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Abstract: The current research involves an analytical method of electromagnetic wave scattering
by an impenetrable spherical object, which is immerged in an otherwise lossless environment. The
highly conducting body is excited by an arbitrarily orientated time-harmonic magnetic dipole that
is located at a reasonable remote distance from the sphere and operates at low frequencies for the
physical situation under consideration, wherein the wavelength is much bigger than the size of the
object. Upon this assumption, the scattering problem is formulated according to expansions of the
implicated magnetic and electric fields in terms of positive integer powers of the wave number of the
medium, which is linearly associated to the implied frequency. The static Rayleigh zeroth-order case
and the initial three dynamic terms provide an excellent approximation for the obtained solution,
while terms of higher orders are of minor significance and are neglected, since we work at the
low-frequency regime. To this end, Maxwell’s equations reduce to a finite set of interrelated elliptic
partial differential equations, each one accompanied by the perfectly electrically conducting boundary
conditions on the metal sphere and the necessary limiting behavior as we move towards theoretical
infinity, which is in practice very far from the observation domain. The presented analytical technique
is based on the introduction of a suitable spherical coordinated system and yields compact fashioned
three-dimensional solutions for the scattered components in view of infinite series expansions of
spherical harmonic modes. In order to secure the validity and demonstrate the efficiency of this
analytical approach, we invoke an example of reducing already known results from the literature to
our complete isotropic case.

Keywords: low-frequency scattering; electromagnetic fields; magnetic dipole; spherical scatterer

1. Introduction

Real-life physical applications of practical interest in science and engineering are
promptly associated with the fundamental principles of advanced electromagnetism [1]
and the related information concerning analytical, semi-analytical and numerical tech-
niques towards the solution of important problems. An indivisible part of Maxwell’s
electromagnetic theory is the low-frequency wave scattering [2] by solid or penetrable
bodies of arbitrary geometry, embedded within various kind of media, i.e., conductive or
lossless, wherein the source of the produced fields, located nearby, operates at very low
frequencies, as is the case for the current assumption. Thus, the issue of retrieving certain
anomalies becomes a twofold challenge of solving initially the forward and thereafter the
inverse scattering problem. The primary task includes the calculation of the scattered elec-
tric and magnetic fields by means of complete knowledge of the physical and geometrical
parameters of each situation under consideration. By deciphering such fields, significant
information about orientation, size, shape and the magnetic and electric properties of the
targets is inferred, which concerns an inverse problem query. However, this is not an easy
task, since the inverse problem [3] cannot be tackled in a robust fashion unless integrated
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models of the field behavior and effective mathematical tools [4] are available. This research
is motivated by numerous examples in this direction, such as the detection of inclusions in
two-phase composites [5], mineral exploration [6], identification of cavities [7], detection of
Unexploded Ordinance [8] and buried objects [9], scattering by chiral bodies [10] and sev-
eral other cases related to the identification of metallic or non-metallic objects of different
shapes and sizes, regardless the nature of the surroundings.

The need to employ effective analytical or even semi-analytical techniques in order to
confront such physical situations that capture the essence of the electromagnetic process
itself is constantly increasing. Indeed, even though the use of brute computer codes is
nowadays inevitable, we should not overlook the fact that the mathematical analysis is the
backbone of numerical analysis. Therefore, purely analytical methods, besides the insight
they offer to the understanding of the physical background and besides their importance
for checking the credibility of numerical methods, keep the mathematical community alive,
providing the bases of mathematics. Within this framework, important analytical research
has been conducted concerning the identification of metallic impenetrable objects, which
are embedded in conductive media, e.g., Earth’s subsurface, and they are illuminated by
magnetic dipole sources that operate at low frequencies as a fair approximation of such
kind of physical applications. For example, the low-frequency electromagnetic fields that
are scattered from a perfectly conducting [11] or penetrable [12] sphere in a conductive
medium and excited by a magnetic dipole, have been given in closed analytical form,
with the analytical results in [11] being followed by a numerical implementation. A
demonstration of the utility of such solutions, given in an analytical compact fashion, to
the construction of a fast and accurate inverse scheme was accomplished in [13], wherein
the low-frequency on-site identification of a highly conductive body buried in Earth from a
model ellipsoid was presented. In view of this aspect, cases that involve more complicated
geometries for the metallic bodies have been introduced; one can refer, for instance, to [14],
in which the authors study the low-frequency interaction with the conductive environment
of a ring torus, which scatters off incident waves that are produced by a magnetic dipole
source. Different kinds of surroundings have also attracted researchers since the early
1960s [15], where the electromagnetic response of a conductive sphere to a dipole field in a
homogeneous dielectric medium has been studied. Though, the interest in occupation with
low-frequency scattering by a perfectly electrically conducting target, which is located in
an otherwise lossless ambient, e.g., air, has also been on the frontline of research for more
than a decade [16–18]. The peculiarities encountered herein have an indivisible character
that offers us the challenge of dealing with these problems and becoming familiar with
new techniques in solving fundamental physical electromagnetic scattering problems.

The present work is focused on the application of low-frequency diffusive scattering
theory in handling the problem of retrieving an impenetrable spherical metallic body in a
lossless, i.e., perfect dielectric medium. Such investigation, even concerning highly sym-
metric geometry, sets the basis of studying the problem for complete spatial isotropy and
deepens the understanding of more complicated anisotropic geometries that are introduced
in previous models. Moreover, it provides a benchmark, where the more intricate models
should meet, by geometrical reduction of the corresponding solution. The most appropri-
ately fitting geometry to this case is introduced by the spherical coordinate system [19],
which is adopted for the current status. On the other hand, a time-harmonic magnetic
dipole source, acting as the known primary source, operates at the low-frequency regime
and produces the three-dimensional incident electromagnetic waves, which propagate
towards the spherical scatterer. Then, the spherical-shaped body responds to the excitation
and generates the scattered magnetic and electric fields, where their summation comprises
the total fields. The nature of the involved physical applications, in which the distance
between the source and the object is considered to be significant and the characteristic
dimension of the scatterer requires a large enough wavelength to cover the body, justifies
the fact that the frequency becomes very small. On that account, we take advantage of
this property and adopt the convenient so-called low-frequency technique, by which we
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expand each one of the incidents, the scattered and, consequently, the total electromagnetic
fields, in terms of positive integer powers of the wavenumber at the operation frequency,
wherein the coefficients of the expansions denote the corresponding three-dimensional
fields for every low-frequency order.

Hence, the initial scattering problem is reduced to a sequence of interconnected
boundary value problems, which incorporate elliptic-type Laplace’s and Poisson’s partial
differential equations, being accompanied by the necessary perfectly electrically conducting
boundary conditions, which describe the cancellation of the normal component of the
magnetic field and the tangential component of the electric field. In addition, bearing in
mind that we deal with an exterior problem, whose domain extends practically far away
from the neighborhood of the scatterer, the Silver-Müller radiation conditions at infinity
are also applied. We restrict our analysis to the important terms of the low-frequency
expansions, those being the static Rayleigh term and the first three dynamic terms, since
terms of higher orders can be neglected as a fair approximation of the low-frequency
hypothesis. The analytical methodology eventually provides solid compact solutions for the
surviving electromagnetic fields of interest, i.e., for the first four orders by means of infinite
series expansions in terms of spherical harmonic eigenfunctions [20], wherein the leading
unknown constant coefficients are calculated either directly via closed-type relationships,
or they are embedded into infinite linear algebraic systems and they are determined with
the aid of classical cut-off methods. In order to validate the consistency of our results,
we propose a reduction methodology of the formulae from the spheroidal case [14] to
our circumstance, and we demonstrate this procedure by showing the analytical steps to
recover the spherical Rayleigh static magnetic term from the corresponding spheroidal
expression. In that sense, all the low-frequency magnetic and electric spheroidal fields can
be tackled similarly, so as to obtain the related spherical components.

Having introduced our work briefly in the abstract and more analytically in the
current section, the rest of this article is organized as follows. In the next section, the
physical background and the main mathematical prerequisites are incorporated via an
invariant mode, wherein any formulation is presented independently of the geometry,
while the general features of the implied spherical geometry are also included. In the
sequel, the corresponding analysis with respect to the hypothesis of operation at low
frequencies is presented, and the associated boundary value problems are sketched with
respect to the spherical harmonic eigenfunctions. Therein, the section with the main results
that follows includes the analytical steps of our solving technique and the developed
solutions of each low-frequency problem in terms of compact infinite series expansions.
Thereafter, a separate section is devoted to the analytical validation of our method through
a reduction sequence, by which the Rayleigh magnetic static component is recovered by
the corresponding prolate spheroidal problem. Immediately after, we discuss our results
and conclude, while we end this article with an updated reference list.

2. Physical and Mathematical Development

The physical interpretation of this scattering problem is involved with an impenetrable
spherical body of approximately infinite conductivity and radius α, which is embedded
within an otherwise homogeneous, isotropic and nonmagnetic lossless medium of con-
ductivity σ ∼= 0, dielectric permittivity ε and magnetic permeability µ. On that account, a
Cartesian coordinate system (x1, x2, x3) is set conveniently so that its center coincides with
the center of the spherical object, and every material point in space is then determined by
the position vector r = x1x̂1 + x2x̂2 + x3x̂3, which is expressed via the Cartesian basis x̂j for
j = 1, 2, 3. The impenetrable sphere is illuminated by an arbitrarily orientated magnetic
dipolar source,

m =
3

∑
j=1

mj x̂j (1)
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which is located at a fixed position r0 = (x10, x20, x30) and operates at a low circular
frequency ω for the current project. Upon this assumption, the wave number [2] of the
medium yields

k = ω
√

εµ (2)

which implies low values for k as well, securing the imposed status of low frequencies
in this work, provided that the radius of the metal sphere is significantly less than the
wavelength λ = 2π/k, which is ensured via the inequality α� λ. In order to comply with
the spherical geometry of the solid body, we introduce the spherical coordinate system
(r, θ, ϕ) in view of the radial r ∈ [0,+∞), the polar θ ∈ [0, π] and the azimuthal ϕ ∈ [0, 2π)
variables [19], associated with the Cartesian system via

x1 = rζ, x2 = r
√

1− ζ2 cos ϕ and x3 = r
√

1− ζ2 sin ϕ (3)

where we have set ζ ≡ cos θ ∈ [−1, 1] for notational clarity in what follows. Obviously, the
actual unbounded area V

(
R3) of electromagnetic wave propagation is restricted outside

the spherical body, due to its non-penetrable character, which results in no field interaction
inside. Thus, the exterior domain of interest is given by

Ω ≡ V
(
R3
)
− {r0} = {(r, ζ, ϕ) : r ∈ (α,+∞), ζ ∈ [−1, 1], ϕ ∈ [0, 2π)} − {(r0, ζ0, ϕ0)}, (4)

where the singular point (r0, ζ0, ϕ0), corresponding to (x10, x20, x30) by virtue of (3), is
excluded reasonably, as it is considered located far away. The interface that distinguishes
the impenetrable body from the scattering region Ω is the smooth spherical surface S for
r = α of the perfectly electrically conducting object. On the other hand and without loss
of generality, we consider harmonic time-dependence for the implicated electromagnetic
fields, multiplying their spatial component by exp(−iωt), where t ≥ 0 is the time variable
and i is the imaginary unit. Therefore, our forthcoming analysis, when the case may be
and within each one of the involved relationships, is written solely in terms of the position
r in the three-dimensional regime.

