
mathematics

Article

Optimal Claim Settlement Strategies under Constraint of Cap
on Claim Loss

Hong Mao 1 and Krzysztof Ostaszewski 2,*

����������
�������

Citation: Mao, H.; Ostaszewski, K.

Optimal Claim Settlement Strategies

under Constraint of Cap on Claim

Loss. Mathematics 2021, 9, 3284.

https://doi.org/10.3390/

math9243284

Academic Editors: Eric Ulm,

Budhi Surya and Bahram Adrangi

Received: 25 October 2021

Accepted: 14 December 2021

Published: 17 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Economics and Management, Shanghai Second Polytechnic University, Shanghai 201209, China;
hmaoi@vip.126.com

2 Department of of Mathematics, Illinois State University, Normal, IL 61790-4520, USA
* Correspondence: krzysio@ilstu.edu; Tel.: +1-309-287-1711

Abstract: In this paper, we examine the question of how to devise an optimal insurance claim
settlement scheme under the constraint of a cap on the amount of the claim payment. We establish
objective functions to maximize the net benefit due to exaggerated claims while at the same time
maximizing the total expected wealth of the insured. Then, we establish a dual objective function
to minimize the total expected loss, including the perspective of the insurer. Finally, we illustrate
applications of our work and provide numerical analysis of it along with an example.

Keywords: insurance contract; insurance claim; claim cap; insured loss

1. Introduction

Deductibles and policy upper limits are standard methods of controlling moral hazard
in insurance contracts (see for example Borch [1]). The subject is widely studied in the
existing insurance literature and is of utmost practical significance. Cummins and Mahul [2]
examine the demand for insurance when the indemnity schedule is subject to an upper
limit. The optimal contract is shown to be full insurance above a deductible, up to a cap.
Mossin’s Theorem generally states that any risk-averse individual would prefer actuarially
fair insurance to no insurance, and Schlesinger [3] showed that it is also valid for the class of
upper limit insurance contracts (this specific version of the theorem was not proven before
although, in general, Mossin’s Theorem is well known for the class of coinsurance contracts
and for contracts with deductibles). Huang and Tzeng [4] discuss how a policymaker can
choose a tax deduction rate to maximize the weighted average of the consumers’ expected
utility and the insurer’s expected value. Mao et al. [5] studied a risk-based valuation
model of deposit insurance that accounted for the investment policy of deposit insurers,
deductibles, and regulatory capital requirement in the pricing of deposit insurance. Their
work also presented an upper limit for claim payments that is a declining exponential
function (i.e., an exponential function with a negative exponent) of a bank’s insolvency
probability, in order to mitigate the problem of moral hazard inherent in deposit insurance.

Regarding the optimization of claim settlement strategy for liability insurance, the
pioneering work was that of Crocker and Morgan [6], who applied an incentive contract-
ing approach to characterize optimal contracts when insured individuals possess private
information about their losses and are able to misrepresent permanently their loss magni-
tudes by engaging in falsification of claims. They showed that while efficient agreements
necessarily induce some falsification, the extent of claims inflation is partially mitigated
by an indemnification schedule that over-compensates small losses while underpaying
larger ones. In their later work, Crocker and Tennyson [7] examined the optimal claims
settlement strategy for a liability insurer when claimants can permanently misrepresent
their losses by engaging in costly claims falsification and exaggerating their claim amount.
They suggest that liability insurers optimally choose claims payment strategies to lessen a
claimant’s incentive to exaggerate losses.
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Caps on damage awards are among the key ideas of proposed reform of the tort
system, especially in the United States. There is extensive legal research literature on the
issue of imposing caps on liability; see for example Bambauer and Roth [8], Klick and
MacDonald [9], and many others, as well as Born [10] for a combined legal and insurance
perspective. However, the perspective of our paper is not legal, but rather the mathematical
modeling of often legally imposed caps on liability payments.

In addition to caps imposed legally by legislation seeking to limit tort awards, caps
also arise naturally in insurance and reinsurance via the use of policy limits and maximum
payments (see for example Mert and Selcuk-Kestel’s [11] work on such caps in the context
of stochastic models of claims processes). Mao et al. [12–15] also consider models with
contract modifications including caps, although not in the context of caps imposed by
legislation or regulation. Literature on mathematical models in the context of caps imposed
by legislation or regulation is limited, as most researchers turn their attention to the legal
issues involved in the context of tort reform proposals.

