inserting (95) together with (13) and (96) into (45) gives the straddled soliton
1
3\ 6
8A (7257‘ ) InK
_ 3 i(—xx+wt+6p)
) = . 97
9(xt) 4A% expy[2(x —ct)] + xexpg[—2(x — ct)] ¢ ©7)
Setting e, > 0 and x = 4A2, Equation (97) transforms to the bright soliton
720\ &
g(x,t) = {ZInK(e) sech[2InK(x — ct)] }ei("”wt*%). (98)
3

Ife; < 0and x = —4A2, Equation (97) simplifies to the singular soliton

1
g(x,t) = {21n1<<720) 6csch[2 InK(x — ct)] }ei(_Kx+Wt+9°). (99)

€3
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9. Triple Power Law

The triple power law of nonlinearity is structured as
F(¢%) = e1¢p™ + 2™ + e3¢, e3 # 0, (100)

where e1, e; and ej3 are arbitrary constants. Thus, Equation (1) turns into
iQt + iﬂlﬂx + axqxx + iﬂBQxxx + a4 xxxx + iﬂSﬂxxxxx + AgGxxxxxx
2
2n 4n 6n || p 2112 2) 12
= —_— — 2 j—
b (el el +elaf)a = 5+ B o (10P), ~[(1P),]
. 2 2 2
+ ya+i[r(laP"g) +u(la") a+vlaa), (101)
while Equation (9) reduces to

$p® + A1pp® + Mg’ + Az (¢)” + Aag?
+ AP P et e3¢t = 0, (102)

Setting n = m, Equation (102) changes to

09 + 2199 + Mg’ + As(¢!)” + Aag?
+ (A5 +e1)p?" T2 4 eppt™ T2 4 e3¢p®" 2 = 0, (103)

Balancing ¢¢(®) and ¢®"+2 yields N = % Setting

¢(¢) = [U(@)]™, (104)

Equation (103) becomes

—(2m —1)(m —1)(4m —1)(3m — 1) (5m — 1)[U']°

+ 15m(2m—1)(m—1)(4m—1)(3m—1)uu”u’4

— AR2m—1)(m—1)Bm — 1)U —20m2(2m—1)( —1)Em-1nwru u”
— 452 2m—1)(m—1)(3m )uzu”zu 4 6Am (2= 1)(m m—1wu u”

+ 15m3(2m —1)(m — 1) UPU u’ —m [ (m —1)A2—A3]U4U

+60m3(2m — 1) (m— DUPU"U U — 4A, (m — Dmtu*u” U

— 6(m—D)m*utud U +15m° (m — 1)(2m —HWPU")? = 3amH(m —1)UHU")?
~ Bt — DUAUIOU + w5 MU — 10mt (m — DUAU")? + mSa P u®
+ mPUPU© 4 mPesU'? + mOer U0 + m®(eq + As)UB + mPALU® = 0. (105)

Balancing USU(®) and U'? gives
6N+6p =12 = N =p. (106)

Case 1: When p = 1, Equation (105) admits the solution (39). Inserting (39) along with
(12) into (105) leads to the coefficients

00 =0, 0 = an((zm+1)(’”+1)(4m+1)(3m+1)(5m+1)x3

€3

)6, (107)
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and the parameter constraints

1
Cm2eA(2m 4 1) (m +1)(3m + 1)x2

A =

x {m2€2 [xCe3(2m + 1)(m + 1)(am + 1) 3m+ 1) (5w +1)]

1
4+ 480e3x 2 (m +1)(m + 3) (m? + gm + 3

1,2
3 G 20)(111 + E)ln K},

1 4a 4.2
Ay = —(Bm+1)2m + 1)m*Aze
z m4(2m—|—1)(m+1)(3m+1))(2e§{ ( I Jm*Baesx

+  dmP(m® +m+ %)ez <1r12 K) {(Zm +1)(m+1)(4m+1)(3m+1)(5m + 1))(36%} 23

£t (Em 1) @m o+ Dex(er + 8s) [@m o+ 1)+ 1) (8m o+ 1) (3m + 1) (5m 1 )0

(3m +1)(2m + 1) (m 4 1) (64m* 4+ 96m® + 72m> + 24m + 3)es > In* K},

In’K

Ay = —
i m®(m +1)(3m + 1) x2e3

x {m2(2m 1) 107 Kea )% 2m + 1) (m + 1) (4m +1)(3m + 1) (5m 1))

£ (@m 1) (en+ As)EX G @+ 1) m 4+ 1) (4 + 1) B+ 1) (1) Ve

+ (Bm+1)edx’ [A3m5 + (m+1)(4m + 1)2(2m + 1) In* K} }, x%es > 0. (108)
Substituting (107) together with (13) and (108) into (39), we arrive the straddled soliton

n

4A((2m—|—1)(m+1)(4m+1)(3m+1)(5m+1))f’)éan

q(xt) = m[4A? expy (x — ct) + x expy (—(x —ct))]

w pl(—rxtwt+6o) (109)
Ife3 > 0and y = 4A?, Equation (109) reduces to the bright soliton

1
m

ik (((2m+ 1) (m +1)(4m + 1) (3m + 1) (5m + 1) \ &
g(x,t) = m( . )
xsech[(x — ct) InK]

