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Abstract: This paper investigates existence, uniqueness, and Ulam's stability results for a nonlinear
implicit p-Hilfer FBVP describing Navier model with NIBCs. By Banach’s fixed point theorem,
the unique property is established. Meanwhile, existence results are proved by using the fixed
point theory of Leray-Schauder’s and Krasnoselskii’s types. In addition, Ulam’s stability results are
analyzed. Furthermore, several instances are provided to demonstrate the efficacy of the main results.

Keywords: existence and uniqueness; t-Hilfer fractional derivative; fixed point theorem;

Ulam-Hyers stability; nonlinear integral condition; ip-Hilfer Navier problem

1. Introduction

Hundreds of years ago, fractional calculus began and has been widely interested
by researchers in branches of applied mathematics, science, engineering, and so on (see
References [1-3]). It is also known as the non-integer order (fractional-order) of differential
and integral operators. Various definitions of novel fractional integral and derivative
operators are currently prominent tools in numerous publications. Normally, the real-world
problems were simulated using differential equations and solved the difficulties using
powerful techniques (see References [4,5]). The fractional calculus has been used to examine
differential equations with non-integer order (fractional differential equations (FDEs)).
FDEs via initial/boundary conditions have also been used to solve the problems since
fractional-order has more additional degrees of freedom than integer-order, allowing for
more precise and realistic solutions. Researchers have considered a variety of mathematical
approaches in relation to FDEs in a large number of papers (see References [6-19]).

Elastic beams are an essential element required in structural problems, including
aircraft, ships, bridges, buildings, and so on (see References [20-36]). In the sense of
mathematical analysis, the deformation of the beam can be analyzed using the fourth-order
boundary value problem (BVP) describing the Navier model [37]:

u® (1) = g(r,u(1),u" (1)), Te(0,1),

@M
u(0) =u(1) =u"(0) =u"(1) =0,
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where ¢ € C([0,1] x R%,R). Problem (1) has attracted the attention of many researchers due
to its dominance in the field of mechanics. It simulates the bending equilibrium of a beam
supported at both ends by an elastic basis. We will go through some important works on the
subject shortly below. For instance, in 1986, Aftabizadeh [38] converted (1) into a second-
order integro-differential equation with f is bounded on [0, 1] x R2. The existence results
were analyzed by Schauder’s fixed point theorem. In 1997, Ma et al. [39] examined the
existence of a solution for (1) by applying the upper and lower solutions method. After that,
in 2004, Bai et al. [40] developed upper and lower solutions of (1). Dang et al. [41] examined
the problem (1) by reducing it to an operator equation and using some simply confirmed
conditions. In recent years, many literature examples pay attention to BVPs under many
kinds of fractional derivatives; for instance, in 2020, Bachar and Eltayeb [42] studied the
Navier BVP under Riemann-Liouville (RL) fractional derivative type:

{ “oog (Fofu) (1) = gl u(0), Fofu(m), TeO1),

2)
u(0) = RE0f u(0) = u(1) = ®-of u(1) = o,

where RL”}DZ . denotes the RLL-fractional derivative of order g = {a,f} € (1,2] and
¢ € C([0,1],R?). The Green properties and helpful inequality technique are used to
establish the uniqueness result of positive solutions for (2). FDEs have been discussed in
depth by several researchers. Clearly, the existence, uniqueness, and stability analysis of
solutions are some important properties of FDEs. Because the exact solution to differential
equations or FDEs is quite difficult, several researchers have attempted to identify the
best technique to access the existence results. To establish the existence and stability of
solutions for FDEs, several analytical techniques, including fixed-point theory, have been
investigated. Ulam’s stability is one of the most useful strategies which guarantee that there
exists a close exact solution. Ulam’s stability has four types, such as Ulam-Hyers (UH),
generalized Ulam-Hyers (GUH), Ulam-Hyers-Rassias (UHR), and generalized Ulam—
Hyers—Rassias (GUHIR) stabilities; see References [43-54] and references cited therein.
However, to the authors” knowledge, a few papers involving the Navier model in sense of
y-Hilfer fractional operators have been concerned.

As a result of the preceding debates, we discuss a new class of nonlinear implicit ¢-
Hilfer FBVP describing Navier model with nonlinear integral boundary
conditions (NIBCs):

gt (%ff””u) (1) = f(r,u(v), (Ku)(x), (W) (1)), € (a,b),
u(a) = HoPP¥y(a) = 0,

. Guul) = 217G 0,u(e)), Zyﬁ@q”” Aj) = THH(E, (D),

i=

®)

where H@Zf;lp denotes lp—Hilfer fractional derivative of order g = {a, B, ¢}, &, B, ¢j € (1,2,
j=12,...,np€101], I’fip denotes p-RL-fractional integral of order v = {¢,v} > 0,

fecC(JxRER), G, H eCT,R),T :=][ab,b>a>0077, ui € R, 0,7, 1
€(ab),i=12,...,mj=12,...,nand

(K@) = w5 [ 0@ -9 WOk Ted, @

W) = g [ WO g Y s Ted, )

where k, w € C(J?,[a,0)). The existence and uniqueness property is proved by using
Banach’s fixed point theorem (Lemma 5), and the existence properties are derived by
applying Leray-Schauder’s nonlinear alternative (Lemma 8) and Krasnoselskii’s fixed
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point theorems (Lemma 9) for the y-Hilfer FBVIP describing Navier model with NIBC:s (3).
We employ UH, GUH, UHR, and GUHR stables to investigate the stability of (3). Finally,
we give some numerical examples of various functions that were explored in order to
confirm the theoretical results. In addition, we give our findings on a broad platform
that covers a wide area of specific situations for different values p and ¢. For example,
y-Riemann-Liouville problem if p = 0, ¥-Caputo problem if p = 1, Riemann-Liouville
BVPif p =0, ¢(t) = 7, Caputo problem if p = 1, ¢(7) = 7, Hilfer problem if () = 7
Katugampola problem if (1) = 77, Hilfer-Hadamard problem if ¢(7) = log(7), and so
on. The received results are improved: if « =2, 8 = 2,p = 1, and ¢(¢t) = ¢, then we
obtained Reference [41]; if p = 1 and ¢(¢) = ¢, then we obtained Reference [42].