Mao et al. [10] established models to capture both claimant and the insurer behavior
under a system where damages are capped in a manner resembling caps imposed by law.
They determined the optimal level of such caps by maximizing the sum of claimant and
insurer benefits.

However, three shortcomings exist in the models. One is that the quadratic cost
functions of the deviation of the real loss away from cap θ is not an ideal function to
describe the direct relationship between an exaggerated amount of damage claim and the
real one, and it is difficult to accurately estimate the cost parameters as the cost function is
not directly related to the exaggerated amount of the claim. Another shortcoming is that
simply using the quadratic cost functions of the deviation of the real loss from cap θ may
not produce the optimal solution. A third is that the optimization model of the paper did
not consider indirect costs resulting from setting an upper limit.

In this current work, we have two main contributions to the literature on the subject.
First, in order to address the aforementioned defects, we assume new cost functions. The
new cost functions consider the impact of an exaggerated claim filed by the claimant, the
cost of claim falsification on the indemnification amount, and other indirect costs occurring
to both insurers and claimants. Second, we use dual objective functions to maximize the
net benefit to the claimant from exaggerating the claim amount (minus any indirect loss to
the claimant due to the cap) while minimizing the expected loss of the insurer, in order to
lessen the claimant’s incentive to exaggerate losses and reduce the cost to the insurer both
due to falsification and indirectly due to setting the upper limit.

In this paper, we first establish two simultaneous objective functions for the insured:
(i) maximizing the claimant’s net benefit resulting from exaggerating the claim amount, and
(ii) maximizing the expected total wealth of the insured; this refers to the benefit obtained
by the insured after any costs incurred, as defined below in Equation (1). Subsequently, we
establish a dual objective function of the insurer (compare with Owen [16]), (i) minimizing
the expected loss of the insurer, so as to lessen a claimant’s incentive to exaggerate losses,
and (ii) reducing the costs of falsification and of other indirect costs related to setting up
the cap. By solving two objective functions for the insured and the dual objective function
for the insurer, we can find the optimal indemnification schedule vs. the optimal cap. In
contrast with Cracker and Tennyson [7], in our dual objectives analysis we consider the
effect of a cap on the indemnification amount, and we use the empirical results from Mao
et al. [12] by fitting the probability function using empirical data from the United States.
We also use a function of the indemnification amount which is different from the one used
by Cracker and Morgan [6] in order to ensure that the indemnification amount is always
greater than or equal to the real loss when a cap is set. The optimization scheme aims both
to determine the optimal indemnification amount when the real damage is smaller than
the cap, and to determine the optimal cap in order to avoid excessive claim compensation.
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After this Introduction, the paper is organized as follows: the model and optimization
methodology are introduced and set up in Section 2; Section 3 discusses the numerical
analysis; and Section 4 concludes the article.

2. Model Based on Incentive and Compensative Mechanism

We begin by presenting the notation used:

X: Real loss of the claimant;
s: The claim filed by the claimant;
C1: The direct and indirect costs that the claimant incurs in the process of submitting the
claim;
a, b: Constants used as parameters for models of costs of the insured and the insurer;
ξ1: Cost parameter of the insured;
C2: The direct and indirect costs that the insurer incurs in the process of processing the
claim;
ξ2: Cost parameter of the insurer;
α and β: decision variables used to determine strategies of the insured and the insurer;
E(Y1) : the expected wealth of the claimant;
E(Z) : the expected loss of the insurer;
f (x): the probability density function;
θ : the cap on claims payments, for example, a cap on liability payments imposed by law.

In a manner similar to the approach of Cracker and Tennyson [7], we consider an
environment in which insurers face claimants who may expend resources to exaggerate
their claim losses; in response to this challenge insurers seek an optimal settlement strategy
that lessens claim falsification by systematically underpaying those categories of claims
where the cost to claimants of falsification is the lowest. We consider third-party liability
insurance, and we assume the claimant and insurer to be risk-neutral. Third-party liability
insurance is, in practice, the type of insurance where claim exaggeration is the greatest
concern. In third-party liability insurance, the insurance company pays the claims on
behalf of the insured, but the payment is made to a third party which is deemed (in a court
case or in some form of arbitration or negotiation) to be owed payment of damages by the
insured. An example of such a situation would be a case where a firm (the insured) creates
a product or delivers a service that is determined to have done harm to the user of that
product or service (the third party) and the firm is deemed to be liable for that harm; the
firm has purchased third-party liability insurance, and hence the payment for that liability
will be made by the insurance company.