The low-frequency electromagnetic scattering problem is now formulated according
to the known [2] primary magnetic field

Hp(r; r0) =
1

4π

[(
k2 +

ik
R
− 1

R2

)
m−

(
k2 +

3ik
R
− 3

R2

)
R⊗R ·m

R2

]
eikR

R
for r ∈ Ω (5)

and primary electric field

Ep(r; r0) =

[
ωµk
4π

(
1 +

i
kR

)
m×R

R

]
eikR

R
for r ∈ Ω, (6)

which are radiated from the foregone dipole source (1), wherein R = r− r0 and R = |r− r0|,
while the symbol “⊗” denotes a dyadic product. Since no penetration into the sphere
is permitted for this physical situation, the incident fields of (5) and (6) are completely
perturbed by the metal body, generating the corresponding scattered fields Hs and Es. The
latter satisfy the reduced spatial Maxwell’s equations [2], written for the particular case of
the lossless surrounding medium as

∇× Es(r) = iωµ Hs(r) and ∇×Hs(r) = −iωε Es(r) for r ∈ Ω, (7)

which indicate the solenoidal character of these fields for as much

∇ ·Hs(r) = ∇ · Es(r) = 0 for r ∈ Ω. (8)
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The gradient operator [20], appearing in (7) and (8), is rendered by

∇ =
3

∑
j=1

x̂j
∂

∂xj
= r̂

∂

∂r
−
√

1− ζ2

r
ζ̂

∂

∂ζ
+

1

r
√

1− ζ2
ϕ̂

∂

∂ϕ
, (9)

given in terms of the orthonormal Cartesian basis and the associated spherical unit normal
vectors

r̂ ≡ r̂(ζ, ϕ) = ζx̂1 +
√

1− ζ2 cos ϕx̂2 +
√

1− ζ2 sin ϕx̂3 (10)

which coincides with the normal unit vector on the spherical surface S at r = α and

ζ̂ ≡ ζ̂(ζ, ϕ) = −
√

1− ζ2x̂1 + ζ cos ϕx̂2 + ζ sin ϕx̂3 (11)

ϕ̂≡ ϕ̂(ϕ) = − sin ϕx̂2 + cos ϕx̂3 (12)

which constitute the spherical orthonormal basis with position vector r = r r̂(ζ, ϕ). In order
to decouple the magnetic from the electric field, we apply the ∇× on both sides of (7), we
use repeatedly the operator identity ∇×∇× = ∇(∇·)− ∆ and we invoke (8), so as to
reach the two independent Helmholtz equations(

∆ + k2
)

Hs(r) = 0 and
(

∆ + k2
)

Es(r) = 0 for r ∈ Ω, (13)

where k is the wavenumber of the medium, provided in (2). Herein, the Laplacian opera-
tor [20] in the relationships in (13) assumes the form

∆ ≡ ∇ · ∇ =
3

∑
j=1

∂2

∂x2
j
=

1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2

∂

∂ζ

[(
1− ζ2

) ∂

∂ζ

]
+

1
r2(1− ζ2)

∂2

∂ϕ2 (14)

in the Cartesian and the spherical coordinate system, respectively. Both differential opera-
tors (9) and (14) apply on r by definition, but they could apply on r0 as well, where this
attribute is designated via the notation ∇r0 and ∆r0 when appropriate. The summation of
the primary and the scattered fields leads to the total fields

Ht(r) = Hp(r; r0) + Hs(r) and Et(r) = Ep(r; r0) + Es(r) for r ∈ Ω, (15)

which describe the ensemble of waves that propagate in Ω. To achieve our final goal and
obtain Hs and Es, the partial differential equations in (13) must be supplemented by the
appropriate boundary conditions [2] on the surface S of the spherical body, with those
being

r̂(ζ, ϕ) ·Ht(α, ζ, ϕ) = 0 and r̂(ζ, ϕ)× Et(α, ζ, ϕ) = 0 for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π), (16)

which demand cancellation of the normal component of the total magnetic field and of the
tangential component of the total electric field. On the other hand, the proper behavior of
the scattered fields far from the object, mathematically speaking at infinity, is ensured via
the limiting Silver-Müller radiation conditions [2], yielding

lim
r→+∞

[
r×∇×

(
Hs(r)
Es(r)

)
+ ikr

(
Hs(r)
Es(r)

)]
= 0 for r ∈ Ω and r = |r|, (17)

which are necessary for exterior-type solutions. In conclusion, our aim is to evaluate the
electromagnetic scattered fields Hs and Es, once the well-posed boundary value problem
of (13) with (16) and (17) is evidently solved by virtue of (5), (6) and (15).
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3. Electromagnetic Low-Frequency Consideration

Under the aim to facilitate the solution of the aforementioned problem, we take profit
from the low frequencies ω, whereupon the magnetic dipole radiates, implying low values
for the wavenumber k through (2). In view of this aspect, we handle the produced primary
fields (5) and (6) in such a way as to obtain formulae with respect to integral powers of k.
Towards this direction, we apply the Maclaurin’s series expansion of the exponent eikR, we
reinforce (2) in order to eliminate ω and we perform extended cumbersome manipulations,
resulting in the following relations:

Hp(r; r0) =

[
Hp

0 (r; r0) +
Hp

2 (r; r0)

2
(ik)2 +

Hp
3 (r; r0)

6
(ik)3

]
+
(
(ik)4

)
for r ∈ Ω (18)

and

Ep(r; r0) =

[
Ep

1 (r; r0)(ik) +
Ep

3 (r; r0)

6
(ik)3

]
+
(
(ik)4

)
for r ∈ Ω, (19)

wherein we have collected the related terms as powers of (ik) instead of k for reasons
of notational clarity. In the sought relationships, we kept the first four important and,
eventually, adequate terms for the magnetic (18) and the electric (19) fields, counting for
the orders n = 0, 1, 2, 3, while terms of order n ≥ 4 are of minor significance, since k is
very small in the low-frequency regime, addressing [11,13,14] for justification of such an
argumentation. The surviving terms within (18) and (19) are proven to have the expressions

Hp
0 (r; r0) =

m
4π
·
(

3R⊗R
R2 −

~
I
)

1
R3 =

m
4π
·
(
∇⊗∇ 1

R

)
for r ∈ Ω, (20)

Hp
2 (r; r0) = −

m
4π
·
(

R⊗R
R2 +

~
I
)

1
R

=
m
4π
·
(
∇ 1

R
⊗R−

~
I
R

)
for r ∈ Ω (21)

Hp
3 (r; r0) =

m
4π
·
(
−4

~
I
)

for r ∈ Ω, (22)

Ep
1 (r; r0) =

m
4π

√
µ

ε
× R

R3 = − m
4π

√
µ

ε
×∇ 1

R
for r ∈ Ω, (23)

Ep
3 (r; r0) = −

m
4π

√
µ

ε
× 3R

R
for r ∈ Ω, (24)

whereas Hp
1 = Ep

0 = Ep
2 = 0, as indicated by the performed analysis. Note that

Ĩ =
3

∑
j=1

x̂j ⊗ x̂j = r̂⊗ r̂ + ζ̂ ⊗ ζ̂ + ϕ̂⊗ ϕ̂ (25)

stands for the unit dyadic, written either in Cartesian or in spherical coordinates, while the
easy-to-handle forms on the right-hand side of (20), (21) and (23) emerge from straightfor-
ward analytical calculations, based on the fact that

∇ 1
R

= −∇r0

1
R

= − R
R3 , where R = |r− r0| for r ∈ Ω, (26)

bearing in mind that ∇⊗ r=
~
I.

The low-frequency attribute of the primary fields obliges us to introduce a similar
behavior for the scattered fields, via the expansions

Hs(r; r0) =
+∞

∑
n=0

Hs
n(r)

(ik)n

n!
and Es(r; r0) =

+∞

∑
n=0

Es
n(r)

(ik)n

n!
for r ∈ Ω, (27)
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hence, our next task includes the construction of the equivalent to the previous paragraph
problem under the low-frequency consideration. We employ the infinite series (27) into
relationship of (7) with (8), and we rearrange the sum index appropriately in order to
equate same powers of (ik)n, n ≥ 0 and easily obtain

∇× Es
n(r) = n

√
µ

ε
Hs

n−1(r) and ∇×Hs
n(r) = −n

√
ε

µ
Es

n−1(r), n ≥ 0 for r ∈ Ω, (28)

followed by
∇ ·Hs

n(r) = 0 and ∇ · Es
n(r) = 0, n ≥ 0 for r ∈ Ω, (29)

which are Maxwell’s equations, now rewritten in terms of the low-frequency expansion
components. Acting in a similar fashion the Helmholtz equations, (13) transforms to

∆Hs
n(r) = n(n− 1)Hs

n−2(r) and ∆Es
n(r) = n(n− 1)Es

n−2(r), n ≥ 0 for r ∈ Ω, (30)

while the set of partial differential equations (30) are accompanied by the respective set of
the low-frequency boundary conditions

r̂(ζ, ϕ) ·Ht
n(α, ζ, ϕ) = 0 and r̂(ζ, ϕ)× Et

n(α, ζ, ϕ) = 0 for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π), (31)

where the total fields admit Ht
n = Hp

n +Hs
n and Et

n = Ep
n +Es

n, n ≥ 0 and the low-frequency
limiting conditions

lim
r→+∞

[
r×∇×

(
Hs

n(r)
Es

n(r)

)
+ n r

(
Hs

n−1(r)
Es

n−1(r)

)]
= 0, n ≥ 0 for r ∈ Ω and r = |r|, (32)

which are readily recovered from (16) and (17), respectively, if we utilize the introduced
expansions (27).