This paper is structured the continuing parts of the paper as follows: In Section 2,
we provide an essential system of symbols, definitions, and lemmas of 1p-Hilfer fractional
calculus. Next, we state a lemma which is used in proving the main results. In Section 3,
fixed point theorems are used to obtain the existence results of the proposed problem.
By helping with the nonlinear analysis method, in Section 4, we analyze various of Ulam’s
stability for the problem. Examples illustrate to confirm the effectiveness of the acquired
theoretical results in Section 5. Finally, the conclusion and discussion of this paper are
presented in Section 6.

2. Preliminaries

We provide the basic concepts of -Hilfer fractional calculus, as well as important
crucial results that will be engaged in this paper. Assume that £ = C(J,R) is the Banach
space of continuous functions on J with [[u|| = sup. ;{|u(7)[}. Assume that AC"(J,R)
is the space of n-times absolutely continuous functions with AC"(J,R) = {u : J —

R;u(=D € AC(J,R)}.

Definition 1. (Reference [3]). Assume that p(t) € C1(J,R) is an increasing function with
Y'(t) # 0 for each T € J. The p-RL-fractional integral of order a of f depending on p on J is
defined by

T f(r) = F(la) /; ($(T) — () g/ (s)f(s)ds, T>a>0, a>0,

where I'(+) is the Gamma function.

Definition 2. (Reference [3]). Assume that () is defined as in Definition 1 with ¢'(t) # 0.
The -RL-fractional  derivative of [ depending on ¢ is defined as

i) = (ph i) T () or

w1 1 d\" [T e
Qﬁ"’f(r)—r(n_a)(lp,(T)dT) [ @ 9@ @6 a0,

where n = [a] 4+ 1, and [«] is an integer part of Re(a).

Definition 3. (Reference [55]). Assume that v = a +p(n —a), « € (n—1,n) withn € N,
f € C'(J,R) and (1) € CY(J,R) is increasing with ¢'(t) # O for each T € J. Then,
the y-Hilfer fractional derivative of type p € [0,1] of f depending on  is defined as

1 d —a .
MU ) = 2O (s Y O ) - e )

where @erwf('r) = ’lpI(1 p)(n=u l’bf( T).

Lemma 1. (Reference [3]). Assume that o, p > 0. Then, I:prf fp f(r)= I;‘fﬁ &4 f(t), T>a
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Ig‘rﬁth(T) + (p(r)—yp(a))1 P!

v; n a+p—j;
_le(zﬁlp%(/u(g)) ]1V]Ia+ﬁ ]lph( ))

Proposition 1. (References [3,55]). Assume that T > a and G'(t) = (¢(t) — ¥(a))’. Then,
forv >0, a > 0, we have
(i) I;"i‘l’gvfl( ) = I“(Fv(-l&]-a Guvre—1();

(i) ngﬂljgv_l( ) = r(rv(le Ggu—a- 1( );

(iii) HDVGgv-1(7) =

1), v>y=a+pn—ua).

Lemma 2. (Reference [55]) Assume that f € C"(J,R), « € (n—1,n), p € [0,1],
v = a+ p(n — ). Then, we obtain

TR () = fio) - 3 WO YOI gy,

U

forall T € J, where f&”]f(‘r) = (qﬂ%r) a)nf('f)-

Lemma 3. (Reference [51]) Assuming thatw € (m —1,m), B € (n—1,n),n,me N,n <m,
pel01],anda > B+p(n—p).Iff € Cl—%lﬂ(j’ R), then H@ffﬂl’zsﬁlﬂf( ) = 78 ﬁll’f( ).

Lemma 4. Let o, B, ¢; € (1,2], (j = 1,2,...,n), p € [0,1], 1 = a+p2—ua),
T2 =B+p(2-PB), w, ¢, v > 0. Suppose that h € £ and QO = Q1100 — 01201 # 0.
Then, u € C?(J,R) is a solution of

Hp ¥ (Hz)ﬂp"’ ) = h(t), TE€(ab),
u(a) =0,  HoPPy(a) =0, ©)
iéium) — 199G (0,u(0)), D]H@"’J“" ) = TH(E (D)),

if and only if u verifies the integral equation

0z (277G (0,u(0)) — T2 G2

Qr(y1+p)

PO 0 (29200, u() — Ty TP h () 7
051 (224G (0, u(0)) — Sl ST PGy >)]
where

oy = REGI V@I g, | e
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Proof. Suppose that u € £ is the solution of (6). Taking IZTP into both sides of (6) via
Lemma 2, we obtain

