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Abstract: This paper considers interval estimations for the mean of Pareto distribution with excess
zeros. Three approaches for interval estimation are proposed based on fiducial generalized pivotal
quantities (FGPQs), respectively. Simulation studies are performed to assess the performance of
the proposed methods, along with three measurements to determine comparisons with competing
approaches. The advantages and disadvantages of each method are provided. The methods are
illustrated using a real phone call dataset.

Keywords: zero-inflated Pareto distribution; fiducial generalized pivotal quantity; fiducial general-
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1. Introduction

Pareto distribution was introduced by Pareto in 1897 [1]. Since then, it has been widely
employed in many applied fields such as meteorology, economics, politics, etc. Confidence
intervals (CIs) or approximate CIs for the parameters of a Pareto distribution have been
discussed by many authors; Asrabadi derived the unique minimum variance unbiased
estimate (UMVUE) for the 100pth percentile of a Pareto distribution [2], Chen discussed
the exact joint confidence region for the parameters of a Pareto distribution [3], and Wu
discussed the interval estimation of a Pareto distribution based on a type II censored
sample [4].

In practice, the situation becomes more complicated when the data contain a certain
proportion of zeros, as zero values are often neglected by default to avoid complicated
calculations. For example, an income in economics and network science data has an excess
of zero counts [5]. In such cases, the data include zero values following a zero-inflated
Pareto distribution. Previous work for zero-inflated models focused on the Poisson dis-
tribution, and the Lognormal distribution indicates that finding the confidence intervals
of a zero-inflated Pareto distribution can be performed [6–8]. Hasan and Krishnamoor-
thy proposed confidence intervals for the mean and a percentile based on zero-inflated
Lognormal data [9]. Waguespack et al. developed confidence intervals for the mean
of a zero-inflated Poisson distribution [10]. However, the interval estimations for the
parameters of a zero-inflated Pareto distribution have not been deeply investigated yet.

To the best of our knowledge, there is no published methods to obtain confidence
intervals for the mean of a zero-inflated Pareto distribution. In this article, we derive three
different approaches to estimate the Fiducial generalized confidence intervals (FGCIs).
Since the generalized confidence interval was introduced by Weerahandi [11], it has been
widely applied to practical situations where standard solutions do not exist. More details
about the FGCIs can be seen in [12–15].

This article is organized as follows: In Section 2, we develop three different approaches
to construct the FGCIs for the mean of the zero-inflated Pareto distribution. In Section 3,
we conduct Monte Carlo simulation studies to evaluate coverage probabilities and other
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measurements of the proposed GCIs. In Section 4, we provide an example with actual data,
followed by giving concluding remarks in Section 5.

2. Model and Methods
2.1. Model

Assume that the population of interest contains both zeros and positive observations,
such that the probability of having a zero response is δ, where 0 < δ < 1, and that the
non-zero observations have a Pareto distribution. Let X1, X2, . . . , Xn be sample from the
population, and n1 and n0 be the numbers of non-zero and zero observations, respectively.
Without loss of generality, we further assumed that the non-zero observations came first:
Xi > 0 for i = 1, · · · , n1, and Xi followed a Pareto distribution with shape parameter α and
scale parameter c, and Xi = 0 for i = n1 + 1, · · · , n. Then, n0 followed a binomial distribution
with the probability δ, and the probability density function of non-zero observations was:

f (x) = αcαx−α−1, α > 0, c > 0, x > c, (1)

and Xi > 0 for i = 1, · · · , n1. Then, the mean of the ith population was:

θ = (1− δ)
α

α− 1
c. (2)

For convenience, let θ1 = 1− δ,θ2 = α
α−1 , and θ3 = c; then, θ could be denoted as

θ = θ1 ∗ θ2 ∗ θ3.
Based on the properties of exponential distribution, we obtain

2n1α(S− lnc) ∼ χ2
2, and 2n1αT ∼ χ2

2(n1−1), (3)

where S = lnX(1) and T = (∑n1
i=1 lnXi − n1lnX(1))/n1, S and T are independent.