The type of the electromagnetic incident fields in (18) and (19), by virtue of (20)–(24),
designate the corresponding behavior for the unknown scattered fields, wherein holding
the first four contributors of the infinite expansions (27), Hs and Es may assume to be
identical to the incident field low-frequency expansions

Hs(r; r0) =

[
Hs

0(r; r0) +
Hs

2(r; r0)

2
(ik)2 +

Hs
3(r; r0)

6
(ik)3

]
+
(
(ik)4

)
for r ∈ Ω (33)

and

Es(r; r0) =

[
Es

1(r; r0)(ik) +
Es

3(r; r0)

6
(ik)3

]
+
(
(ik)4

)
for r ∈ Ω, (34)

in which we stipulated that Hs
1 = Es

0 = Es
2 = 0, as an immediate consequence of the

absence of related primary fields. It is evident that relationships (33) and (34) restrict our
analysis to the evaluation of the non-vanishing low-frequency scattering components Hs

0,
Hs

2, Hs
3, Es

1, Es
3 up to the third order, instead of the elaborate solution of the initial boundary

value problem. This is a satisfactory consideration, since the terms of both the magnetic and
electric scattered fields of order n ≥ 4 are of minor significance as long as the wavenumber
k remains low. Thus, we need to construct a sequence of coupled or uncoupled boundary
value problems for each one of the low-frequency scattered fields, elaborating on (28)–(32)
selectively, from the so-called static term at n = 0 (Rayleigh approximation) to all the rest
of the dynamic terms of orders up to n = 3. In view of the above reasoning, we begin with
the Rayleigh term for n = 0, leading to the uncoupled Laplace equation for the scattered
magnetic field

∆Hs
0(r) = 0 ⇒ Hs

0(r) = ∇Ψs
0(r) , where ∆Ψs

0(r) = 0 for r ∈ Ω, (35)
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since ∇ ·Hs
0 = 0 and ∇×Hs

0 = 0, imposing the boundary condition

r̂(ζ, ϕ) ·
[
Hp

0 (α, ζ, ϕ ; r0) + Hs
0(α, ζ, ϕ)

]
= 0 for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π), (36)

while there exists no electric field, i.e., Es
0 = 0, since the corresponding term for the incident

electric field is absent. On the other hand, the dynamic term for n = 1 reveals the existence
of the vector harmonic electric field

Es
1(r) = −

1
2

√
µ

ε
∇×Hs

2(r) for r ∈ Ω, (37)

which can be evaluated once the Hs
2 field is calculated in the next step. For as much as

there is no primary magnetic term for n = 1, there is no scattered field, that is, Hs
1 = 0. As

for the n = 2 case, it involves a Poisson equation for the magnetic field, coupled to the
static term, which reads

∆Hs
2(r) = 2Hs

0(r) ⇒ Hs
2(r) = Xs

2(r) + rΨs
0(r) where ∆Xs

2(r) = 0 for r ∈ Ω (38)

with ∇ ·Hs
2 = 0, wherein we solve the non-homogeneous equation by introducing the

particular solution rΨs
0, since ∆

(
rΨs

0
)
= Ψs

0∆r + r∆Ψs
0 + 2(∇⊗ r)T · ∇Ψs

0 = 2∇Ψs
0 = 2Hs

0;
for this outcome, we used the fact that ∆r = 0 and ∇⊗ r = Ĩ, as well as (35). The vector-
type problem (38) is accompanied by three separate boundary conditions, with the first
one given by

r̂(ζ, ϕ) ·
[
Hp

2 (α, ζ, ϕ ; r0) + Hs
2(α, ζ, ϕ)

]
= 0 for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π) (39)

and the other two borrowed from the n = 1 electric conditions (see (31)), i.e.,

r̂(ζ, ϕ)×
[
Ep

1 (α, ζ, ϕ ; r0) + Es
1(α, ζ, ϕ)

]
= 0 for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π) (40)

or, due to (37),

r̂(ζ, ϕ)×
[

Ep
1 (α, ζ, ϕ ; r0)−

1
2

√
µ

ε
∇×Hs

2(α, ζ, ϕ)

]
= 0 for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π), (41)

while the incident electric field for n = 2 does not exist, inheriting the same vanishing
character of the scattered one, implying Es

2 = 0. In the sequel, at n = 3, both the magnetic
and electric fields survive. As far as the magnetic field is concerned, we simply solve an
uncoupled Laplace equation

∆Hs
3(r) = 0 ⇒ Hs

3(r) = ∇Ψs
3(r) , where ∆Ψs

3(r) = 0 for r ∈ Ω, (42)

since ∇ ·Hs
3 = 0 and ∇×Hs

3 = 0, invoking the boundary condition

r̂(ζ, ϕ) ·
[
Hp

3 (α, ζ, ϕ ; r0) + Hs
3(α, ζ, ϕ)

]
= 0 for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π). (43)

However, this is not the case for the problem that refers to the electric field Es
3, for

which the solution is introduced in the form of an integral representation in terms of the
fundamental solution of the Laplace equation [20], which is

∆Es
3(r) = 6Es

1(r) ⇒ Es
3(r) = Xs

3(r) + 6

− 1
4π

y

Ω

Es
1

(
r
′
)

∣∣r− r′
∣∣dΩ′

 , where ∆Xs
3(r) = 0 (44)

for r ∈ Ω and with ∇ · Es
3 = 0. Hence, when the first-order scattered field Es

1 is obtained

via (37), then Es
3 accepts solution (44), as long as ∆

[
−4π

∣∣∣r− r
′
∣∣∣]−1

= δ
(

r− r
′
)

, where δ is
the delta function. For, once more, since we are dealing with a pure vector field, we are
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obliged to infer three independent boundary conditions, with two of them arising from the
electric field in (31) for n = 3, i.e.,

r̂(ζ, ϕ)×
[
Ep

3 (α, ζ, ϕ ; r0) + Es
3(α, ζ, ϕ)

]
= 0 for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π), (45)

while, due to the lack of a third boundary condition for this situation, we reinforce the
divergence-free property of Es

3 on the surface of the spherical body, giving us

∇ · Es
3(α, ζ, ϕ) = 0 for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π) (46)

without loss of uniqueness and generality of the method. At this point, let us clarify that
the limiting conditions (32) for each one of the above low-frequency modes

lim
r→+∞

[
r×∇×

(
Hs

n(r)
Es

n(r)

)
+ n r

(
Hs

n−1(r)
Es

n−1(r)

)]
= 0, n = 0, 1, 2, 3 for r ∈ Ω and r = |r|, (47)

are automatically satisfied if we demand the proper descending character of the defined
scalar Ψs

0, Ψs
3 and vector Xs

2, Xs
3 harmonic potentials, implying exterior-type solutions in

order to determine the scattered fields Hs
0, Hs

2, Hs
3, Es

1, Es
3 in the confined scattering region

Ω of wave propagation.
Before we proceed to the mathematical treatment of the individual cases for n = 0, 1, 2, 3

and under the aim to satisfy (47), we have to provide the adequate exterior expansions of
the appeared harmonic potentials, since there are no electromagnetic fields in the spherical
object for the reasons described earlier. Thus, we introduce the exterior um/q

`,ex (regular as
r → +∞ ), either even (q = e) or odd (q = o) spherical harmonic eigenfunctions of degree
` ≥ 0 and of order m = 0, 1, 2, . . . , `, in terms of the surface spherical harmonics Ym/q

` [20],
which are given by the expression

um/q
`,ex (r) =

1
r`+1 Ym/q

` (ζ, ϕ) with Ym/q
` (ζ, ϕ) = Pm

` (ζ) f q
m(ϕ) for r ∈ Ω, (48)

wherein the associated Legendre functions of the first kind Pm
` [20] are employed, being

regular for ζ = ±1, while the azimuthal angular dependence is incorporated into the
trigonometric function

f q
m(ϕ) =

{
cos mϕ, q = e
sin mϕ, q = o

⇒ f q
m
′(ϕ) =

{
−m sin mϕ, q = e
m cos mϕ, q = o

for any ϕ ∈ [0, 2π), (49)

the prime denoting derivation with respect to the argument. Otherwise, the surface
spherical harmonics are orthogonal with respect to the integral

2π∫
0

+1∫
−1

Ym/q
` (ζ, ϕ)Ym′/q′

`′ (ζ, ϕ)dζdϕ =
1
εm

4π

2`+ 1
(`+ m)!
(`−m)!

δ``′δmm′δqq′ (50)

on the surface r = α and for `, `′ ≥ 0, (m, m′) = 0, 1, 2, . . . , (`, `′) and (q, q′) = (e, o), where
δ``′ , δmm′ , δqq′ are the deltas of Kronecker and ε0 = 1, while εm = 2 when m ≥ 1. Therefore,
on account that the functions Ψs

0, Xs
2, Ψs

3, Xs
3 belong to the kernel space of the Laplace

operator and admit exterior expansions, they are written as

Ψs
0(r) =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

am/q
`,ex um/q

`,ex (r) for r ∈ Ω, (51)

Xs
2(r) =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

bm/q
`,ex um/q

`,ex (r) for r ∈ Ω, (52)

Ψs
3(r) =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

cm/q
`,ex um/q

`,ex (r) for r ∈ Ω, (53)
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Xs
3(r) =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

dm/q
`,ex um/q

`,ex (r) for r ∈ Ω, (54)

respectively, in which am/q
`,ex , cm/q

`,ex are the scalar and bm/q
`,ex , dm/q

`,ex are the vector unknown
constant coefficients that must be evaluated by solving the set of boundary value problems
(35)–(47). To this end, herein we invoke the crucial aspect for the forthcoming analysis,
Green’s function expansion for spherical geometry [20], in which, for our purpose, the
observation region is constrained at r < r0 (or equivalently r < r0), yielding the formula

1
R
≡ 1
|r− r0|

=
+∞

∑
`=0

`

∑
m=0

∑
q=e,o

ρ
m/q
`,ex (r0)r`Y

m/q
` (ζ, ϕ) for r ∈ Ω, (55)

where at the singular point r0 = (r0, ζ0, ϕ0) we define

ρ
m/q
`,ex (r0) =

(`−m)!
(`+ m)!

εmum/q
`,ex (r0) with ` ≥ 0, m = 0, 1, 2, . . . , ` and q = e, o, (56)

ending our prerequisite manipulation of the particular wave scattering problem. In the
sequel, the next section is devoted to the main and most important steps of the long and
tedious calculations to obtain compact solutions for the electromagnetic scattered fields.
Therein, we start from the magnetic modes Hs

0, Hs
2, Hs

3 and proceed to the electric modes
Es

1, Es
3, keeping in mind the vanishing fields Hs

1 = Es
0 = Es

2 = 0 that do not contribute to
the reflected field.