1-1 B 1-2
o) = 2o ¢ PO | Q@I

where c1, ¢ € R.
From the boundary condition @gf Yu(a) = 0, we get c; = 0. Taking If ¥ into (10)
via Lemma 2 again, it follows that

w(t) = TTPVh(o) + (p(1) — p(a)) P

I'(71+p) “
(1) —p@)™ " (9(r) ~p(a)) ™
" I'(72) @ I'(y2—1) w )
where c3, ¢4 € R. From condition x(a) = 0, it is implied that ¢4 = 0. So,
w(r) = TPy ¢ LD 9@ @@ @) g

L(y1+B) I'(72)

Taking H @fi’p;lp into (12), then

ppj—1 191
HogyPio¥ a+p— gy (¥ (1) — p(a)) " (p(0) —9p(a)) ™ ™
D u(t) =1 h o1+ 3.
o 0 =T 0+ (v +B—¢) ! T(y2—¢5) °
By using boundary conditions in (6), we get
Quier + Qpes = Z77G(0,u Zgl TPy, (13)
+
o101+ Oez = :fH (G u( Z ]I:+ﬁ i lph Aj), (14)

where ()11, O3, (p1, and Q) are given by (8) and (9). Solving (13) and (14), we have
1
1 = 6 [022 (If lpg (7 x Z gl “+ﬂ wh )

—Op (z;ﬁ”mg,u(@»imzjf P (A ))]

j=1

n

6 = g[nn@;ﬁ/’mau(@)Zu,zjff“ " h(a ))

=1
—On (If+¢ 251 TP h(y )]

Hence, the solution u follows by using ¢ and c3 in (10). This yields that u(7) verifies (7).
On the other hand, in a direct way, we can show that u(7) is defined by (7) satisfies (6)
under nonlinear integral boundary conditions. [J

3. Existence Results
Setting the symbol

LEAO = 15 [ 00 ) Y OR
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where Fy(t) = f(7,u(t), (Ku)(t), Wu)(t)) with g € {a+ B, ¢,v,a + B — ¢;},
c = {T,U,g,m,)\j,b},i = 1,2,...,m,j = 1,2,...,n. Thanks to Lemma 4, we
determine @ : £ — &

| I
(Qu)(x) = TPPE,(r) 4 Wb

OT(11+8) 022 (Iffljg(U’, u(U)) - ;'n:l glzgjﬁ,w]:u(ﬂl))

~Ou(THE (@) ~ Ty wT, ! '5‘4’“”@(@))]

15
+ OO 0y (29, u(E) — Dy Tt Fi) "
~ 01 (294G (0, u() — Ty STy 5””&(171-))] .
Clearly, Q has fixed points if and only if problem (3) has solutions. To simplify,
Yi(a,0) = W (16)
(A B) = (1A 0) + B, a7)
AW = ¥I(0)+ (0, 00) L 1P
j=
+®(022, O21) i 1Gi[F7 (1) (18)

i=1

3.1. Uniqueness Property via Banach'’s Fixed Point Theorem

Lemma 5. (Banach’s fixed point theorem [56]). Assume that X is a non-empty closed subset of
&, where € is a Banach space. Then, any contraction mapping Q from & into itself has a unique
fixed point.

Theorem 1. Assume that f € C(J x R3,R) and k € C(J? x R, R) verifies the conditions:
(P1) There exist constants L4, Lo, L3 > 0 with L, < 1 such that

|f(T,u1,v1,w1) — f(T,u2,02,w2)| < Lq|ug —up| + Lo]vg — va| + L3|wy — wo|,

forany u;, v, w; R, i=1,2,1€ J.
(P2) There exist constants Hy, Gi > 0 such that

|H (T, u1) — H(T,u2)| < Hilug —uz| and |G(t,u1) — G(T,u2)| < G|ug — uz|,

foranyu; eR,i=1,2, 1€ J.

If
A+ 0 <1, (19)
where
A = Aa+B)L1+ A0+ a+B)Loki + A6+ a+ B)L3w], (20)
Ny = D, M1)¥9(0)G] + D(Q12, Q1) Y (0 H, (21)

then the y-Hilfer FBVP describing Navier model with NIBCs (3) has a unique solution u € &.

Proof. The problem (3) will transform to u = Qu, where Q is given by (15). Clearly,
the fixed points of Q are the possible solutions of (3). By applying Lemma 5, we will
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guarantee that Q has a unique fixed point, which implies that (3) has a unique solution.
Define a bounded, closed, and convex subset B, := {u € £ : ||u|| < r1} with

Ala+ B)F1 + D(Qp, 0p1) ¥ (0) Gy + P(Q1p, Q1) ¥Y (9 Hy

>
n=z 1— (A1 + D) '

(22)

where A; for i = 1,2 are given by (20) and (21). Assume that sup_. ; |f(7,0,0,0)| :=F; <
o, sup.. 7 |H(t,0)| := Hj < o, and sup . 7 |G(7,0)] := Gy < 0.

Step 1. OB, C B;,.