2.2. Methods

In this section, we proposed three difference methods of constructing confidence
intervals for zero-inflated Pareto mean via fiducial inference; fiducial inference was first
introduced by Fisher[16], more details can be found in [12,13,17].

Let X be a random vector with a distribution indexed by a parameter ξ ∈ Ξ, and
θ = π(ξ) be the parameter of interest. Assume that the data-generating mechanism for X
could be expressed as:

X = G(ξ, E), (4)

where the distribution of E is known as being independent of any other parameters.
Equation (4) can be understood as the equation that was used to generate the data, and it
was termed the structural equation. The set-valued function was defined as:

Q(x, e) = {ξ : x = G(ξ, e)}, (5)

the function Q(X, E) could be understood as an inverse of the function G. To avoid
measurability problems, assume Q(x, e) was a measurable function of u. Notice that
the equation x = G(ξ, e) was satisfied for ξ, and e used to generate the observed data
x. Assume that the event {Q(x, e) 6= ∅} happened and the distribution of E had to be
conditioned on this event. Then, generalized fiducial distribution of ξ was defined as the
conditional distribution:

V(Q(x, E∗))|{Q(x, E∗) 6= ∅}, (6)

the random variable having the distribution described in (6) is called generalized fiducial
quantity (GFQ), which was denoted as Rθ(x).

In the following, three methods of constructing Fiducial generalized confidence inter-
vals for Pareto distributions were proposed.
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2.2.1. Generalized Fiducial Quantities for Parameters of Pareto Distribution

Let U ∼ χ2
2 and V ∼ χ2

2(n1−1), and U and V be independent. From (3), we had:

U = 2n1α(S− lnc), V = 2n1αT.

For the observed values of s and t, the equation of:

(u, v) = (2n1α(S− lnc), 2n1αt),

had the following unique solution:

α =
v

2n1t
, c = exp(s− u

v
t).

Hence, for given (s, t), the generalized fiducial quantities (GPQs) for α and c were:

Tα = V
2n1t , Tc = exp(s− U

V t),

respectively. Therefore, the GPQs of θ2 and θ3 were:

Tθ2 =
Tα

Tα − 1
=

V
V − 2n1t

, Tθ3 = exp(s− U
V

t), (7)

respectively.

2.2.2. Proposed FGCI1

Because binomial distribution is discrete, it was difficult to obtain the GPQ for δ. Tian
derived the GPQs T1

δ and T2
δ for δ based on beta distribution by Tian [7], which was the

conjugate prior to binomial distribution,

Tδ1 ∼ beta(n0 + 1, n1), Tδ2 ∼ beta(n0, n1 + 1), (8)

where n0 and n1 were the numbers of zero and non-zero observations. Then, the two GPQs
for population mean θ were:

T1 = (1− T1
δ )Tθ2 Tθ3 , T2 = (1− T2

δ )Tθ2 Tθ3 .

Let T1(γ/2) and T2(1−γ/2) be the 100γ/2th and 100(1−γ/2)th percentiles of T1 and
T2, respectively; a 1− γ/2 Fiducial generalized confidence interval (FGCI) was given as:

FGCI1 : [T1(γ/2), T2(1− γ/2)].

In practice, we needed the following Algorithm 1 for FGCI1.

Algorithm 1: For a given sample, determine n0 and n1, and calculate observation
s and t.

• Perform loop: l = 1, 2, · · · , N

– Generate u ∼ χ2
2 and v ∼ χ2

2n1−2, calculate tθ2 and tθ3 by using (7).
– Generate tδ1 and tδ2 by (8).
– Calculate t1 = (1− t1

δ)tθ2 tθ3 , t2 = (1− t2
δ)tθ2 tθ3 .