4. Non-Trivial Magnetic and Electric Scattered Components

We initiate the procedure of obtaining the scattered low-frequency modes with the
analytical calculation of the surviving Rayleigh magnetic term that corresponds to n = 0
wherein combining the result (35) and the associated potential (51) with (48), we immedi-
ately reach at

Hs
0(r) =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

am/q
`,ex ∇

[
r−(`+1)Ym/q

` (ζ, ϕ)
]

for r ∈ Ω, (57)

where am/q
`,ex for ` ≥ 0, m = 0, 1, 2, . . . , ` and q = e, o denote the constant coefficients to be

evaluated from boundary condition (36). To this direction and by virtue of (57) and (9), we
first calculate for r = α the simple inner product

r̂(ζ, ϕ) ·Hs
0(α, ζ, ϕ) = −

∞
∑
`=0

`
∑

m=0
∑

q=e,o
am/q
`,ex

(
∂
∂r r−(`+1)

)
r=α

Ym/q
` (ζ, ϕ)

= −
∞
∑
`=0

`
∑

m=0
∑

q=e,o
am/q
`,ex (`+ 1)α−(`+2)Ym/q

` (ζ, ϕ)

(58)

for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π). On the other hand, the corresponding inner product with
the primary field (20) is handled conveniently by using the fact that the dyadic∇⊗∇(1/R)
is symmetric and by implying the useful formula (26) so as to obtain

r̂(ζ, ϕ) ·Hp
0 (α, ζ, ϕ ; r0) =

{
∂
∂r

[
∇ 1
|r−r0|

]
· m

4π

}
r=α

= −
{

∂
∂r

[
∇r0

1
|r−r0|

]
· m

4π

}
r=α

= − m
4π ·

+∞
∑
`=0

`
∑

m=0
∑

q=e,o
∇r0 ρ

m/q
`,ex (r0)

(
∂
∂r r`

)
r=α

Ym/q
` (ζ, ϕ)

= −
+∞
∑
`=0

`
∑

m=0
∑

q=e,o

(
m
4π · ∇r0 ρ

m/q
`,ex (r0)

)
`α`−1Ym/q

` (ζ, ϕ)

(59)
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for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π), wherein eigen expansion (55), with the accompanied defini-
tion (56), was employed. Substituting (58) and (59) into the vanishing normal component
of the zero-order magnetic field (36), we bring out the common factor Ym/q

` , and we have

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

[( m
4π
· ∇r0 ρ

m/q
`,ex (r0)

)
`α`−1 + am/q

`,ex (`+ 1)α−(`+2)
]
Ym/q
` (ζ, ϕ) = 0 (60)

for every ζ ∈ [−1, 1] and ϕ ∈ [0, 2π). Using trivial orthogonality arguments with respect
to (50), we reach

am/q
`,ex = − `α2`+1

`+ 1

( m
4π
· ∇r0 ρ

m/q
`,ex (r0)

)
for ` ≥ 0, m = 0, 1, 2, . . . , ` and q = e, o, (61)

which is inserted into (57) and provides us with the solution, that is

Hs
0(r) = −

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

`α2`+1

`+ 1

( m
4π
· ∇r0 ρ

m/q
`,ex (r0)

)
∇
[
r−(`+1)Ym/q

` (ζ, ϕ)
]

for r ∈ Ω, (62)

wherein the gradient operator is given by (9) with (10)–(12), and the magnetic moment m
satisfies (1), while, obviously, the quantity ∇r0 ρ

m/q
`,ex (r0) is known by virtue of (56).

In the sequel, we elaborate on the non-vanishing magnetic field for n = 2, which
exhibits a particular difficulty, mainly due to coupling with the static term (57), as it is
indicated by the general solution (38), which admits

Hs
2(r) = Xs

2(r) + rΨs
0(r) for r ∈ Ω, (63)

in which, from the previous case for n = 0, we recover

Ψs
0(r) = −

∞

∑
`=0

`

∑
m=0

∑
q=e,o

`α2`+1

`+ 1

( m
4π
· ∇r0 ρ

m/q
`,ex (r0)

)
r−(`+1)Ym/q

` (ζ, ϕ) for r ∈ Ω, (64)

as the zero-order potential. In addition, the embedded harmonic function (52) with the aid
of (48) is rewritten as

Xs
2(r) =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

bm/q
`,ex

[
r−(`+1)Ym/q

` (ζ, ϕ)
]

for r ∈ Ω (65)

when the vector unknown constant coefficients

bm/q
`,ex =

3
∑

j=1
bm/q
`,j x̂j = bm/q

`,1 x̂1 + bm/q
`,2 x̂2 + bm/q

`,3 x̂3

=
(

bm/q
`,1 ζ + bm/q

`,2

√
1− ζ2 cos ϕ + bm/q

`,3

√
1− ζ2sinϕ

)
r̂

+
(
−bm/q

`,1

√
1− ζ2 + bm/q

`,2 ζ cos ϕ + bm/q
`,3 ζsinϕ

)
ζ̂

+
(
−bm/q

`,2 sin ϕ + bm/q
`,3 cos ϕ

)
ϕ̂

(66)

for ` ≥ 0, m = 0, 1, 2, . . . , ` and q = e, o, as well as the position vector

r =
3

∑
j=1

xj x̂j = rr̂ for r ∈ Ω (67)

imply Cartesian and spherical representations. Therefore, we substitute (64)–(67) into
(63), we use one condition from the r-component of (39) and two conditions from the ζ, ϕ-
components of (41) by assigning the second-order magnetic (21) and first-order electric (23)
incident fields, and we apply the expansion (55) with (56) when necessary. The cumbersome
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calculation effort is based on straightforward manipulations of classical vector analysis
in terms of the gradient operator (9) with (10)–(12). However, we avoid presenting the
complete analysis; instead, we choose to show the outcome of this action, which leads us
to three independent relationships for the unknown constant coefficients (66), i.e.,

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

[
3

∑
j=1

f m/q,κ
`,j (ζ, ϕ)bm/q

`,j − gm/q,κ
` (ζ, ϕ ; r0)

]
= 0 with κ = 1, 2, 3 (68)

and for any ζ ∈ [−1, 1] and ϕ ∈ [0, 2π). As for the implicated functions in (68) and for
κ = 1, we have

f m/q,1
`,1 (ζ, ϕ) = α−(`+1)ζYm/q

` (ζ, ϕ), (69)

f m/q,1
`,2 (ζ, ϕ) = α−(`+1)

√
1− ζ2 cos ϕYm/q

` (ζ, ϕ), (70)

f m/q,1
`,3 (ζ, ϕ) = α−(`+1)

√
1− ζ2 sin ϕYm/q

` (ζ, ϕ) (71)

and

gm/q,1
` (ζ, ϕ ; r0) =

{
ρ

m/q
`,ex (r0)

m
4π
·
[
− `

α
(r(α, ζ, ϕ)− r0) + r̂

]
+

`α

`+ 1
Mm/q

`,ex (r0)

}
α`Ym/q

` (ζ, ϕ), (72)

for κ = 2, it holds that

f m/q,2
`,1 (ζ, ϕ) = α−(`+2)

[
−(`+ 1)

√
1− ζ2Pm

` (ζ)− ζ
√

1− ζ2Pm
`
′(ζ)

]
f q
m(ϕ), (73)

f m/q,2
`,2 (ζ, ϕ) = α−(`+2)

[
(`+ 1)ζPm

` (ζ)−
(

1− ζ2
)

Pm
`
′(ζ)

]
cos ϕ f q

m(ϕ), (74)

f m/q,2
`,3 (ζ, ϕ) = α−(`+2)

[
(`+ 1)ζPm

` (ζ)−
(

1− ζ2
)

Pm
`
′(ζ)

]
sin ϕ f q

m(ϕ) (75)

and

gm/q,2
` (ζ, ϕ ; r0) = −

`α`

`+ 1
Mm/q

`,ex (r0)
√

1− ζ2Pm
`
′(ζ) f q

m(ϕ) + 2
(

r̂×Mm/q
`,ex (r0) · ζ̂

)
α`Ym/q

` (ζ, ϕ), (76)

while for κ = 3, it is

f m/q,3
`,1 (ζ, ϕ) = α−(`+2) ζ√

1− ζ2
f q
m
′(ϕ)Pm

` (ζ), (77)

f m/q,3
`,2 (ζ, ϕ) = α−(`+2)

[
−(`+ 1)sinϕ f q

m(ϕ) + cos ϕ f q
m
′(ϕ)

]
Pm
` (ζ), (78)

f m/q,3
`,3 (ζ, ϕ) = α−(`+2)

[
(`+ 1) cos ϕ f q

m(ϕ) + sinϕ f q
m
′(ϕ)

]
Pm
` (ζ) (79)

and

gm/q,3
` (ζ, ϕ ; r0) = Mm/q

`,ex (r0)
`α`

`+ 1
Pm
` (ζ)√
1− ζ2

f q
m
′(ϕ) + 2

(
r̂×Mm/q

`,ex (r0) · ϕ̂
)

α`Ym/q
` (ζ, ϕ). (80)

The definitions in (69)–(80) are given for ζ ∈ [−1, 1] and ϕ ∈ [0, 2π), in which we
defined the convenient functions of the dipole’s position as

Mm/q
`,ex (r0) =

m
4π
· ∇r0 ρ

m/q
`,ex (r0) and Mm/q

`,ex (r0) =
m
4π
×∇r0 ρ

m/q
`,ex (r0) (81)

for ` ≥ 0, m = 0, 1, 2, . . . , ` and q = e, o, while all derivatives denoted by the prime
are with respect to the argument. Notwithstanding relationships, (68), accompanied by
definitions in (69)–(80), contains easy-to-handle functions, which are very complicated
in terms of accepting elaboration with respect to recurrence relations, since, in the end, a
numerical implementation for the resulting systems is inevitable. Nevertheless, in order to
obtain a compact solution from these systems of equations, we work as follows. We write
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the functions (69)–(80) as series expansions via the orthonormal basis Ym′/q′

`′ for `′ ≥ 0,
m′ = 0, 1, 2, . . . , `′ and q′ = e, o, according to

f m/q,κ
`,j (ζ, ϕ) =

+∞

∑
`′=0

`′

∑
m′=0

∑
q′=e,o

λ
(m,m′)/(q,q′),κ
(`,`′),j Ym′/q′

`′ (ζ, ϕ) with κ, j = 1, 2, 3 (82)

and

gm/q,κ
` (ζ, ϕ ; r0) =

+∞

∑
`′=0

`′

∑
m′=0

∑
q′=e,o

µ
(m,m′)/(q,q′),κ
(`,`′) (r0)Y

m′/q′

`′ (ζ, ϕ) with κ = 1, 2, 3, (83)

wherein ` ≥ 0, m = 0, 1, 2, . . . , ` and q = e, o, while ζ ∈ [−1, 1] and ϕ ∈ [0, 2π). Next,
taking advantage of the orthogonality property (50), we obtain the leading coefficients
within (82) and (83) in the integral form

λ
(m,m′)/(q,q′),κ
(`,`′),j =

2`′ + 1
4π

(`′ −m′)!
(`′ + m′)!