Letu € B, 7 € J. Then,

a+pB; 11+8
(Qu)()| < TP F >|+(M;[|sz|(z¢¢|g<a u(0))|

+ LI &I ﬁ¢|fx<ni>>+|nlz( RTINS v A PACH])

(23)
+%l|011|( YD)+ S gz R
+1001| (2016 (0, u(@)) | + Ty G T0 PP Funi)]) |
By using (i) in Proposition 1, we get
P _ 1 T 1
@) = g @0 )T lu(s)lds
(@) — @),
< WH“H—‘W(T)H”H- (24)
Thanks to (24) with k] = sup; o\ 7 7{[k(T,8)[} and w] = sup(, ¢\ c 7, 7 {|w(T,5)[},
this yields that
K@) < 55 [ 0@ =) WOk uls)lds < K () ul, 25)
V@] < g [0 =96 Wl llnte)lds < vy ()]l 20

From the conditions (P7), (P,) and (24)—(26), we can estimate

[Fu(0)l < f(ru(T), (Ku)(1), Wu) (1)) - f(1,0,0,0)| + [£(7,0,0,0)|
< La|u(t)| + Lof (Ku) (1) [ + L3|(Wu)(T)| + Fy 27)
< Lallull + Lokp¥ () l|ull + Lawi ¥ (1) Ju]| +Fy
= (51+£2k1”i’9( ) + Lawi¥ (7)) ull +Fy,
Mt u(r)] < |[H(tu(r)) = H(T,0)| + [H(z,0)] < Hllul| +Hy, (28)
G(ru(m)] < 1G(t,u(1) = G(7,0)[ +1G(7,0)| < Gf||ul| + G (29)

By (27)—(29) via (i) of Proposition 1, we have

TPV FU0)] < (LY P (b) + Lok ¥OretB(b) + Law ¥ B (b)) |ul

TP F )] < (LrY B () + Lok ¥OTHB () + Law] ¥ () u|

31
LFEHA (), G



Mathematics 2021, 9, 3292 8 of 31

LPPNERG) < (L) + Lok YO0 ()

- 32
LW () ] + Fr ¥ (), .
M @) < Hilul¥ () + Hi ¥V (Q), (33)
I%71G(0,u(0))| < Gillul¥?(c) + G1¥?(0). (34)

Substituting (30)—(34) into (23), we obtain

|(Qu)(T)]
(clTa+ﬁ(b) + Esz\Ize—kaﬂ%(b) +£3wf‘{"5+"‘+’3(b)> u| +F1‘I’“+’S(b)

IA

1+p-1 3
+‘Y’*Q|<b> [|sz (gﬂunwm +GI¥(0)+ ) Iéz‘l{ (£retfm)
i=1

LRI ) - Lo YO () ) ]+ YA ) })
+10m <H1‘1’“(€) +H Nl (@) + 21 1 { (LrP-oi()

£
FLITE () + Lol ¥ ) ] + Fr e () >})]
3”7;,“’) [|Q11 (anunwo + () + 21 m { (Lr P (n,)
LRI () Lo ¥ ()) | + Fr oA )})
+10m (grnunww + Gy (o) + i I { (L)

FLARTEO () + LB ) ) ]+ A ) })1

IN

n
(\f“*ﬁ(b) g (100l ¥ 70) Q¥ 0)) Y ¥4 )
j=1

10 = (1007 P 1) 4 [ [¥7 (0) ) |¢i|w+ﬁ<m>>c1||u|
i=1

« 1 - B 3 ML
+<‘F9+ +ﬁ(b) + @(‘lemﬂﬁ-ﬁ 1(b) + Q91|72 1(b)) 2 |],¢]-|1}f9+ +B—¢ (A]-)

j=1

i=1

m
Q2 [¥1 P (b) + [Qot [¥9271(0) ) Yo (2 Y0P (i) | Lok [|u]
IQI
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1 - - 3 9
+ (‘I"5+“+ﬁ(b) + @ <‘012|11:71+ﬁ 1(b) + | QO [¥72 1(b)> ]; |yj-|‘}f6+rx+5 ¢1()\j)

1 m
+ gy (102217071 0) 410 %7271 (8)) 1 [l 4o >>£3w1||u||
i=1
1 — *
+ gy (1021¥7 71 0) [0 Y72 (0)) W9 ()G ]
1 - *
+ gy (101771 0) 4100 ¥ (6)) ¥ (035 ]

_|_

1 _ _ " b
PO + o (100l ¥ 1) + 100927 (0)) L ¥ ()
j=1

§\~

(1022 [ #7181 (b) + 1031 [ Y721 (b) ) Y [&] ¥ m)

i=1

‘ -

(1022 #7871 (b) + |01 [ #7271 (b)) ¥(0) Gy

2

|
ay (10277 0) [+ 100y (0)]) ¥ (6

D‘H

IN
—N—

=

+ | ¥ (b) + D(Q1p, Q1) ZW [orathdi(A i)

<‘P“+ﬂ )+ D(Q2, O1) 2 |V]|‘P“+ﬁ %i(A)) + D(Qa2, M) Z &P (n; )
( =1

+P (022, 021 Z |§ |\P6+a+/ﬂ( ))ﬁzk* (‘I"H“Jrﬁ(b)

i=1

n m
D(Qo, 1) Y ([ ¥ (A) + @(Qp, 1) Y |€i|‘1j5+a+ﬁ(77i)> Lzwy
= i=

@(022, 021)‘1’(?((7)9{ + @(012, Qn)‘I"’(é)Hf}m + (Ta+ﬁ(b)

=1 -1
+@ (o2, M1 )¥9(0) Gy + D (OQy2, O41) Y () Hy

n m
(O, On1) Y [ ¥ P01 (A) + @(Q, Q) Y |§i|1¥“+ﬁ(77i)>ﬁ?l

= {A(zx +B)Ly+ A0+ a+ B)Loki + A(S + o+ B) Law] + P(Qpa, 0p1) ¥ (0)G7

+q)(012, Qll)Tv(g)Hik }1’1 + A((X + ,B)Fl + (D(sz, 021)T(P (O')Gl
+@(Q12, O11) ¥ (0)Hy.