• Let Ti;q denote the 100q percentile of ordered Tis (i = 1, 2). Then,[
T1;γ/2, T2;1−γ/2

]
becomes the 1− γ GCI of θ.
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2.2.3. Proposed FGCI2

Let N0 ∼ B(n, δ); binomial distribution was asymptotically normally distributed as
the sample size n became large; therefore:

Zw =
N0 − nδ√
nδ(1− δ)

∼ N(0, 1).

An alternative approximate GPQ of for δ by Li [18] was defined as:

Tw
δ =

n0 +
Z2

w
2

n + Z2
w
− Zw

n + Z2
w
{n0(1−

n0

n
) +

Z2
w

4
}

1
2 , (9)

the distribution of Tw
δ was free of any unknown parameter.

Based on (9), the approximate GPQ for θ was:

Tw = (1− Tw
δ )Tθ2 Tθ3 ,

the approximate 100(1− γ)% FGCI for the zero-inflated Pareto mean was denoted as:

FGCI2 : [θw(γ/2), θw(1− γ/2)].

The procedure was implemented in the following Algorithm 2.

Algorithm 2: For a given sample, determine n0 and n1, and calculate observation
s and t.

• Perform loop: l = 1, 2, · · · , N

– Generate u ∼ χ2
2 and v ∼ χ2

2n1−2, calculate tθ2 and tθ3 by using (7).
– Generate tw

δ by (9).
– Calculate tw = (1− tw

δ )tθ2 tθ3 .

• Let Tw
q denote the 100q percentile of ordered tws. Then,

[
Tw

γ/2, Tw
1−γ/2

]
becomes

the 1− γ FGCI of θ.

2.2.4. Proposed FGCI3

Hannig [13] proposed five ways of finding FGPQ for δ, and simulation studies showed
the optimal choice was:

TF
δ ∼

1
2

beta(n0, n1 + 1) +
1
2

beta(n0 + 1, n1). (10)

From (10), the approximate GPQ for θ was:

TF = (1− TF
δ )Tθ2 Tθ3 ,

and the 100(1− γ)% FGCI for the mean of zero-inflated Pareto distribution was denoted as:

FGCI3 : [θF(γ/2), θF(1− γ/2)].

Computational details for the FGCI are shown in the following Algorithm 3.



Mathematics 2021, 9, 3272 5 of 9

Algorithm 3: For a given sample, determine n0 and n1, and calculate observation
s and t.

• Perform loop: l = 1, 2, · · · , N

– Generate u ∼ χ2
2 and v ∼ χ2

2n1−2, calculate tθ2 and tθ3 by using (7).
– Generate tF

δ by (10).
– Calculate t f = (1− tF

δ )tθ2 tθ3 .

• Let TF
q denote the 100q percentile of ordered tFs. Then,

[
TF

γ/2, TF
1−γ/2

]
becomes

the 1− γ FGCI of θ.

3. Simulation Studies

As the proposed methods in the preceding sections were approximate, we introduced
three measurements to appraise their validity and accuracies by using the Monte Carlo
simulation. The measurements were:

(i) Coverage probabilities (CP) : the percentage of the true values that the parameter
of interest fell into the confidence intervals we constructed.

(ii) Upper error rate (UER): the ratio of the true values for the parameter of interest
that were above the upper limits.

(iii) Lower error rate (LER) : the ratio of the true values for the parameter of interest
that were below the lower limits.

Our simulation study was conducted with six different proportions of zeros ranging
from low to high, combined with different setups of parameters and sample sizes. To
estimate the coverage probabilities of the FGCIs for the mean, we generated 2500 samples,
each with size n, where each sample contained observations that were zeros and non-zeros,
from a Pareto(α, c) distribution. For each generated sample, we used Algorithms 1–3 with
5000 runs to estimate the 95% CIs. The proportion of 2500 CIs that included the assumed
mean was the Monte Carlo estimate of the coverage probability. The estimated coverage
probabilities are reported in Tables 1 and 2.