εm′

+1∫
−1

2π∫
0

f m/q,κ
`,j (ζ, ϕ)Ym′/q′

`′ (ζ, ϕ)dϕ dζ (84)

and

µ
(m,m′)/(q,q′),κ
(`,`′) (r0) =

2`′ + 1
4π

(`′ −m′)!
(`′ + m′)!

εm′

+1∫
−1

2π∫
0

gm/q,κ
` (ζ, ϕ ; r0)Y

m′/q′

`′ (ζ, ϕ)dϕ dζ (85)

for every (`, `′) ≥ 0, (m, m′) = 0, 1, 2, . . . , (`, `′) and (q, q′) = e, o with κ, j = 1, 2, 3. In the
final step of this procedure, we invoke formulae (82) (with (84)) and (83) (with (85)) into
(68), and once more we make use of the orthogonality relation (50) in order to reach the set
of algebraic equations

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

[
3

∑
j=1

λ
(m,m′)/(q,q′),κ
(`,`′),j bm/q

`,j − µ
(m,m′)/(q,q′),κ
(`,`′) (r0)

]
= 0 with κ = 1, 2, 3, (86)

wherein `′ ≥ 0, m′ = 0, 1, 2, . . . , `′ and q′ = e, o, which includes the three components
(j = 1, 2, 3) of the unknown constants bm/q

`,j for ` ≥ 0, m = 0, 1, 2, . . . , `, q = e, o and the
known expressions (84) and (85). Doing so, we manage to transfer the apparent difficulty
from the boundary conditions to the simple calculation of integrals (84) and (85), which
just incorporate the trivial trigonometric and associated Legendre functions. The set of
relationships (86) represent systems of linear algebraic equations, which can be solved via
usual cut-off techniques by the imposition of an indispensable common upper limit L for
both the degree indexes, that is ` = `′ = 0, 1, 2, . . . , L. Thereafter, (86) can be transformed
to quadrature systems of the form

ALxL = zL(r0) ⇒ xL = A−1
L zL(r0), (87)

where for m = m′ = 0, 1, 2, . . . , ` and q = q′ = e, o, as well as κ, j = 1, 2, 3, we have

AL =


. . .

...
· · · λ

(m,m)/(q,q),κ
(`,`),j · · ·

...
. . .

, xL =


...

bm/q
`,j
...

 and zL(r0) =


...

µ
(m,m)/(q,q),κ
(`,`),j (r0)

...

, (88)

which denote the 3(L + 1)×m× q squared-type invertible matrix of the coefficients of the
unknowns, the vector of the unknown coefficients and the vector of the known constants,
respectively. The solution xL, provided in (87), corresponds to the constant coefficients
bm/q
`,ex = bm/q

`,1 x̂1 + bm/q
`,2 x̂2 + bm/q

`,3 x̂3 for ` = 0, 1, 2, . . . , L, m = 0, 1, 2, . . . , ` and q = e, o,
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where the value of L is determined in accordance to the desired accuracy of the final series
expansions. Thus, by virtue of (64) and (65), the magnetic term of second order (63) implies

Hs
2(r) =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

{[
bm/q
`,ex −

`α2`+1

`+ 1

( m
4π
· ∇r0 ρ

m/q
`,ex (r0)

)
r

]
r−(`+1)Ym/q

` (ζ, ϕ)

}
for r ∈ Ω, (89)

upon solution of (87) with (88) and expression of (56), which embody both the general
harmonic part and the particular solution of the Poisson equation (38).

Ending the calculation sequence of the surviving magnetic scattered modes, we move
to a quite simple case for n = 3, whose simplicity is due to the fact that the corresponding
primary field (22) is a constant vector. Herein, we work similarly to the Rayleigh case, since
we deal with a harmonic field, given via the gradient of a scalar harmonic potential, as (42)
indicates with the Neumann-type boundary condition (43). Hence, using the expression
(53) with the eigenfunctions (48), the scattered field under evaluation for this case reads

Hs
3(r) =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

cm/q
`,ex ∇

[
r−(`+1)Ym/q

` (ζ, ϕ)
]

for r ∈ Ω, (90)

where cm/q
`,ex for ` ≥ 0, m = 0, 1, 2, . . . , ` and q = e, o stand for the constant coefficients to be

determined from boundary condition (43). The latter combines (90) and (22) in order to
reveal that

−
∞

∑
`=0

`

∑
m=0

∑
q=e,o

cm/q
`,ex (`+ 1)α−(`+2)Ym/q

` (ζ, ϕ)− m1

π
ζ − m2

π

√
1− ζ2 cos ϕ− m3

π

√
1− ζ2 sin ϕ = 0 (91)

for every ζ ∈ [−1, 1] and ϕ ∈ [0, 2π). Though, if we identify ζ = Y0/e
1 ,

√
1− ζ2 cos ϕ =

Y1/e
1 and

√
1− ζ2 sin ϕ = Y1/o

1 , then by application of the orthogonality (50), we are led to
the vanishing of the constant coefficients

c0/e
0,ex = 0 and cm/q

`,ex = 0 for every ` ≥ 2, m = 0, 1, 2, . . . , ` and q = e, o, (92)

while the three surviving constants for ` = 1 are derived as

c0/e
1,ex = −m1α3

2π
, c1/e

1,ex = −m2α3

2π
and c1/o

1,ex = −m3α3

2π
, (93)

which determine the three terms of the third-order scattered field. Invoking (92) and (93)
into the initial field (90), reading the spherical coordinates (3), taking into account (1) and
applying the gradient operator either in Cartesian or in spherical form, we get

Hs
3(r) = c0/e

1,ex∇
[
r−2Y0/e

1 (ζ, ϕ)
]
+ c1/e

1,ex∇
[
r−2Y1/e

1 (ζ, ϕ)
]
+ c1/o

1,ex∇
[
r−2Y1/o

1 (ζ, ϕ)
]

= −m1α3

2π ∇
[
r−2ζ

]
− m2α3

2π ∇
[
r−2
√

1− ζ2 cos ϕ
]
− m3α3

2π ∇
[
r−2
√

1− ζ2 sin ϕ
]

= −m1α3

2π ∇
[
r−3x1

]
− m2α3

2π ∇
[
r−3x2

]
− m3α3

2π ∇
[
r−3x3

]
= − α3

2π

3
∑

j=1
mj∇

[
r−3xj

]
= α3

2π

3
∑

j=1
mj
(
3xjr−4r̂− r−3 x̂j

)
= 1

2π

(
α
r
)3 3

∑
j=1

mj
(
3xjr−1r̂− x̂j

)
= 1

2π

(
α
r
)3
[

3r−1r̂
3
∑

j=1
mjxj −

3
∑

j=1
mjx̂j

]
= 1

2π

(
α
r
)3[3r−1(m · r)r̂−m

]
= 1

2π

(
α
r
)3
[3(m · r̂)r̂−m]

(94)
or

Hs
3(r) =

(α

r

)3 m
2π
·
(

3r̂⊗ r̂− Ĩ
)

for r ∈ Ω, (95)

which provides the relative scattered field in a closed-form dyadic expression, bearing in
mind that r = rr̂ in spherical coordinates.
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Proceeding to the low-frequency scattered electric modes that do not vanish, we start
with the easy case for n = 1, being immediately related with the calculated Hs

2 field, as
indicated by (37). The latter, by virtue of (89) and implying a trivial vector differential
identity, renders

Es
1(r) = −

1
2

√
µ

ε

∞

∑
`=0

`

∑
m=0

∑
q=e,o

{
∇
[
r−(`+1)Ym/q

` (ζ, ϕ)
]
×
[

bm/q
`,ex −

`α2`+1

`+ 1

( m
4π
· ∇r0 ρ

m/q
`,ex (r0)

)
r

]}
(96)

for r ∈ Ω, since ∇ × r = 0 and ∇ × bm/q
`,ex = 0 for ` ≥ 0, m = 0, 1, 2, . . . , ` and q =

e, o, wherein the constant coefficients of the second-order scattered magnetic field were
computed in previous step.

The task that completes our analysis is associated with the evaluation of the electric
scattered field for n = 3, whereas the main difficulty comes from the manipulation of the
inserted integral in the solution (44), which incorporates the Es

1 field from (96), yielding

Es
3(r) = Xs

3(r)−
3

2π

y

Ω

Es
1

(
r
′
)

∣∣r− r′
∣∣dΩ′, sin ce ∆

− 3
2π

y

Ω

Es
1

(
r
′
)

∣∣r− r′
∣∣dΩ′

 = 6Es
1(r) (97)

for r ∈ Ω, where (54) with the aim of (48) results in

Xs
3(r) =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

dm/q
`,ex r−(`+1)Ym/q

` (ζ, ϕ), sin ce ∆Xs
3(r) = 0 for r ∈ Ω. (98)

The unknown constant coefficients in (98), written in both the Cartesian and the
spherical fashion, similar to (66), as

dm/q
`,ex =

3
∑

j=1
dm/q
`,j x̂j = dm/q

`,1 x̂1 + dm/q
`,2 x̂2 + dm/q

`,3 x̂3

=
(

dm/q
`,1 ζ + dm/q

`,2

√
1− ζ2 cos ϕ + dm/q

`,3

√
1− ζ2sinϕ

)
r̂

+
(
−dm/q

`,1

√
1− ζ2 + dm/q

`,2 ζ cos ϕ + dm/q
`,3 ζsinϕ

)
ζ̂

+
(
−dm/q

`,2 sin ϕ + dm/q
`,3 cos ϕ

)
ϕ̂

(99)

for ` ≥ 0, m = 0, 1, 2, . . . , ` and q = e, o, must be calculated when we reinforce the three
boundary conditions (45) and (46). First, let us elaborate a bit further on the integral in (97),
which in view of the elementary volume dΩ′ = r′2dr′dζ ′dϕ′ for r′ ∈ [α,+∞), ζ ′ ∈ [−1, 1]
and ϕ′ ∈ [0, 2π), becomes