Then,

[(Qu)(T)] < (A1 + M)y + Al + B)F1 + @(Qo2, 0n1) ¥ (0) Gy + P(Q12, O11) ¥ () Hy,

which implies that || Qu|| < rq. Thus, QB,, C B,,.
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Step II. Q : £ — £ is a contraction.
Assume thatu, v € £, T € J. Then, we obtain

[(Qu)(1) — (Qu)(7)|
TP Fuls) = Folo)|(0) + Yig [mzz (I;”ﬁ’wg(s,u(s)) —G(s,0(s))l(0)

IN

+ X (GNP Fus) — -7:0(5)|(’7i)> + |01z (IprH(S,u(S)) —H(s,0(s))1(0)

2 I Fuls) - Folo)| 1 >> ryet [|011|<I;’1”|H<s,u<s>> )
~H(s,0(s)I(Q) + Ty 12 Fu(s) - fv<s>|<Aj>> + |0 (If¢¢g<s,u<s>>

~G(5,0(s))1(0) + Ty |GIZE P | Fu(s) fv<s>|<'7f>>]'
By helping (P;) and (P,), it is implied that

|(Ku)(1) — (Ko)(r)| < k{¥(7)||u— o], (36)

(Wu)(1) = (Wo)(1)| < wi¥o () |u—of, (37)

H(r,u(r)) - H(r ()| < Hi|u—ol, (38)

G(r,u(r) = G(r,0(r)| < Gilu—o, (39)

and

Fu(1) = Fo(0)| = |f(r,u(), (Ku)(z), Wu)(t)) — f(1,0(7), (Kv)(T), (W) (1))]
< Lifu(t) —v(1)| + La] (Ku) (7) — (Ko)(7)|
+Ls|(Wu) (1) — (Wo)(7)] (40)

(cl + Loki ¥ (1) 4 Lawi ¥ (T )) [ — o]|.

IN

Hence, by inserting (36)—(40) into (35) and using Proposition 1 (i), which yields that

[((Qu)(T) — (Qo)(1))]
<£1‘I’“+/3(b) + Lokl FOTTB(b) + c3w;ﬂf5+a+ﬁ(b)) lu — o]

IN

yri+p-1

o [Iﬂzzl <gi“f"”(0) lu —oll + ) I¢il (£1‘1’“+’5(17i) + LokTYOH P (1)

i=1

LT ) —v|> +10n) (HI‘PV(C)IIu ~

+ 3 il (Lo PO(A)) + LakTEO ()
j=1

. o Ly
Lyl ¢f<<Aj>>)||u—v|> T [mm(w O)llu ol

n
Y il (LT EO(())) + Lok FOE B0 ((0))
j=1

+Lawi TP (A )))Ilu—v|> +|Qzll<gf‘1’¢(0)llu—v|

1 I (LB () + Lok () - Ly 0B ) ) vm
i=1
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< { (‘1’“+’8(b) +@(Q12, A11) i TP (A)) + (O, Q) i |§i|‘1’“+ﬁ(’7i)> Ly

]:] i=1

n
+ (‘I’9+“+ﬁ(b) +@(Q1p, 1) Y |Vj|‘{’9+“+ﬁ7¢j (A)
=1

m
00, 0m) ) |€i|‘1’9+"‘+ﬁ(m>> Lok + (‘1’““*%)
i=1

n m
+® (012, M11) Y |}4j|‘f§+a+ﬁ_¢j (A) + (022, 21) ) |§i|‘1’§+a+ﬁ(77i)> Lzw]
j=1 i=1

+P(Q2, 021) ¥ (0)G1 + P(Qz, Q1) Y (D) HT } [ — o],

then, || Qu — Qu|| < (A1 + Az)||u — v||. Thanks to (19), A; + A, < 1; thus, Q is a contrac-
tion. Hence, by applying Lemma 5, the problem (3) has a unique solution x € £. [

3.2. Existence Property via Leray-Schauder’s Type

Lemma 6. (Arzeld-Ascoli theorem [57]). A set of functions in C([a, b]) is relatively compact if and
only if it is uniformly bounded and equicontinuous on [a, b].

Lemma 7. (Reference [57]). If a set is closed and relatively compact, then it is compact.

Lemma 8. (Leray-Schauder’s nonlinear alternative [56]) Assume that & is a Banach space, C is
a closed, convex subset of M, X is an open subset of C, and 0 € X. Assume that Q : X = Cis
a continuous, compact (that is, Q(X) is a relatively compact subset of C) map. Then, either (i)
Q has a fixed point in X, or (ii) there is x € 9X (the boundary of X in C) and o € (0,1) with
u=09(u).

Theorem 2. Suppose that f € C(J x R3,R) satisfies the following conditions
(Ps) There exist nondecreasing continuous functions U, V, W : R* — R, p;, q; € C(J,R™),
fori=1,2,3,j =1,2, such that
f(mxy2) < pr(U(ul) + p(D)]o] + ps(Dwl,  ¥(r,u,0,w) € T xR,
H(zu)| < q(0)V(u)),  V(tu)eT xR,
Gt w)| < @OW(u]),  V(tu)eT xR,

with p; = sup_ 7{pi(7)}, q; = sup.c7{9j(0)},i=1,23,j=12
(Pas) There exists a constant M* > 0 satisfy

[1 - (A(e Fa+ )Pkl + A+ a+ ﬁ)pgw;)}/\/t*
A+ B)pTU(M*) + D(Q12, D1)q7FY (O) V(M) + P (Q2, Q1 )5 ¥ 7 (o) W (M)

Then, the p-Hilfer FBVIP describing Navier model with NIBCs (3) has at least one
solution x € &.