We observed from the simulation results that the coverage probabilities were conservative
for the proposed methods when the samples were too small in all scenarios. As the sample
size became larger, the coverage probabilities for the FGCI1 and FGCI2 came close to a
nominal level, and the coverage probabilities for the FGCI2 converged to a nominal level
much faster than FGCI1. For FGCI3, we could see that the coverage probabilities were very
sensitive to large values of parameters, as the values of parameters became large, the coverage
became very liberal. All three methods proposed a return of fairly balanced tail error rates
when the sample sizes became larger. We could also see from the results that no matter how
the proportion of zeros changed, it did not affect the coverage probabilities much.

It is noteworthy that, in our simulation studies, we simulated a case with a sample size
of 37,000 to show that our proposed methods worked properly for the real-data example
in Section 4. Furthermore, our simulation results showed that all three methods returned
satisfactory outcomes as long as the parameters were small; when the values of parameters
became larger, the coverage probabilities for FGCI3 became liberal.

In conclusion, since the simulation results showed that our proposed method two re-
turned satisfactory results according to the coverage probabilities for all different scenarios,
we recommend the use of method two in real-world problems.
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Table 1. Coverage probabilities for the mean of a sample with small proportions of zeros.

FGCI1 FGCI2 FGCI3

δ n (α, c) LW CP UW LW CP UW LW CP UW

0.1

10

(2,2) 0.000 0.984 0.016 0.000 0.977 0.023 0.000 0.975 0.025
(3,2) 0.000 0.980 0.020 0.000 0.971 0.029 0.000 0.964 0.036
(3,4) 0.000 0.984 0.016 0.000 0.971 0.029 0.000 0.968 0.032
(10,10) 0.000 0.984 0.016 0.000 0.972 0.028 0.005 0.939 0.056

30

(2,2) 0.000 0.981 0.019 0.000 0.977 0.023 0.000 0.971 0.029
(3,2) 0.011 0.979 0.010 0.016 0.970 0.014 0.030 0.947 0.023
(3,4) 0.018 0.958 0.024 0.027 0.941 0.032 0.047 0.914 0.039
(10,10) 0.008 0.971 0.021 0.010 0.950 0.040 0.066 0.857 0.077

100

(2,2) 0.027 0.951 0.022 0.028 0.946 0.026 0.034 0.940 0.026
(3,2) 0.015 0.956 0.029 0.018 0.949 0.033 0.027 0.933 0.040
(3,4) 0.020 0.964 0.016 0.026 0.954 0.020 0.039 0.927 0.034
(10,10) 0.019 0.963 0.018 0.019 0.953 0.028 0.090 0.823 0.087

2500

(2,2) 0.025 0.948 0.027 0.028 0.946 0.026 0.031 0.939 0.030
(3,2) 0.021 0.950 0.029 0.022 0.951 0.027 0.033 0.927 0.040
(3,4) 0.027 0.954 0.019 0.026 0.951 0.023 0.036 0.930 0.034
(10,10) 0.028 0.951 0.021 0.026 0.953 0.021 0.071 0.855 0.074

0.2

10

(2,2) 0.000 0.976 0.024 0.000 0.969 0.031 0.000 0.968 0.032
(3,2) 0.000 0.990 0.010 0.000 0.980 0.020 0.008 0.966 0.026
(3,4) 0.000 0.979 0.021 0.002 0.970 0.028 0.008 0.953 0.039
(10,10) 0.000 0.991 0.009 0.003 0.974 0.023 0.099 0.842 0.059

30

(2,2) 0.000 0.976 0.024 0.000 0.967 0.033 0.000 0.963 0.037
(3,2) 0.000 0.988 0.012 0.000 0.978 0.022 0.007 0.965 0.028
(3,4) 0.000 0.989 0.011 0.000 0.983 0.017 0.007 0.966 0.027
(10,10) 0.010 0.978 0.012 0.015 0.959 0.026 0.067 0.860 0.073