Xei(fo+wt+90). (110)
When ez < 0and y = —4A2?, Equation (109) changes to the singular soliton

n

mi [ @mA1)(m+1)(dm+1)Gm+1)(5m+1) s
g(x,t) = Tm (‘ o )
xcsch[(x — ct) InK]

Xei(*KerwlUr@Q) (111)
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Case 2: If p = 2, Equation (105) presumes the solution (45). Plugging (45) along with
(12) into (105) gives rise to the coefficients

op=01=0,00=

2InK ((Zm +1)(m+1)(4m +1)(3m + 1) (5m + 1)?(3) : (112)
m €3 ,

and the parameter conditions

1
m2(m +1)(2m +1)(3m + 1)x2

A =—

m2e 2/3
{egz[X3€§(2m+1)(m+1)(4m+1)(3m+1)(5m+1)}

1 3 3 1
+ 120x% (m + 1) (m + g)(mz + 5" + %)(m + E)ln2 K},

Ay = ! {—(3m +1)(2m + 1)m*Azei x>

C om*(2m+ 1) (m +1)(3m + 1) x%€3

+ 16m2(m2+m—|—1)6121<[2 1 V) (m +1)Gm +1)5m+ 136
5)e2 In® K| (2m + 1) (m +1)(4m +1)(3m +1) (5m +1)x"e3

1/3
+ m*(Bm+1)(2m 4+ 1)e3x(er + As) {(Zm + 1) (m+1)(4m+1)B3m+1)(5m + 1))(36[35]

+  (2m41)(Bm +1)(1024m* + 1536m> + 1152m> + 384m + 48) (m + 1)e3 x> In* K},

12In’K
mO(m +1)(3m + 1)x2e3

Ay =—

x {§m2(2m +1)In? Key [X%g(zm +1)(m+1)(dm +1)(3m + 1) (5m + 1)]2/3

1 1/3
+ B+ 1) (e + 85)éx [X?’eg(zm +1)(m + 1) (4m + 1) (3m + 1) (5m + 1)}
3 1 4,2
+ %{ [Agm® +16(m +1) (4 +1)2(2m +1)2 In* K|}, xe3 > 0. (113)
Inserting (112) together with (13) and (113) into (45) causes to the straddled soliton
1 i
3\ 6
8A<(2m +1)(m+1)(4m+1)Bm+1)(5Gm+1)x ) InK
g 1) = =
m{x expy(—2(x —ct)) +4A%expy (2(x —ct))}
Xel'(—)(x-‘rwt-‘reg)' (114)
Setting e3 > 0 and x = 4A2, Equation (114) simplifies to the bright soliton
1 1
ok ((Cm+1)(m+1)(4m+1)(Bm +1)(5m+1)\©
axt) = o
xsech[2In K(x — ct)]
Xei(ka+wt+90). (115)
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q(x,t)

When e3 < 0 and x = —4A?, Equation (114) transforms to the singular soliton

Sk <_ 2m +1)(m +1)(dm +1)(3m + 1) (5m + 1)>%
xcsch[2In Ke(ic —ct)]

Xei(f Kx+wt+90). (116)

10. Conclusions

This paper reports HD solitons with the perturbed CGLE having six forms of nonlinear
refractive index structures. The perturbation terms are all of Hamiltonian type and are
with maximum intensity. The integration scheme is the enhanced Kudryashov approach
that is the extended and generalized version of the pre-existing Kudryashov scheme. Thus,
straddled, bright and singular soliton solutions emerge from the scheme for each of these
six nonlinear forms that are exhibited with their respective parameter constraints. Likewise,
one can obtain a large number of HD solitons of the model equations by taking a different
selection to the parameters p and N.

There is an abundance of results that have been retrieved on the perturbed CGLE [16,28,29]
where Hamiltonian type perturbation terms are studied with maximum intensity. A spec-
trum of cubic—quartic optical solitons for the perturbed CGLE having a variety of six
forms of nonlinear refractive index structures are derived by eight powerful and prolific
integration structures [28]. Additionally, conservation laws for pure-cubic optical solitons
with the perturbed CGLE having eleven forms of nonlinear refractive index structures are
derived with the implementation of Lie symmetry analysis [29]. Lastly, pure-cubic optical
solitons with the perturbed CGLE having a dozen nonlinear refractive index structures
are recovered by two integration schemes [16]. However, compared with [16,28,29] that
secure pure-cubic or cubic—quartic optical solitons with the model equation, HD solitons
with the perturbed CGLE are given in the current paper for the very first time. The results
of this work are with unprecendented novelty and thus carry tremendous value in further
future development of the concept of HD solitons with CGLE and/or NLSE. The results
are indeed promising.

Later, conservation laws will be reported. The variational principle would lead to the
evolution of the soliton parameters in presence and/or absence of perturbative effects. Once
these fundamental results are in place, one can move further along with the development
of quasi-particle theory to suppress intra-channel collision of optical solitons. The quasi-
stationarity will also be addressed to recover soliton solutions in presence of perturbation
terms, be it Hamiltonian or non-Hamiltonian. These are just a few droplets of a wide and
deep ocean!!
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