> 1.

Proof. Assume that Q is given by (15). In the first step, we will prove that Q maps
bounded sets (balls) into bounded sets in £. For any a real constant r, > 0, given
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By, := {u € £ : |lu|| < ry} is a bounded set (ball) in £. From (23) in Theorem 1 with
(P4), we obtain

[(Qu)(v)|
< TP (p (D U(u(0)]) + pa(0)] () (7)] + pa (1) (W) (7))
Al () : -
t—ar nzz|<sz"(qz<a>w )+2|@z 2B (pr(n)U () )

+pa (1) | (Kou) ()| + Pa(m)l(Wu)(m)l)> + O] (I;f" (1 (@V(=@D)

+z| iIZe P (AU (A ]) + pa (4] () j>|+p3<Aj><Wu><Aj>|)>]

Y72 v x s
+ |Q|“[\on|<zaﬁ’(ql<@> )+2|,|I*” (P ADU(A)])

+p2(AI () (4))] + p3<Aj>|<Wu><Aj>|)> + 10 (z;”ﬁ" (2(0)W(u(@)))

+ f] G (pa (U r)) + p2 ) | () ()| + pa(m-)(Wu)(ni)l)N .

By the same process in Theorem 1, we can estimate

[Qul < A(a+B)piU(r2) + (2, Q1)1 ¥ () V(r2) + P(Q22, O21)q5 ¥ (0)W(r2)

+(AO+a+B)p3k + Al +a+ B)psw] )2 i= N,

Next, we prove that Q maps bounded sets into equicontinuous sets of £. Assuming
that the point 71, » € J, where 7y < 1» and u € By,, where B;, is bounded set in £, we
have

|(Qu)(r2) — (Qu) ()]

< Izrﬁ;lpfu('@) - I:fﬁ;lpfu(ﬁ)’
|(9(2) = (@)™ P = (p(m) — (@) P "
+ |Q|F(’yl +,B) [022| (I,;P+ ]g(a,u(a))|
- il AT PP | Fu )] ) + |Q12|< IR, u(2))] + 2 yjlz“*’f“q’f;‘”le(Aj))]
($(@) = 9(@)™ " = (P(n) — (@) o
+ |Q|r(,)/2) [Qlll (Ia+ |’H(§,u(§))|
+Z| e <Aj>|) + |021|<I“"4’|g o,u(c |+Z|¢z “*ﬁ”’wn(mn)]
* * 1% g0 *_ kgl 1 b2 / o x+p—1
< (piUG2) + pk ¥ )+ piet ¥ 00ns) | gy [ 9O () ()P s

+F(oc1+ﬁ> [ 6w - pe) P - ) - gs) P ’ds>
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IN

() — (@)™ — () — pla)) P

- EIRCED

lmzz (lﬁW(rz)‘Y‘P(U)
m

+ 3 12l (UG ¥ 4P (i) + Pk )1y + Péwi“l"””‘*ﬁ(m)rz))
i=1

n
[ (qTV(rz)‘I’“(é) + 3 Il (PTUG2) ¥ B0 (Ay) + pk T (A
=1

|(9() = (@)™ " = (p(r) — ()|

* QT (1)

Fpswl A9 () )r2)>

n

x llﬂn (ﬂii‘V(rz)‘I’”(C)! + 3 Il (PTUG2) ¥ B0 (Ay) + pak ¥ B (A
=1

AN LICE0 SAREAY (Aj)r2)> | Q1| <’12W r)¥?(0) + Z |G| (P1 (r2) ¥ (1)

PR (1) +p;w1“1f““+ﬁ<m>rz)>]

(2((m2) = (@) + | (@) = 9(@)"F = (p(m) — p(2))***|)

T ET PV + P O + il 0)ra)
() = (@)™~ (p(m) = pla) " *
+ ‘Q|r(')’1 4 ﬁ) |022‘ qZW(rZ)T(P(U)

m
+ 3 1l (UG ¥ P (i) + Pk P )y + péww““ﬁm)rz))
i=1

+[ O (qTV(rz)‘f’”(é) + Il (PTUr2) Y PO (A)) + pak ¥ P (A

/N

|(9(m) = (@) = (p(r) — ()|

* O (72)

—i—p*w*‘IﬂH“Jrﬁ 471( )7‘2)>

n

x [mu (qi‘V(rz)‘Y“(é)l + 1 Il (PTUG2) ¥ P (Ay) + pk 4B (A
j=1

Py ¥ () )) + 1| (qzw ra) ¥ (o) + Z &l (PrUGr2) ¥+ (1)

kTP () + P?wi"f““ﬁ(’?i)ﬂ))] '

Clearly, the right-hand side of the above inequality tends to zero as 7, — 7y — 0, which
independent of u € B,,. Then, by the Arzeld-Ascoli theorem (Lemma 6), Q@ : £ — £ is
completely continuous.