The claimant has a real loss of X (a random variable), which is fully known only to
the claimant. However, the claimant files a claim of s (with s ≥ X). Assume that the
indemnification payment made by the insurer to the insured, denoted by I(s(x), x), is an
increasing function of s (with s ≥ X), and must be less than or equal to s. If the insurer can
identify the real amount of damage, then I(s(X), X) = X. When the indemnification amount is
greater than the real amount of loss, I(s(X), X)—X is the exaggerated claim amount realized
for claimant. Our optimization process is built on establishing three objective functions:

(1) maximizing the net benefit to the insured due to exaggeration of the claim;
(2) maximizing the expected total wealth of the claimant;
(3) maximizing the expected total wealth of the insurer.

Next, we discuss the optimization models from the perspective of the insured.
Let the net benefit to the insured due to engaging in claim inflation be

y1 = I(s(X), X)− C1(ξ1, s(X), X) (1)

where C1(ξ1, s(X), X) represents the costs that the claimant incurs for the direct and indirect
expense of setting up a claim. We model these costs as a function of s, X, and ξ1, with ξ1 ≥ 0,
where ξ1 is the cost parameter of the claimant. We assume that the claim costs increase
strictly with the deviation of s(X) away from real loss and the indirect cost of setting up
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the cap, as a declining exponential function (i.e., an exponential function with a negative
exponent) of the upper limit denoted by θ. Note that Abolmohammadi et al. [17] extended
the cost function based on Taguchi’s social loss function to linear, quadratic, exponential,
and Linex. Here, the new cost functions reflect the fact that a rational insured would not
exaggerate the claim amount when the loss exceeds the cap, and that there is still a cost
to set up the cap if this happens; for example, an intangible loss due to delayed medical
treatment in the case of bodily injury to the insured happens due to less indemnification
and lower insurance protection due to reduced insurance demand. To avoid the trivial
case, we require that θ > 0. It is also important to note that although setting a cap on claim
losses will reduce claim payment by the insurer, it will increase claimants’ willingness to
exaggerate a claim and at the same time increase indirect costs to claimants. We represent
these costs with the following specific function:

C1(ξ1, s(X), X, θ) =

{
ξ1(s(X)− X)2 when X ≤ s(X),

ξ1e−aθ+b otherwise,
(2)

where a and b are constants used to determine the cost of the insured and insurer. In order
to ensure that I(s(X)) > X, we appropriately amend the definition of I(s(X)) based on the
approach of Crocker and Tennyson [7] as

I(s) =

{
s−(1−β)α

β when s > s−(1−β)α
β (or s < α)

s otherwise,
(3)

where 0 < β ≤ 1 and α > 0; here α, β are decision variables/parameters, which are used to
establish function I(s(X), X) and determine the strategy of the insurer and the insured.

Note that the second case of (3) is meaningless, as when I(s(X), X) = s(X), it follows
that C2(ξ1, s(X), X) = 0, see Equation (26) further in this paper.

We will now write x for specific values of the random variable X, and work on
optimization design and structure. Consider the first objective function, maximizing the
net benefit to the insured resulting from engaging in claim inflation:

Max y1 = I(s(x), x)− C1(ξ1, s(x), x) (4)

Then, the first order condition (i.e., condition based on the first derivative) is

∂I(s(x), x)
∂s

− ∂C1(ξ1, s(x), x, θ)

∂s
= 0 (5)

Substituting Equation (2) into Equation (5), we obtain

∂y1

∂s
=

∂I(s(x), x)
∂s

− 2ξ1(s− x) = 0 (6)

Equation (6) indicates that the claimant will engage in claim inflation as long as the
marginal return on increased claiming ∂I(s)

∂s is positive. By taking the partial derivative of
(3) with respect to s, we also obtain

∂I(s(x), x)
∂s

=
1
β

. (7)

By combining (3), (6) and (7), we redefine s and I as

s(x, β) =
1

2ξ1β
+ x, (8)
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and

I(s(x, β), α) =

1
2ξ1β + x− (1− β)α

β
. (9)

Note the use of the parameters α and β in this formulation. While these parameters
may not be immediately intuitive, they provide a well-functioning model and behave
properly at the boundaries, for example when β = 1, I(s(x, β), α) = s(x, β).