− 3
2π

t

Ω

Es
1

(
r
′)

|r−r′ | dΩ′ = − 3
2π

2π∫
0

1∫
−1

+∞∫
α

Es
1

(
r
′)

|r−r′ | r
′2dr′dζ ′dϕ′

= − 3
2π

{
lim
e→0

2π∫
0

1∫
−1

r0−e∫
α

Es
1

(
r
′)

|r−r′ | r
′2dr′dζ ′dϕ′

+lim
e→0

2π∫
0

1∫
−1

r0+e∫
r0−e

Es
1

(
r
′)

|r−r′ | r
′2dr′dζ ′dϕ′

+lim
e→0

2π∫
0

1∫
−1

+∞∫
r0+e

Es
1

(
r
′)

|r−r′ | r
′2dr′dζ ′dϕ′

}
for r ∈ Ω,

(100)

in which, for the family of singular points that correspond to a sphere of radius r′ = r0 we
introduce a classical limiting technique, based on the exclusion of this area by bounding
it with a spherical shell of thickness 2e, when 0 < e� 1 is a very small positive number.
Otherwise and without loss of generality, we presume that (ζ ′, ϕ′) 6= (ζ0, ϕ0), hence we are
not obliged to apply the aforementioned limiting procedure for the two angular variables.
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The first and the third integrals of (100) are analytic, since they exclude the singular point,
consequently using twofold the Green’s expansion [20] in spherical coordinates

1∣∣r− r′
∣∣ =


+∞
∑
`=0

`
∑

m=0
∑

q=e,o

(`−m)!
(`+m)!εm

r`

r′`+1 Ym/q
` (ζ, ϕ)Ym/q

` (ζ ′, ϕ′) , r′ < r0 − e

+∞
∑
`=0

`
∑

m=0
∑

q=e,o

(`−m)!
(`+m)!εm

r′`

r`+1 Ym/q
` (ζ, ϕ)Ym/q

` (ζ ′, ϕ′) , r′ > r0 + e
(101)

for r ∈ Ω and applying (101) appropriately in each domain, these integrals are rewritten in
the form

− 3
2π

lim
e→0

2π∫
0

1∫
−1

r0−e∫
α

Es
1

(
r
′
)

∣∣r− r′
∣∣ r′2dr′dζ ′dϕ′ =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

sm/q
`,− r`Ym/q

` (ζ, ϕ) for r ∈ Ω (102)

and

− 3
2π

lim
e→0

2π∫
0

1∫
−1

+∞∫
r0+e

Es
1

(
r
′
)

∣∣r− r′
∣∣ r′2dr′dζ ′dϕ′ =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

sm/q
`,+ r−(`+1)Ym/q

` (ζ, ϕ) for r ∈ Ω, (103)

which admit harmonic expressions, where the leading constants in (102) and (103) for ` ≥ 0,
m = 0, 1, 2, . . . , ` and q=e,o are

sm/q
`,− = − 3

2π

(`−m)!
(`+ m)!

εmlim
e→0

2π∫
0

1∫
−1

r0−e∫
α

r′−(`+1)Ym/q
`

(
ζ ′, ϕ′

)
Es

1

(
r
′
)

r′2dr′dζ ′dϕ′ (104)

and

sm/q
`,+ = − 3

2π

(`−m)!
(`+ m)!

εmlim
e→0

2π∫
0

1∫
−1

+∞∫
r0+e

r′`Ym/q
`

(
ζ ′, ϕ′

)
Es

1

(
r
′
)

r′2dr′dζ ′dϕ′, (105)

respectively. Then again, the second singular integral of (100) is responsible for the genera-
tion of the non-homogeneous part of (44), since

∆

− 3
2π

lim
e→0

2π∫
0

+1∫
−1

r0+e∫
r0−e

Es
1

(
r
′
)

∣∣r− r′
∣∣dΩ′

 = 6lim
e→0

2π∫
0

+1∫
−1

r0+e∫
r0−e

δ
(

r− r
′
)

Es
1

(
r
′
)

dΩ′ = 6Es
1(r) for r ∈ Ω, (106)

due to the property of the Dirac function δ
(

r− r
′
)

. Herein, the procedure that is followed
is completely different than the one presented among (101)–(105), wherein we choose to
expand the involved integral in terms of the orthonormal basis Ym/q

` via

− 3
2π

lim
e→0

2π∫
0

1∫
−1

r0+e∫
r0−e

Es
1

(
r
′
)

∣∣r− r′
∣∣ r′2dr′dζ ′dϕ′ =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

Sm/q
` (r)Ym/q

` (ζ, ϕ) for r ∈ Ω, (107)

where, due to the orthogonality relation (50), the radial-dependent functions imply

Sm/q
` (r) = −3(2`+ 1)

8π2 εm
(`−m)!
(`+ m)!

2π∫
0

1∫
−1

lim
e→0

2π∫
0

1∫
−1

r0+e∫
r0−e

Es
1

(
r
′
)

∣∣r− r′
∣∣ r′2dr′dζ ′dϕ′

Ym/q
` (ζ, ϕ)dζdϕ (108)
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for every r ≥ α. Thus, we substitute (102) with (104), (103) with (105) and (107) with (108)
into the principal equation (100) in order to obtain the handy expression

− 3
2π

y

Ω

Es
1

(
r
′
)

∣∣r− r′
∣∣dΩ′ =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

[
sm/q
`,− r` + Sm/q

` (r) + sm/q
`,+ r−(`+1)

]
Ym/q
` (ζ, ϕ) (109)

for r ∈ Ω, which can accept orthogonality arguments. On the other hand and for reasons
of mathematical convenience, in our forthcoming calculations, we wish to expand the
corresponding primary field (24) in the same manner; hence, we expand (55) with (56) if
r < r0 and we recall that R = r− r0, such that

Ep
3 (r; r0) =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

[
Im/q
`,ex (r, ζ, ϕ ; r0)r`Y

m/q
` (ζ, ϕ)

]
for r ∈ Ω, (110)

where

Im/q
` (r, ζ, ϕ ; r0) = −

3
4π

√
µ

ε
m× [r(r, ζ, ϕ)− r0]ρ

m/q
`,ex (r0) for r ∈ Ω, (111)

in which the position vector r(r, ζ, ϕ) holds from relation (67). Putting all the analytical
tools together, we import the information developed in (97)–(113) into the three boundary
conditions, two that correspond to (45) and one from (46), and we follow the very same
process, which was analyzed in (68)–(88) for the second-order scattered magnetic field,
so as to calculate the unknown constant coefficients dm/q

`,ex for ` ≥ 0, m = 0, 1, 2, . . . , ` and
q = e, o. Using the above reasoning, we are led to the three independent relations

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

[
3

∑
j=1

f
m/q,κ
`,j (ζ, ϕ)dm/q

`,j − gm/q,κ
` (ζ, ϕ ; r0)

]
= 0 with κ = 1, 2, 3 (112)

for every ζ ∈ [−1, 1] and ϕ ∈ [0, 2π). The involved functions in (112) have amenable
expressions; hence, for κ = 1, we have

f
m/q,1
`,1 (ζ, ϕ) = α−(`+2)

[
−(`+ 1)ζPm

` (ζ) +
(

1− ζ2
)

Pm
`
′(ζ)

]
f q
m(ϕ), (113)

f
m/q,1
`,2 (ζ, ϕ) = α−(`+2)

[(
−(`+ 1)Pm

` (ζ)− ζPm
`
′(ζ)

)√
1− ζ2 cos ϕ f q

m(ϕ)

− Pm
` (ζ)√
1−ζ2

sinϕ f q
m
′(ϕ)

]
,

(114)

f
m/q,1
`,3 (ζ, ϕ) = α−(`+2)

[(
−(`+ 1)Pm

` (ζ)− ζPm
`
′(ζ)

)√
1− ζ2 sin ϕ f q

m(ϕ) +
Pm
` (ζ)√
1− ζ2

cos ϕ f q
m
′(ϕ)

]
, (115)

and

gm/q,1
` (ζ, ϕ ; r0) = −

[
sm/q
`,− + 1

α`
Sm/q
` (α)

]
· ∇α

[
α`Ym/q

` (ζ, ϕ)
]
− sm/q

`,+ · ∇α

[
1

α`+1 Ym/q
` (ζ, ϕ)

]
−

−r̂ ·
[
Sm/q
`
′(α)− `

α Sm/q
` (α)

]
Ym/q
` (ζ, ϕ),

(116)

in which∇α stands for the gradient operator (9), where instead of the classic differentiation
over the r variable, we urge differentiation with respect to α. On the other hand, for κ = 2,
we have

f
m/q,2
`,1 (ζ, ϕ) = 0, (117)

f
m/q,2
`,2 (ζ, ϕ) = α−(`+1)sinϕYm/q

` (ζ, ϕ), (118)

f
m/q,2
`,3 (ζ, ϕ) = −α−(`+1) cos ϕYm/q

` (ζ, ϕ) (119)

and

gm/q,2
` (ζ, ϕ ; r0) = −r̂×

[(
sm/q
`,− + Im/q

` (α, ζ, ϕ ; r0)
)

α` + sm/q
`,+ α−(`+1) + Sm/q

` (α)
]
· ζ̂ Ym/q

` (ζ, ϕ), (120)
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while the κ = 3 case uses the formulae

f
m/q,3
`,1 (ζ, ϕ) = −α−(`+1)

√
1− ζ2Ym/q

` (ζ, ϕ), (121)

f
m/q,3
`,2 (ζ, ϕ) = α−(`+1)ζ cos ϕYm/q

` (ζ, ϕ), (122)

f
m/q,3
`,3 (ζ, ϕ) = α−(`+1)ζsinϕYm/q

` (ζ, ϕ) (123)

and

gm/q,3
` (ζ, ϕ ; r0) = −r̂×

[(
sm/q
`,− + Im/q

` (α, ζ, ϕ ; r0)
)

α` + sm/q
`,+ α−(`+1) + Sm/q

` (α)
]
· ϕ̂ Ym/q

` (ζ, ϕ), (124)

all of the above are provided in terms of (104), (105), (108) and (111), while all derivatives
denoted by the prime are with respect to the argument as usual. Bearing in mind the
same argumentation that was developed for similar kinds of functions (69)–(80), with
standard orthogonality rules almost impossible to apply on (112), with the aid of recurrence
relationships, we choose to expand (113)–(124) in terms of the orthonormal eigenfunctions

Ym′/q′

`′ for `′ ≥ 0, m′ = 0, 1, 2, . . . , `′ and q′ = e, o via

f
m/q,κ
`,j (ζ, ϕ) =

+∞

∑
`′=0

`′

∑
m′=0

∑
q′=e,o

λ
(m,m′)/(q,q′),κ
(`,`′),j Ym′/q′

`′ (ζ, ϕ) with κ, j = 1, 2, 3 (125)

and

gm/q,κ
` (ζ, ϕ ; r0) =

+∞

∑
`′=0

`′

∑
m′=0

∑
q′=e,o

µ
(m,m′)/(q,q′),κ
(`,`′) (r0)Y

m′/q′

`′ (ζ, ϕ) with κ = 1, 2, 3, (126)

wherein ` ≥ 0, m = 0, 1, 2, . . . , ` and q = e, o, while ζ ∈ [−1, 1] and ϕ ∈ [0, 2π). Subse-
quently, we use again the orthogonal property of the surface spherical harmonics so as to
calculate the leading coefficients in (125) and (126) as

λ
(m,m′)/(q,q′),κ
(`,`′),j =

2`′ + 1
4π

(`′ −m′)!
(`′ + m′)!