Next, we show that there is an open set D C &£ with u # «Q(u) for x € (0,1) and
u € 9D. Assume that u € £ is a solution of u = xQu for each ¥ € (0,1). So, for T € J, we
will show that Q is bounded, and then
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|u(7)]
[k (Qu)(7)]
A+ B)prU([|ull) + (a2, Qa1)q1 ¥ (D) V([[ul])

IN

+ (a2, Q1) ¥ ()W ([ul]) + (AO ++ B)p3ki + A6+ + B)p3wr ) Jull.
Taking the norm for T € J, then

[ull < Ala+B)prU(lul]) + @(Q12, Q11)g7 ¥ () V((|ul])
+@ (2, M1)95 ¥ () W([[u][)

—i—(A(G +a+B)prki + A0 +a+ ﬁ)péw}‘) [lull.
Consequently, we obtain

[1— (A@+a+Bpski + A0 +a+Blpswi ) |l _
A+ BpiO(IulD) + Sz, Q) ¥ @V (ul]) + S (a2, )3 ¥ @)W ([ul)) =

Thanks to (Ps), there is a constant M* > 0 such that ||u|| # M*. Set
D:={uecf:|u| <M"+1}, and U=DUB,,.

Notice that Q : i — £ is continuous and completely continuous. By the choice of D,
there exists no u € 9D so that u = kQu for some x € (0,1).

Therefore, by Lemma 8, we summarize that Q has fixed point x € U, which suggests
that the problem (3) has at least one solutionon J. O

3.3. Existence Property via Krasnoselskii’s Fixed Point Theorem

Lemma 9. (Krasnoselskii’s fixed point theorem [58]) Let B be a closed, bounded, convex, and
non-empty subset of a Banach space. Let Q1, Qy be the operators such that (i) Qqu + Qv € B
whenever u, v € B; (ii) Q1 is compact and continuous; (iii) Qy is contraction mapping. Then,
there exists w € B such that z = Qqw + Qrw.

Theorem 3. Suppose that f € C(J x R3,R) satisfies (Py), (Py), and
(Ps) There exist f;, gj, hx € J,RY, i = 1,234, j = 1,2, k = 1,2, such that
Y(t,u,v,w) € J x R3,

[f(ruow)] < [A(O]+[f2(0]lul + (D)o + [ fa(D)]|w],
G(rw)] < (@@ +Ig200lul,  V(tu)eT xR,
H(tw)| <m0+ [ha(D)[[ul,  Y(t,u)e T xR

If
(81 + 8 = ¥B (b) £y — ¥HHB)G L, — ¥ P (b)wiLs) <1, (41)

then the y-Hilfer FBVIP describing Navier model with NIBCs (3) has at least one solution x € £.

Proof. By setting sup.. 7 |fi(T)| = |fil, i = 1,2,3,4, sup,c;[gi(7)| = |gl, and
sup 7 [hj(T)] = ||kl j = 1,2, we consider B,; = {u € £ : ||lu|| < r3}, where

ry > Al + B)[Ifill + (D2, Q1) ¥ () [[811] + (a2, O11) ¥ (0) |||
> - ’
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with
As = Ala+B)llfall + A0 +a+ B[ fall + A+ a + B)ws ] fa
+@ (O, 01 ) ¥ () |82l + (2, Q1) ¥V () 12|
Define Q; and Q; : B,; — £ as
(Qu)(t) = TPPF(D), (42)
B—1 . nt
(Qu)(1) = Y| 0 (T8 G0, u(0) - Ty ST P Ful))
~0n(ZHHE @) - EanZy T FM >)]
(43)

IN

IN

-1 . " +
0 o (TG, w©) - S T )

O (207G (0, u(0)) — XLy G fu(m))] .
Note that Q = Q1 + Q. For any u, v € B, it follows that

[(Qiu)(7) + (Q20) (7))

" y1nt+p-1(p T
TP F (o) + w”[rom(z‘”ﬁgm \+2|¢1 *ﬁf"”|fv<m>|>

Nl
+|le< YI9(g,0(C |+Z|y] 7P "’”IH(MI)

¥r2-1(p APt
¥ |Q|”[|on|( "I1(E 00 |+Zw] o 4”"’|fv<A,->|>

+|021<14’“’|gav |+Z|«; “*’5;¢|fv<m>|>]
PP (10)| + 1L0)] ()] + | fsO)I(Ku) (b) + | fa(b) | (W) (b))

1+B8-1 ) ‘
T |ozz|(12”ﬁ”(|g1<a>|+|gz eto)) + £ 617277 (1)

20l [o )| + | fa (1)1 (o) ) | + |f4(77i)||(Wv)(m)|)>

+|nu< Y (I (@) + Ir2(@)llo( )+2|u] P (1A

+ AR+ AR (A)] + |f4<Aj>||<Wv><Aj>|)>]
+W[mm( Y (I @)1+ m2()lle(g )+2|y, T (1))
+RADIRA)] + AR (A7) + |f4<Aj>||<Wv><A,~>|)>

+|021<I§’f”(|g1<a>+|gz )[o(e )+2|cz PP (L) + () [y ()|



Mathematics 2021, 9, 3292 16 of 31

@I y) ()| + | fa (i) [| Vo) (m)l)ﬂ

IN

{‘Y’”ﬁ(b) + @ (O, 1) Y |E[Y* TP (1) + (O, Oan) Y |y [¥2 P9 (/\j)}||f1||
i =

m

+{T“+ﬁ(b)||”|| + (2, 1) Y 16T () |||
i=

n
+O(Onp, ) Y [T () o] } 121l + {‘1’9+“+ﬁ(b)|”||
j=1

m n
+O(Q2, 1) Y G () o] + @(Qu2, On) Y [P0 (A)) o] }killfgll
i=1 j=1

m
+{T5+“+ﬁ(b)”u| + (2, ) Y &P () |0
i=1

n

+®(Q1p, 1) Y |I¢j|‘f§+“+ﬁf¢" (Aol }“ﬁ”ﬁl” + @ (22, V1) (IW(V)H&H
i=1

+¥(@) Il o)) + (12, O11) (¥ (@)l | + ¥ (@) 2l o]
< Ala+B)All + P(Qa2, Q1) ¥ (0) |81 + P(Q12, Q11) ¥ (O) [ |