Equations (8) and (9) indicate that the claim filed by a claimant s and the indemnity
amount paid by an insured I will depend on not just the amount of real loss x, but also on
the cost parameter of falsification, ξ1.

Considering the second objective of the claimant, which is to maximize their total
expected wealth, let E(Y1(α, β, θ)) be the expected terminal wealth of the claimant. Using
that notation, we can write:

E(Y1(α, β, θ)) =
θ∫

0

(
WY1 − C1(ξ1, s(x, β), x) + I(s(x, β))

)
f (x)dx+

+
θ∫

0

(
WY1 − C1(ξ1, θ) + θ − x

)
f (x)dx

(10)

where WY1 is the claimant’s initial wealth.
Equation (10) corresponds to two different situations:

(i) The point x̂ defined by the condition I(x = x̂) = s(x = x̂), is less than or equal to θ
(recall that θ is the cap on claims payments, for example, a cap on liability payments
imposed by law), i.e., x̂ = α− 1

2ξ1β ≤ θ;

(ii) x̂ = α− 1
2ξ1β > θ.

For the second case, denoted by (ii), the first order conditions of the Lagrange equation are

∂E(Y1(α,β,θ))
∂θ = ∂

∂θ


x̂∫

0

(
(I − x)− ξ1(s− x)2

)
f (x)dx

+
θ∫̂

x
(s− x) f (x)dx +

+∞∫
θ

(
(θ − x) + e−aθ+b

)
f (x)dx


= (s(θ)− θ) f (θ) +

+∞∫
θ

(
1− ae−aθ+b

)
f (x)dx−e−aθ+b f (θ) + λ1 = 0

(11)

and
∂E(Y1(α, β, θ))

∂λ1
= θ − α +

1
2ξ1β

= 0. (12)

It is clear that Equation (12) cannot be satisfied when

θ > α− 1
2ξ1β

. (13)

In the second situation (ii), the indemnification of the insured I(s(x)) is either less than
the real loss (damage) or greater than the exaggerated claim amount filed by the insured.
These two claim schemes are not feasible, and we will not discuss them further as they
produce no optimal solutions. Therefore, we only consider the first situation. Maximization
of E(Y1) is equivalent to maximizing

E(Y1(α, β, θ)) =
θ∫

0

(
I − x− ξ1(s− x)2

)
f (x)dx +

+∞∫
θ

(
(θ − x)− ξ1e−aθ+b

)
f (x)dx

subject to θ ≤ α− 1
2ξ1β .

(14)
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By using Leibniz’ rule, we get first and second order conditions of the Lagrange
equation as follows:

∂L(E(Y1))
∂θ =

(
I(θ)− ξ1(s(θ)− θ)2

)
f (θ)+

+
+∞∫
θ

(
1 + aξ1e−aθ+b

)
f (x)dx−

(
θ − ξ1e−aθ+b

)
f (θ) + λ1 = 0,

(15)

where

I(θ) =
θ + 1

2ξ1β − α(1− β)

β
and s(θ) = θ +

1
2ξ1β

. (16)

Furthermore,

∂L(E(Y1))

∂β
=

θ∫
0

(
∂I(s)

∂β
− 2ξ1(s− x)

∂s
∂β

)
f (x)dx

+∞∫
θ

f (x)dx− λ1
1

2ξ1β2 = 0, (17)

∂L(E(Y1)

∂λ
= θ − α +

1
2ξ1β

= 0. (18)

In addition,

∂2E(Y1)
∂θ2 =

(
∂I(θ)

∂θ − 2
(

1 + aξ1e−aθ+b
))

f (θ)

+
(

I(θ)− ξ1(s(θ)− θ)2 −
(

θ − ξ1e−aθ+b
))