εm′

+1∫
−1

2π∫
0

f
m/q,κ
`,j (ζ, ϕ)Ym′/q′

`′ (ζ, ϕ)dϕ dζ (127)

and

µ
(m,m′)/(q,q′),κ
(`,`′) (r0) =

2`′ + 1
4π

(`′ −m′)!
(`′ + m′)!

εm′

+1∫
−1

2π∫
0

gm/q,κ
` (ζ, ϕ ; r0)Y

m′/q′

`′ (ζ, ϕ)dϕ dζ (128)

for every (`, `′) ≥ 0, (m, m′) = 0, 1, 2, . . . , (`, `′) and (q, q′) = e, o with κ, j = 1, 2, 3. Appar-
ently, the evaluation of these coefficients is feasible in an easy manner, since they involve
integrals of simple functions. Thus, our next action merges (125) (with (127)) and (126)
(with (128)) into the principal relation (112) in order to conclude that

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

[
3

∑
j=1

λ
(m,m′)/(q,q′),κ
(`,`′),j dm/q

`,j − µ
(m,m′)/(q,q′),κ
(`,`′) (r0)

]
= 0 with κ = 1, 2, 3, (129)

which comprises a complete set of algebraic equations for any `′ ≥ 0, m′ = 0, 1, 2, . . . , `′

and q′ = e, o, while it embodies the three components (j = 1, 2, 3) of the unknown constants
dm/q
`,j for ` ≥ 0, m = 0, 1, 2, . . . , `, q = e, o and the calculable expressions (127) and (128).

Thus, once more, the insuperable difficulty in dealing with these boundary conditions is
reduced to the simple elaboration of the easy-to-handle integrals (127) and (128), which are
involved with trigonometric and associated Legendre functions. Our task is then limited to
the manipulation of the corresponding systems of linear algebraic equations, arising from
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(129), whose solution is achieved when classical cut-off techniques are applied in view of
the determination of an appropriate common upper limit L for both the degree indexes,
which means ` = `′ = 0, 1, 2, . . . , L. Under this aim, the set of relations (129) yields the
matrix form

ALxL = zL(r0) ⇒ xL = A−1
L zL(r0), (130)

where for m = m′ = 0, 1, 2, . . . , `, q = q′ = e, o and κ, j = 1, 2, 3, we get

AL =


. . .

...

· · · λ
(m,m)/(q,q),κ
(`,`),j · · ·

...
. . .

, xL =


...

dm/q
`,j
...

 and zL(r0) =


...

µ
(m,m)/(q,q),κ
(`,`),j (r0)

...

, (131)

which are the 3
(

L + 1
)
× m× q quadratic invertible matrix of the coefficients of the un-

knowns, the vector of the unknown coefficients and the vector of the known constants,
respectively. The unique solution xL, given in (130), corresponds to the constant coeffi-
cients dm/q

`,ex = dm/q
`,1 x̂1 + dm/q

`,2 x̂2 + dm/q
`,3 x̂3 for ` = 0, 1, 2, . . . , L, m = 0, 1, 2, . . . , ` and q = e, o,

wherein L is defined such that the expected accuracy of the series expansions is achieved.
Consequently, combining (98) and (109), we substitute into (97) to obtain the third-order
electric field as

Es
3(r) =

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

[
Sm/q
` (r) + sm/q

`,− r` +
(

sm/q
`,+ + dm/q

`,ex

)
r−(`+1)

]
Ym/q
` (ζ, ϕ) for r ∈ Ω (132)

by virtue of the solution of (130) with (131) and in terms of the known expressions (104),
(105) and (108), once Es

1 is recovered from (96).

5. Analytical Validation of the Method

The current research belongs to the applied mathematics area but also covers the
corresponding engineering science field, hence the validation of the produced results for
the sake of completeness. Towards this direction and aiming to demonstrate the correctness
and the applicability of the presented methodology, we invoke an application through
which the already published results of reference [16] for the case of the electromagnetic
wave scattering by a highly conductive prolate spheroidal body [19] in a lossless medium
with low-frequency dipolar excitation are reduced to our formulae. However, due to the
elaborate work of this task and without loss of generality, we choose to show the detailed
analytical steps in order to recover the Rayleigh static magnetic term for the low-frequency
order n = 0, which is given by the compact relationship (62), and we claim that the
corresponding recovery stands also for the terms n = 1, 2, 3.

Doing so, we need to present briefly the basic tools and prerequisites in order to
infer information about the Rayleigh magnetic field, which is scattered by a solid prolate
spheroidal body and is embedded in a lossless medium and excited by a low-frequency
magnetic dipole m, identical to that given in (1). Bearing in mind that the best fitted
geometry for this situation is the prolate spheroidal one and given the semifocal distance
of this system c > 0, we introduce the transformed prolate spheroidal coordinates (τ, ζ, ϕ)
for every 1 ≤ τ < +∞, −1 ≤ ζ ≤ 1 and 0 ≤ ϕ < 2π via the relations

x1 = cτζ, x2 = c
√

τ2 − 1
√

1− ζ2 cos ϕ and x3 = c
√

τ2 − 1
√

1− ζ2 sin ϕ (133)

with position vector r = (x1, x2, x3), where r0 = (x10, x20, x30) stands for the fixed loca-
tion of the source. Then, the impenetrable surface Sps of the prolate spheroidal target is
designated by τ = τs ≡ a1/c, and the exterior domain of wave propagation is

Ωps ≡ V
(
R3
)
− {r0} = {(τ, ζ, ϕ) : τ ∈ [τs,+∞), ζ ∈ [−1, 1], ϕ ∈ [0, 2π)} − {(τ0, ζ0, ϕ0)}, (134)
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where (τ0, ζ0, ϕ0) corresponds to (x10, x20, x30). For this circumstance, the prolate spheroidal
zero-order low-frequency magnetic field that is scattered within the region (134) and corre-
sponds to the Rayleigh term is evaluated in [16] as

Hs
0,sp(r) =

+∞
∑
`=0

`
∑

m=0
∑

q=e,o
(2`+ 1)

[
(`−m)!
(`+m)!

]2
(−1)mεm

Pm
`
′(τs)

Qm
`
′(τs)[

m
4πc · ∇sp,r0

(
Qm

` (τ0)Pm
` (ζ0) f q

m(ϕ0)
)]
∇sp

(
Qm

` (τ)Pm
` (ζ) f q

m(ϕ)
)

,
(135)

in which the gradient ∇sp in prolate spheroidal geometry yields

∇sp =
1

c
√

τ2 − ζ2

[√
τ2 − 1τ̂

∂

∂τ
−
√

1− ζ2ζ̂
∂

∂ζ

]
+

1

c
√

τ2 − 1
√

1− ζ2
ϕ̂

∂

∂ϕ
, (136)

in view of the unit normal vectors

τ̂ ≡ τ̂(τ, ζ, ϕ) =
1√

τ2 − ζ2

(
ζ
√

τ2 − 1x̂1 + τ
√

1− ζ2 cos ϕx̂2 + τ
√

1− ζ2 sin ϕx̂3

)
, (137)

ζ̂ ≡ ζ̂(τ, ζ, ϕ) =
1√

τ2 − ζ2

(
−τ
√

1− ζ2x̂1 + ζ
√

τ2 − 1 cos ϕx̂2 + ζ
√

τ2 − 1 sin ϕx̂3

)
, (138)

ϕ̂≡ ϕ̂(ϕ) = − sin ϕx̂2 + cos ϕx̂3, (139)

where from (136), the gradient could operate on r0, providing us with ∇sp,r0 as well. On
the other hand, expression (135) is written in terms of the exterior prolate spheroidal
harmonics [20], wherein the associated Legendre functions of the first Pm

` and second Qm
`

kind of degree ` ≥ 0 and order m = 0, 1, 2, . . . , `, as well the functions of the azimuthal
angle (49) (being the same in both the spherical and the prolate spheroidal eigenfunctions)
are involved, while ε0 = 1, εm = 2 when m ≥ 1 and the prime denotes argument
differentiation.

Under the aim of the above, we can proceed to the analytical validation via the
reduction of formula (135) of the prolate spheroidal case to formula (62) of the spherical
case. Therein, the prolate spheroidal geometry degenerates to the spherical one as c→ 0+ .
For the corresponding analytical reduction, the limiting process involves an appropriate
combination of the semifocal distance with the coordinate variable τ ≥ τs, such as

lim
c→0+

cτ = r and lim
c→0+

1
2c

ln
τ + 1
τ − 1

=
1
r

, (140)

where r ≥ α is the radial component of the spherical coordinate system (3), which is
readily recovered from (133) by applying (140), given that the other two radial variables
remain unaltered, because they coincide in both systems. Similarly, if we multiply and
simultaneously divide (137)–(139) by c, the spherical orthonormal basis (10)–(12) is obtained
by means of (140), while the gradient operator in spherical geometry (9) is instantly taken
with a simple limit operation on (136) by virtue of (140). Beyond the reduction of the
geometrical characteristics of the prolate spheroidal to the spherical system, it is necessary
for our task to reduce the relevant prolate spheroidal eigenfunctions Pm

` and Qm
` , depending

on the τ variable, to the corresponding spherical ones. Hence by virtue of the definition of
the associated Legendre functions of the first and the second kind [20], we straightforwardly
derive the limits

lim
c→0+

c`Pm
` (τ) = p`

`!
(`−m)!

r` and lim
c→0+

c−(`+1)Qm
` (τ) = q`(−1)m (`+ m)!

`!
r−(`+1) (141)

for ` ≥ 0 and at τ ≥ τs (prolate spheroid) or r ≥ α (sphere), where

p` =
(2`)!

2`(`!)2 and q` =
1
2`

[`/2]

∑
k=0

(−1)k(2`− 2k)!
k!(`− k)!(`− 2k)!(2`− 2k + 1)

with (2`+ 1)p`q` = 1, (142)
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while the related limits of their derivatives follow from (141), i.e.,

lim
c→0+

c`−1Pm
`
′(τ) = p`

`!
(`−m)!