100

(2,2) 0.032 0.948 0.020 0.031 0.949 0.020 0.038 0.936 0.026
(3,2) 0.023 0.961 0.016 0.028 0.950 0.022 0.048 0.914 0.038
(3,4) 0.024 0.960 0.016 0.027 0.950 0.023 0.049 0.917 0.034
(10,10) 0.019 0.964 0.017 0.023 0.955 0.022 0.078 0.855 0.067

2500

(2,2) 0.026 0.950 0.024 0.027 0.953 0.020 0.031 0.939 0.030
(3,2) 0.016 0.956 0.028 0.018 0.955 0.027 0.035 0.924 0.041
(3,4) 0.025 0.955 0.020 0.028 0.952 0.020 0.041 0.926 0.033
(10,10) 0.022 0.955 0.023 0.021 0.950 0.029 0.081 0.837 0.082

Table 2. Coverage probabilities for the mean of a sample with large proportions of zeros.

FGCI1 FGCI2 FGCI3

δ n (α, c) LW CP UW LW CP UW LW CP UW

0.5

10

(2,2) 0.000 0.986 0.014 0.000 0.975 0.025 0.001 0.971 0.028
(3,2) 0.003 0.991 0.006 0.008 0.977 0.015 0.042 0.933 0.025
(3,4) 0.006 0.983 0.011 0.008 0.975 0.017 0.038 0.932 0.030

(10,10) 0.014 0.986 0.000 0.025 0.972 0.003 0.081 0.901 0.018

30

(2,2) 0.003 0.980 0.017 0.003 0.976 0.021 0.008 0.964 0.028
(3,2) 0.016 0.971 0.013 0.028 0.955 0.017 0.062 0.899 0.039
(3,4) 0.014 0.975 0.011 0.025 0.958 0.017 0.065 0.898 0.037

(10,10) 0.024 0.962 0.014 0.032 0.952 0.016 0.085 0.858 0.057

100

(2,2) 0.024 0.956 0.020 0.029 0.949 0.022 0.038 0.936 0.026
(3,2) 0.024 0.962 0.014 0.029 0.950 0.021 0.069 0.890 0.041
(3,4) 0.022 0.955 0.023 0.025 0.950 0.025 0.070 0.884 0.046

(10,10) 0.023 0.964 0.013 0.031 0.950 0.019 0.091 0.833 0.076

2500

(2,2) 0.022 0.953 0.025 0.022 0.954 0.024 0.033 0.931 0.036
(3,2) 0.028 0.947 0.025 0.026 0.949 0.025 0.058 0.881 0.061
(3,4) 0.023 0.949 0.028 0.025 0.945 0.030 0.048 0.887 0.065

(10,10) 0.034 0.945 0.021 0.033 0.949 0.018 0.072 0.852 0.076
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Table 2. Cont.

FGCI1 FGCI2 FGCI3

δ n (α, c) LW CP UW LW CP UW LW CP UW

0.6

10

(2,2) 0.000 0.989 0.011 0.001 0.979 0.02 0.005 0.96 0.035
(3,2) 0.012 0.986 0.002 0.019 0.976 0.005 0.054 0.931 0.015
(3,4) 0.008 0.990 0.002 0.012 0.984 0.004 0.036 0.943 0.021

(10,10) 0.014 0.986 0.000 0.031 0.969 0.000 0.114 0.874 0.012

30

(2,2) 0.005 0.976 0.019 0.007 0.973 0.020 0.009 0.967 0.024
(3,2) 0.023 0.971 0.006 0.030 0.962 0.008 0.073 0.900 0.027
(3,4) 0.025 0.964 0.011 0.042 0.944 0.014 0.088 0.891 0.021

(10,10) 0.019 0.973 0.008 0.034 0.952 0.014 0.090 0.851 0.059

100

(2,2) 0.019 0.959 0.022 0.021 0.955 0.024 0.039 0.925 0.036
(3,2) 0.024 0.964 0.012 0.032 0.955 0.013 0.066 0.898 0.036
(3,4) 0.023 0.955 0.022 0.029 0.946 0.025 0.069 0.876 0.055