∂ f (θ)
∂θ

−
+∞∫
θ

a2ξ1e−aθ+b f (x)dx > 0

(19)

and

∂2L(E(Y1))
∂β2 =

θ∫
0

∂I2(s)
∂β2 f (x)dx−

θ∫
0

2ξ1

 (s− I)
(

∂2s
∂β2 − ∂2 I

∂β2

)
+
(

∂s
∂β −

∂I
∂β

)2

 f (x)dx + λ1
ξ1β3 > 0,

(20)

where
∂I(s)

∂β
=

∂s
∂β

1
β
+

α− s
β2 ,

∂s
∂β

= − 1
2ξ1β2 , (21)

∂2 I(s)
∂β2 =

∂2s
∂β2

1
β
− 2(α− s)

β3 − 2
β2

∂s
∂β

,
∂2s
∂β2 =

1
2ξ1β3 , (22)

and
θ = α− 1

2ξ1β
. (23)

By combining Equations (15)–(18) we obtain(
α− ξ1

(
1

2ξ1β

)2
−
(

θ − ξ1e−aθ+b
))

f (θ) +
+∞∫
θ

(
1 + aξ1e−aθ+b

)
f (x)dx

+2ξ1β2

(
+∞∫
θ

f (x)dx + 1
β2

(
θ∫

0

(
α− x− 1

2ξ1β

)
f (x)dx

))
= 0

(24)

where θ = α− 1
2ξ1β .

Let E(Z(α, β, θ)) be the expected loss of the insurer, including the expected indemnifica-
tion amount and the cost of litigation and settlement. Assume that liability insurers optimally
choose claims payment and upper limit strategies to lessen a claimant’s incentive to exaggerate
losses, which depends on the trade-off between the insurers’ cost of litigation and settlement
in order to decrease the inflated claim filed by the claimant, the final claim payment settled,
and all indirect cost resulting from setting up the upper limit of the claim loss.
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Consider the dual objective function expressed in Equation (4), i.e., minimization of
the expected loss of the insurer:

Min

E( Z(α, β, θ)) =
θ∫

0
(C2(ξ2, s(x, β), I(s(x, β), α, x) + I(s(x, β), α, β)− x) f (x)dx

+
+∞∫
θ

(C2(ξ2, θ) + θ − x) f (x)dx

Subject to : θ ≤ α− 1
2ξ1β .

(25)

While this may seem like a simplification of the reality of costs (all economic costs, not
necessarily just accounting costs) incurred by the insurer, we believe this is a reasonably
good model of economic reality. C2(ξ2, I(s(x, β), x), s(x, β), θ) is the insurer’s cost of inves-
tigation of possible falsification of the claim by the claimant and other indirect loss due
to setting the cap, such as the loss resulting from the reduced number of customers and
increased marketing cost in order to make up the deficiency in demand. We set it up as a
declining exponential function (i.e., an exponential function with a negative exponent) of
the cap, θ. In addition, we consider it to be a function of x and ξ2, a and b with ξ2 > 0, a > 0
and b > 0, with ξ2, a, and b being the cost parameters to be chosen at the model user’s
discretion. Then, the insurer’s cost function under a regime of a cap on claims and/or
damages payouts is expressed as

C2(ξ2, I(s(x, β), x), s(x, β), θ) =


ξ2(s− I)2 when x < θ and s > I

0 when x = θ and s = I
ξ2e−aθ+b otherwise.

(26)

By combining Equation (15) with objective function (14), the dual objective function
can be written as

Min E(Z(α, β, θ)) =
θ∫

0

(
I(s(x, β), α, β)− x + ξ2(s− I)2

)
f (x)dx +

+∞∫
θ

(θ − x + ξ2e−aθ+b) f (x)dx
(27)

By using Leibniz’ rule, we obtain the first and second order conditions of the Lagrange
equation as follows:

∂L(E(Z))
∂θ

= I(θ) f (θ) +
+∞∫
θ

(
1− aξ2e−aθ+b

)
f (x)dx−

(
θ + ξ2e−aθ+b

)
f (θ) + λ2 = 0 (28)

∂L(E(Z))
∂α

=

θ∫
0

∂I(s)
∂α

f (x)dx +

θ∫
0

2ξ2
(1− β)

β
(α− s)

(
1− ∂s

∂α

)
f (x)dx +

+∞∫
θ

f (x)dx− λ2 = 0 (29)

and
∂L(E(Z))