`r`−1 and lim
c→0+

c−(`+2)Qm
`
′(τ) = −q`(−1)m (`+ m)!

`!
(`+ 1)r−(`+2) (143)

for ` ≥ 0 and at τ ≥ τs (prolate spheroid) or r ≥ α (sphere), in which the prime refers to
differentiation with respect to the τ variable.

The degeneration of the Rayleigh low-frequency magnetic field of order n = 0, in
order to recover the case of a spherical metallic body of radius cτs → α , embedded within
a lossless medium, is then a straightforward sequence of steps, since any kind of indetermi-
nacies are absent. Towards this direction, we work as follows. The azimuthal unit normal
angular vector (139) remains unaltered in both the prolate spheroidal and the spherical
coordinate systems (see also (12)), while by a simple limiting process based on (140) to the
other two unit normal vectors of the prolate spheroidal geometry (137) and (138), yielding

lim
c→0+

τ̂ = lim
c→0+

{
1√

τ2−ζ2

(
ζ
√

τ2 − 1x̂1 + τ
√

1− ζ2 cos ϕx̂2 + τ
√

1− ζ2 sin ϕx̂3

)}
= lim

c→0+

{
1√

(cτ)2−(cζ)2

(
ζ

√
(cτ)2 − c2x̂1 + (cτ)

√
1− ζ2 cos ϕx̂2 + (cτ)

√
1− ζ2 sin ϕx̂3

)}
= 1

r

(
rζx̂1 + r

√
1− ζ2 cos ϕx̂2 + r

√
1− ζ2 sin ϕx̂3

)
= ζx̂1 +

√
1− ζ2 cos ϕx̂2 +

√
1− ζ2 sin ϕx̂3 ≡ r̂ for ζ ∈ [−1, 1], ϕ ∈ [0, 2π)

(144)

and

lim
c→0+

ζ̂ = lim
c→0+

{
1√

τ2−ζ2

(
−τ
√

1− ζ2x̂1 + ζ
√

τ2 − 1 cos ϕx̂2 + ζ
√

τ2 − 1 sin ϕx̂3

)}
= lim

c→0+

{
1√

(cτ)2−(cζ)2

(
−(cτ)

√
1− ζ2x̂1 + ζ

√
(cτ)2 − c2 cos ϕx̂2 + ζ

√
(cτ)2 − c2 sin ϕx̂3

)}
= 1

r

(
−r
√

1− ζ2x̂1 + rζ cos ϕx̂2 + rζ sin ϕx̂3

)
= −

√
1− ζ2x̂1 + ζ cos ϕx̂2 + ζ sin ϕx̂3 ≡ ζ̂ for ζ ∈ [−1, 1], ϕ ∈ [0, 2π),

(145)

provides us with the corresponding two spherical unit normal vectors (10) and (11), respec-
tively. Hence, we are able to evaluate the relative limit of the prolate spheroidal gradient
operator (136), wherein doing so, we obtain

lim
c→0+
∇sp = lim

c→0+

{
1

c
√

τ2−ζ2

[√
τ2 − 1τ̂ ∂

∂τ −
√

1− ζ2ζ̂ ∂
∂ζ

]
+ 1

c
√

τ2−1
√

1−ζ2
ϕ̂ ∂

∂ϕ

}
= lim

c→0+

{
1√

(cτ)2−(cζ)2

[√
(cτ)2 − c2τ̂ ∂

∂(cτ)
−
√

1− ζ2ζ̂ ∂
∂ζ

]
+ 1√

(cτ)2−c2
√

1−ζ2
ϕ̂ ∂

∂ϕ

}
= 1

r

[
r
(

lim
c→0+

τ̂

)
∂
∂r −

√
1− ζ2

(
lim

c→0+
ζ̂

)
∂

∂ζ

]
+ 1

r
√

1−ζ2

(
lim

c→0+
ϕ̂

)
∂

∂ϕ

= r̂ ∂
∂r −

√
1−ζ2

r ζ̂ ∂
∂ζ + 1

r
√

1−ζ2
ϕ̂ ∂

∂ϕ ≡ ∇,

(146)

due to (140) and using (144) and (145), as well as either (12) or (139), recovering in that way
the gradient in the spherical geometry that is given by (9). Obviously, it similarly holds

lim
c→0+
∇sp,r0 = ∇r0 , (147)

which is a consequence of (146) and leads to the spherical gradient, operating at the position
of the dipole source. Gathering all above information of (140)–(147), we apply the limit, as
the semifocal distance of the prolate spheroid tends to zero onto (135), and according to
classical properties of a standard limiting procedure, we obtain
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lim
c→0+

Hs
0,sp(r) = lim

c→0+

+∞
∑
`=0

`
∑

m=0
∑

q=e,o
(2`+ 1)

[
(`−m)!
(`+m)!

]2
(−1)mεm

Pm
`
′(τs)

Qm
`
′(τs)[

m
4πc · ∇sp,r0

(
Qm

` (τ0)Pm
` (ζ0) f q

m(ϕ0)
)]
∇sp

(
Qm

` (τ)Pm
` (ζ) f q

m(ϕ)
)

=
+∞
∑
`=0

`
∑

m=0
∑

q=e,o
(2`+ 1)

[
(`−m)!
(`+m)!

]2
(−1)mεm lim

c→0+

(
Pm
`
′(τs)

Qm
`
′(τs)

)
m

4πc · lim
c→0+

[
∇sp,r0

(
Qm

` (τ0)Pm
` (ζ0) f q

m(ϕ0)
)]

lim
c→0+

[
∇sp

(
Qm

` (τ)Pm
` (ζ) f q

m(ϕ)
)]

=
+∞
∑
`=0

`
∑

m=0
∑

q=e,o
(2`+ 1)

[
(`−m)!
(`+m)!

]2
(−1)mεm

1
c2`+1 lim

c→0+

(
c`−1Pm

`
′(τs)

c−(`+2)Qm
`
′(τs)

)
m

4πc · c`+1
[

lim
c→0+
∇sp,r0 lim

c→0+

(
c−(`+1)Qm

` (τ0)
)

Pm
` (ζ0) f q

m(ϕ0)

]
c`+1

[
lim

c→0+
∇sp lim

c→0+

(
c−(`+1)Qm

` (τ)
)

Pm
` (ζ) f q

m(ϕ)

]
=

+∞
∑
`=0

`
∑

m=0
∑

q=e,o
(2`+ 1)

[
(`−m)!
(`+m)!

]2
(−1)mεm

p`
`!

(`−m)! `α`−1

−q`(−1)m (`+m)!
`! (`+1)α−(`+2)

m
4π · ∇r0

[
q`(−1)m (`+m)!

`! r−(`+1)
0 Pm

` (ζ0) f q
m(ϕ0)

]
∇
[
q`(−1)m (`+m)!

`! r−(`+1)Pm
` (ζ) f q

m(ϕ)
]

= −
+∞
∑
`=0

`
∑

m=0
∑

q=e,o
(2`+ 1)p`q`

(`−m)!
(`+m)! εm

`α`−1

(`+1)α−(`+2){
m
4π · ∇r0

[
r−(`+1)

0 Pm
` (ζ0) f q

m(ϕ0)
]}
∇
[
r−(`+1)Pm

` (ζ) f q
m(ϕ)

]
= −

+∞
∑
`=0

`
∑

m=0
∑

q=e,o

`α2`+1

(`+1)
(`−m)!
(`+m)! εm{

m
4π · ∇r0

[
r−(`+1)

0 Pm
` (ζ0) f q

m(ϕ0)
]}
∇
[
r−(`+1)Pm

` (ζ) f q
m(ϕ)

]

(148)

or by means of (48) and (56), we have

lim
c→0+

Hs
0,sp(r) = −

+∞

∑
`=0

`

∑
m=0

∑
q=e,o

`α2`+1

`+ 1

( m
4π
· ∇r0 ρ

m/q
`,ex (r0)

)
∇
[
r−(`+1)Ym/q

` (ζ, ϕ)
]
≡ Hs

0(r) (149)

for every r ∈ Ω, which coincides with the spherical Rayleigh magnetic static term (62).
The entire procedure evidently verified, in an analytical fashion, the effectiveness of the
presented methodology independently of the implied geometry.

Obviously, the rest of the results of this paper are recovered in a similar way, wherein
we avoid writing down at this stage the cumbersome expressions for the obtained reduced
relations, since the purpose of this work is not the reduction limiting procedure. This
application shows the flexibility of our method, which is unique and permits general
manipulation of the low-frequency equations.

6. Conclusions and Discussion

A rigorous low-frequency approximation of the fields scattered by a perfectly conduc-
tive spherical body within a lossless medium under the action of an arbitrarily oriented
magnetic dipole was investigated. The source, representing a spatial singularity, was set
far from the object and produced the time-harmonic incident fields at low frequencies
as for the present research. The developed analytical method was based on the intro-
duction of handy power series expansions of the electromagnetic fields in terms of the
wave number of the ambient, which, in the low frequency realm, permits the restriction
of the manipulation to the first four in-phase and quadrature orders, where the terms
of higher orders are negligible. The classical Maxwell-type problem was converted to a
sequence of interconnected Laplace and Poisson relationships, which were assigned to the
impenetrable boundary conditions on the surface of the target, while the limiting behavior
at an infinite distance was readily secured. Upon the adjustment of a suitable spherical
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geometry, the resultant boundary value problems were solved incrementally and led to
three-dimensional closed-form solutions, obtained as infinite series expansions in terms of
spherical harmonic eigenfunctions.

An application of the methodology also complemented the developed analysis at
hand via an example of the limiting degeneration of the corresponding known spheroidal
problem from the bibliography to our case, a fact that validated our approach. Indeed,
the present work demonstrates the production of explicit ready-to apply formulae for
the corresponding spherical electromagnetic problem as obtained through the standard
analytical methodology, which are new in the corresponding literature. Moreover, these
explicit formulae for the electric and the magnetic field provide a reliable benchmark,
where the spherical and the spheroidal results meet, validating each other analytically for
the specific statement of the problem.

It is obvious that in this work we provided formulations amenable to fast yet accurate
computations towards the direction of a possible construction of an inversion scheme.
Under this aim, the important contributions of numerical techniques in solving scattering
problems are adequate and at the same time convenient. However, we should not overlook
the fact that mathematical analysis is the backbone of numerical analysis. Therefore, the
purely analytical methods, in addition to the insight they offer to the understanding of the
physical background and their significance in checking the credibility of numerical methods
or other more sophisticated analytical models, support the mathematical community as
the bases of mathematics. This provides our motivation to perform mathematical analysis
of the aforementioned physical problem.
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