(10,10) 0.020 0.961 0.019 0.025 0.946 0.029 0.076 0.844 0.080

2500

(2,2) 0.020 0.952 0.028 0.020 0.950 0.030 0.036 0.928 0.036
(3,2) 0.026 0.950 0.024 0.025 0.949 0.026 0.059 0.877 0.064
(3,4) 0.023 0.950 0.027 0.025 0.947 0.028 0.056 0.890 0.054

(10,10) 0.023 0.957 0.020 0.029 0.954 0.017 0.075 0.847 0.078

4. Real-Data Example

In this part, we applied our proposed methods in the network science application [5].
Recently, complex network science has become a significant tool in many fields, such as
sociology, climate informatics, finance, as well as genetics, among others (see [5] and the
references therein).

In this example, we considered the phone call network dataset [5], which was directed
and contained 36,595 vertexes and 91,826 edges. Figure 1 is an overall visualization of this
dataset.

Many of the prototypes in the network science models exhibited a power law phe-
nomenon, namely, the degree (k) distributions of such networks were usually heavy-tailed
with the power law distribution [19].

p(k) ∝ k−γ. (11)

Thus, the Pareto distribution became a natural continuous approximation in such an
application, and has been widely investigated in the analysis of the degree distribution of
complex networks [20].

While most degree distributions were focused on the undirected networks, in our
example, we focused on the distribution of directed networks. Figure 2 shows the degree
distribution for the in-degree (left panel) and out-degree (right panel) in the log–log scale
with the survival probability. The straight line results suggested the power law (Pareto)
distribution of the data. We also computed the statistic values for both the in-degree
and out-degree; the scale and shape parameters for the in-degree were (1.000, 0.109) and
the scale and shape parameters for the out-degree were (1.000, 0.110). Both the Pareto
probability plots and the statistics values computed showed that the data fit the Pareto
distribution well.

For networks without isolated vertexes, all the undirected networks usually had
positive degrees. However, on the other hand, not all the in-degrees or the out-degrees,
for the directed networks, always had a strictly positive degree. Thus, the zero-inflated
Pareto distribution is an ideal tool for modeling the behavior of the degree distribution of
the directed networks that follow the power law.
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Figure 1. Phone call network dataset.

Tables 3 and 4 present the fitted results for the mean degree distribution (in and out)
with our proposed methods. We presented confidence intervals produced by each method
in the two tables to show the applicability of our proposed methods. As can be seen from
the tables, all of them had consistent results. However, as we mentioned in the simulation
analysis, since method two had consistent coverage probabilities for all different scenarios,
we recommend the use of the result produced by method two instead of the other results.
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Figure 2. Pareto distribution in the log–log scale with the survival probability.

Table 3. Confidence intervals with 2.5% and 97.5% limits for in-degree.

CIs Lower Limit Upper Limit

FGCI1 3.390 3.603
FGCI2 3.390 3.605
FGCI3 3.391 3.604

Table 4. Confidence intervals with 2.5% and 97.5% limits for out-degree.

CIs Lower Limit Upper Limit

FGCI1 3.372 3.578
FGCI2 3.374 3.575
FGCI3 3.376 3.577
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5. Conclusions

In this paper, we proposed three approaches to construct the Fiducial generalized
confidence intervals for the mean of the zero-inflated Pareto distribution. Detailed com-
putational algorithms were provided and we also conducted an extensive Monte Carlo
simulation on various cases to compare the proposed methods. The results showed that
the proposed methods were very satisfactory according to the coverage probabilities in
simulation studies. Furthermore, we applied our approaches to a real dataset with the
application in network science, and they also provided reasonable results for application in
real-life situations. What might be needed in future work is to find the confidence intervals
for the zero-inflated generalized Pareto distribution.
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