∂λ2
= θ − α +

1
2ξ1β

= 0, (30)

where
∂I(s)

∂α
=

1
β

(
∂s
∂α
− (1− β)

)
,

∂s
∂α

= 0 and θ = α− 1
2ξ1β

. (31)

Furthermore,

∂L2(E(Z))
∂θ2 =

(
∂I(θ)

∂θ − 2
(

1− aξ2e−aθ+b
))

f (θ) +
(

I(θ)− θ − ξ2e−aθ+b
)

∂ f (θ)
∂θ

+
+∞∫
θ

a2ξ1e−aθ+b f (x)dx > 0
(32)
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where

s(θ) = θ +
1

2ξ1β
, I(θ) =

s(θ)− α(1− β)

β
,
∂s(θ)

∂θ
= 1, and

∂I(θ)
∂θ

=
1
β

. (33)

Additionally,

∂2(Z)
∂α2 =

θ∫
0

∂2 I(s)
∂α2 f (x)dx +

θ∫
0

2ξ2
(1−β)

β

(
(α− s)

(
− ∂2s

∂2α

)
+
(

1− ∂s
∂α

)2
)

f (x)dx > 0
(34)

with
∂2 I(s)

∂α2 =
∂2s
∂α2

1
β

and
∂s
∂α

=
∂2s
∂α2 = 0. (35)

We see that clearly that the condition ∂2(Z)
∂α2 > 0 holds.

By combining Equations (26), (27), (25) and (28), we obtain

α f (θ) +
+∞∫
θ

(
1− aξ2e−aθ+b

)
f (x)dx−

(
θ + ξ2e−aθ+b

)
f (θ) +

+∞∫
θ

f (x)dx

+
θ∫

0

(
1− 1

β

)(
1 + 2ξ2

(
α− x− 1

2ξ1β

))
f (x)dx = 0,

(36)

where θ = α− 1
2ξ1β .

By solving the system of Equations (22), (30) and (36) using the numerical method,
we can obtain optimal solutions for (α∗, β∗, θ∗). Moreover, based on Equation (9), we can
obtain the expected value of the indemnification amount, expressed as

E(I(s, x)) =
θ∫

0

x + 1
2ξ1β − (1− β)α

β
f (x)dx +

+∞∫
θ

θ f (x)dx. (37)

Entering (θ∗, α∗, β∗) into Equation (37), we obtain the optimal cap and optimal ex-
pected value of indemnification amount E(I∗(θ∗, α∗, β∗)).

The above equations illustrate that the optimal solutions for (θ∗, α∗, β∗) and the opti-
mal expected value of indemnification amount E(I∗) are dependent on the cost parameters
of falsification and setting up the cap on claim losses for both the insured and the insurer,
ξ1, ξ2, k1, and k2, and on the probability distribution of real damage.

3. Results
Numerical Analysis

In a manner similar to Example 1 in Mao et al. [12], we consider a lognormal loss
distribution with parameters µ = 9.294 and σ = 1.627. In this case, (note that ln denotes
the natural logarithm) the loss density is

f (x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 , x > 0. (38)
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Using the density given in Equation (38) in Equations (22) and (36), and substituting a
variable t = ln x−µ

σ in Equations (22) and (36), we obtain the following first-order conditions:(α− ξ1

(
1

2ξ1β

)2
−
(

θ − ξ1e−aθ+b
))

e
− (ln(θ)−µ)2

2σ2√
2πσ

+

+
+∞∫

ln(θ)−µ
σ

(
1 + aξ1e−aθ+b + 2ξ1β2

)
1√
2π

e−
1
2 t2

dt+

+2ξ1

 ln(θ)−µ
σ∫
−∞

(
α− x− 1

2ξ1β

)
1√
2π

e−
1
2 t2

dt

 = 0

(39)

and

(
α−

(
θ + ξ2e−aθ+b

))
e
− (ln(θ)−µ)2

2σ2√
2πσ

+
+∞∫

ln(θ)−µ
σ

(
2− aξ2e−aθ+b

)
1√
2π

e−
1
2 t2

dt+

+

ln(θ)−µ
σ∫
−∞

(
1− 1

β

)(
1− 2ξ2

(
α− x− 1

2ξ1β

))
1√
2π

e−
1
2 t2

dt = 0,

(40)

where θ = α− 1
2ξ1β .

Solving the system of Equations (39) and (40), we obtain optimal solutions (α∗, β∗) as
follows:

g1(θ) =

( 1
2ξ1β∗ − ξ1

(
1

2ξ1β∗

)2
+ ξ1e−aθ∗+b

)
e
− (ln(θ∗)−µ)2

2σ2√
2πσ


+
(

1 + aξ1e−aθ∗+b + 2ξ1β∗2
)(

1−Φ
(

ln(θ∗)−µ
σ

))
+

+2ξ1θ∗Φ
(

ln(θ)−µ
σ

)
− 2ξ1eµ+ σ2

2 Φ
(

ln(θ)−µ
σ − σ

)
= 0,

(41)

and

g2(θ) =
(

1
2ξ1β∗ − ξ2e−aθ∗+b

)
e
− (ln(θ∗)−µ)2

2σ2√
2πσ

+
(

2− aξ2e−aθ∗+b
)(

1−Φ
(

ln(θ∗)−µ
σ

))
+
(

1− 1
β

)
(1− 2ξ2θ∗)Φ

(
ln(θ∗)−µ

σ

)
+ 2ξ2

(
1− 1

β

)
eµ+ 1

2 σ2
Φ
(

ln(θ∗)−µ
σ − σ

)
= 0

(42)

where θ∗ = α∗− 1
2ξ1β∗ and Φ(x) is the cumulative distribution function of the standard

normal distribution. Substituting these into Equation (37), combining with the Equation
(38) and letting t = ln x−µ

σ (so that we can work with the standard normal distribution),
we obtain

E(I∗(s, x)) =
θ∫

0

x+ 1
2ξ1β−(1−β)α

β f (x)dx +
+∞∫
θ

θ f (x)dx =

=

ln(θ)−µ
σ∫
−∞

etσ+µ+ 1
2ξ1β−(1−β)α

β
1√
2π

e−
t2
2 dt +

+∞∫
ln(θ)−µ

σ

θe−
t2
2 dt =

=
1

2ξ1β−(1−β)α

β

(
Φ
(

ln(θ)−µ
σ

))
+

+eµ+ 1
2 σ2 1

β Φ
(

ln(θ)−µ
σ − σ

)
+ θ
(

1−Φ
(

ln(θ)−µ
σ

))
.

(43)

We also obtain the expected inflated claim amount as:

E(s∗(β)) =

θ∫
0

(
x +

1
2ξ1β

)
f (x)dx +

+∞∫
θ

θ f (x)dx. (44)



Mathematics 2021, 9, 3284 10 of 12

Let t = ln(x)−µ
σ . Then we have:

E(s∗(β)) =

ln(θ)−µ
σ∫
−∞

(
etσ+µ + 1

2ξ1β

)
1√
2π

e−
t2
2 dt +

+∞∫
ln(θ)−µ

σ

θ 1√
2π

e−
t2
2 dt =

=
(

1
2ξ1β + θ

)
Φ
(

ln(θ)−µ
σ

)
+ eµ+ 1

2 σ2
Φ
(

ln(θ)−µ
σ − σ

) (45)

Equation (41) is the first order condition for the objective function to maximize the expected
total wealth of the insured, while Equation (42) is the first order condition for the objective func-
tion to minimize the total expected loss of the insurer. Although it is difficult to explicitly prove
that the first order conditions of Equations (41) and (42) are satisfied, we can find by numerical
analysis that limθ(α,β)→θ(w+

1 ,v+1 )g1(θ(α, β), α, β) < 0 and limθ(α,β)→θ(w+
1 ,v+1 )g2(θ(α, β), α, β) >

0 while α ∈ (k1, k2) and limθ(α,β)→θ(w−2 ,v−2 )g2(θ(α, β), α, β) < 0 in the feasible area of α ∈
(w1, w2) and β ∈ (v1, v2), both graphs of g1(θ(α, β), α, β) and g2(θ(α, β), α, β) cross the x axis,
and the graph of g1(θ(α, β), α, β) intersects g2(θ(α, β), α, β)) and the x axis at point A. Optimal
solutions of θ∗(α∗, β∗), α∗, β∗) exist, and are located at the point given by the condition

g1(θ
∗(α∗, β∗), α∗, β∗) = g2(θ

∗(α∗, β∗), α∗, β∗) = 0, (46)

with other given parameters applied: a = 1/1000, b = 25, ξ1 = 0.0003, ξ2 = 0.005.
In the following, we will explain the process of obtaining optimal solutions using

the numerical method. In the feasible area of α ∈ (k1, k2) and β ∈ (v1, v2) (where 0 ≤
α < +∞, 0 < β < 1), for each pair of α and β, calculate the values of g1(θ(α, β), α, β) =
g2(θ(α, β), α, β) by using the constraint E(s(β)) ≤ E(I(s(β), α, β)) ≥ 0 and the optimal
solutions will be obtained at g1(θ

∗(α∗, β∗), α∗, β∗) = g2(θ
∗(α∗, β∗), α∗, β∗) = 0.

Since the values of g1 and g2, when α 6= α∗ and β 6= β∗ but close to α∗ and β∗, are of
opposite signs, we calculate the value of g = g1 + g2 for each pair of values of α and β,
selected in the range of α ∈ (k1, k2) and β ∈ (v1, v2) until g ≤ ε where ε is a sufficiently
small preset value. The optimal solutions of (θ∗, α∗, β∗) will be those satisfying g ≤ ε. In
this way, we find the optimal solutions of (θ∗, α∗, β∗) = (12100, 13829, 0.8694). Entering
(θ∗, α∗, β∗) into Equation (41), we obtain E(I∗(s(β∗), α∗, β∗)) = 8494.6. Figure 1 displays
the patterns of change of the first order conditions of the two objective functions and optimal
upper limit. Table 1 lists the optimal solutions when the parameters take different values.

Figure 1. Patterns of changes in the first order conditions of the two objective functions and optimal
upper limit.
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Table 1. Optimal solutions with different values of parameters.

ξ1 = 0.0006, ξ2 = 0.009, a = 1/1200, b = 12

α∗ β∗ θ∗ E∗(I)

13,000 0.94 12,113 8372.2

ξ1 = 0.0006, ξ2 = 0.009, a = 1/1000, b = 25

α∗ β∗ θ∗ E∗(I)

14,000 0.94 13,113 8818.8

ξ1 = 0.0003, ξ2 = 0.005, a = 1/1200, b = 22

α∗ β∗ θ∗ E∗(I)

15,000 0.36 10,370 4103.9

Note the following clarifications about Figure 1:

- The two lines represent two tangents of first order differentiation, and the point where
these tangents cross the horizontal axis is the optimal solution.

- There is one maximization model and one dual minimization model. Letting the first
order condition of both be equal to zero yields optimal solutions. In the maximization
problem, its first order derivative in the left end point is greater than zero; however, its
first order derivative in the right end point is less than zero. In the dual minimization
problem, its first order derivative in the left end point is less than zero; however, in
the right end point it is greater than zero. Each of two lines crosses the horizontal axis,
and the cross point corresponds to the optimal value of the upper limit. In Figure 1,
this is point A.

4. Conclusions

In this paper, we discuss the optimization of claim settlement strategy for third party
liability insurance, along with consideration of an upper limit. At the same time, we
establish objective functions to maximize the claimant’s net benefit from inflating the claim
amount in order to maximize the expected total wealth of the insured. Then, we establish
a dual objective function to maximize the expected loss of the insurer, so as to lessen a
claimant’s incentive to exaggerate losses, as well as to reduce the falsification costs and
other indirect costs due to setting up the cap. Solving the two objective functions for the
insured and the dual objective function for the insurer, we find the optimal indemnification
schedule vs. optimal caps with different values of parameters.

We believe that our research work in this paper may provide effective claim settlement
strategies which are favorable for all parties, including regulators, insurers, and the insured.
Regulators may tend to favor damage award caps for reducing the insolvency of insurers
and other indirect loss due to setting the cap. In order to protect consumer benefits, insurers
are expected to reduce their payment of inflated claims, litigation and settlement costs,
and other indirect cost by optimizing claim settlement strategies to motivate the insured
to reduce their exaggeration of claimed losses; the insured will obtain fair compensation
for their claimed loss, have the incentive to decline their falsification cost, and reduce the
indirect loss resulting from setting up the cap.
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