+(A(tx + B f2ll + AO + &+ Bk [Ifa]l + A6 + &+ B)uwr || ful

+ (a2, 01 ) ¥ (0) |2 | + P (O, Q1) ¥ (@) 1| ) 15 < 75,

which implies that Qyu + Qv € B,, that assumption (i) of Lemma 9 is verified.
Now, we are going to prove that Lemma 9 (ii) is fulfilled. Assume that a sequence u
so thatu, — u € £ asn — o. For T € J, we obtain

[(Quuta) () = (Quu)(T)| < Ty P | Foy, (b) = Fu(B)] < ¥R (0) | o () = Ful-)-

By continuity of f, we get that F,, is continuous. Hence, by the Lebergue dominated
convergent theorem, this yields that [(Q7u,)(7) — (Qqu)(7)| — 0as T — co. Then,

|Q1uy — Qiu)|| =0 as T — oo.
Therefore, Qqu is continuous. So, Q1 By, is uniformly bounded as
1Quull < ¥ P(D) (1]l + ¥ TP (b)rall foll + KTEO B (B)rs|| fal] + wi ¥ (b)rs]|fall-

Afterward, we show compactness of Q1. Define sup, ,, , e 7xr3 |f(T,4,0,w)| =
f* < 400, for each 71, » € J, where 11 < To, we have,

[(Qiu)(r) — (Quu) ()| =

TP Fulm) ~ TP Fu(m)|

< b (z(wm) () s
() — (@) — (p(m) — pla))*+P ‘)'

Clearly, the right-hand side of (44) is independent of u and | (Q1u)(12) — (Q1u)(71)| —
0 as » — 71. Hence, this implies that QB,, is equicontinuous, and Q; maps bounded
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subsets into relatively compact subsets, and this yields that Q1 B,, is relatively compact.
Therefore, we summarize that Q; is compact on B;, by the Arzeld-Ascoli theorem.
Next, we show that Q is contraction. For each u, v € B,, T € J, then

|(Qau)(7) — (Q20)(7)]

< “ng(”)[mm(I:’f”|g<a,u<a>>—g(a,v<a>>|
+ 2 &0 P | Fu ) —fv<m>|) + O (z;ﬁ”m@,u(@)) ~H(Z,0(0)]
+ zl I Ze P Fay) aum)] - ‘P"mlfb) [Qm (z:ﬁ”m@,u(a))
\+z|y] P fumj)—fvum)
+|021|<I;”F|g<au<a>> |+z\¢z “*ﬁ"’fum)—fv(mm
<

v +p-1 b m
{1|Q() [|sz| <‘P¢(U)gf + 31l (ﬁl‘l’“ﬁ(iﬁ) + Lok FEOHHB ()
i=1

n
+£3w1“1f‘5+“+ﬁ<m))) + O (‘I’”(C)HT + 3 Il (e o)
j=1

. o b o ¥12-1(p
+£2k1‘f9+a+/5 (P’()\j)‘F£?>Z‘)1‘Yo+a+/3 (P/()‘j)))] +|Q|()[|A11|( "(OHY

n
+ Y il (LB A) + Lok HOT PO (A + Lot (M)))
j=1

+]Q1 <‘I”’)(U)gf +) 18] (glwﬂﬁ(m) + Lok ()
i=1

+£3wT‘P‘5+"‘+ﬁ(m))>] }|u o
e R O YR St (O ye | I

Hence, by (41), Q7 is a contraction.
Then, due to Lemma 9 being verified, this yields that the problem (3) has at least one
solutionon J. O

4. Ulam’s Stability
This part analyzes a variety of Ulam’s stability of solutions to the problem (3).

Definition 4. The problem (3) is said to be UH stable if there is a constant €¢ > 0 such that for
any € > 0 and for each solution z € & of

ot (HlW2) () - Fu(r)| < e, (45)
there is a solution u € £ of (3) such that

1z(7) —u(r)| < &e, TEJT. (46)
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Definition 5. The problem (3) is said to be GUH stable if there is a function T € C(R*,R™)
with T (0) = 0 such that, for any solution z € £ of

"y (MR Yz) (r) — Fo(v)| < €T (@), @)
there is a solution u € & of (3) such that
|z(t) —u(t)| < T(e), T€J. (48)

Definition 6. The problem (3) is said to be UHR stable with respect to T € C(J,R") if there
is a constant €y 7 > 0 such that for any € > 0 and for each a solution z € £ of (47) there is a
solution u € & of (3) such that

2(t) —u(7)| < & 7eT(7), TET. (49)

Definition 7. The problem (3) is said to be GUHR stable with respect to T € C(J,R™) if there
is a constant € 7 > 0 such that for any a solution z € & of

¥ (Hofz) (1) - Fu(v)| < T(v), (50)
there is a solution u € £ of (3) such that

lz(t) —u(7)| < & 7T (1), TEJ. (51)

Remark 1. It is clear that

(i) Definition 4 = Definition 5;

(ii) Definition 6 = Definition 7;

(iii) Definition 6 for T (t) = 1 = Definition 4.

Remark 2. A function z € £ is a solution of the inequality (45) if and only if there is a function
v € & (where v depends on z) such that:

(i) |o(n)[<e VTET;
(if) HO (H@ff"/’z) (1) = F(t)+0(t), TEJ.

Remark 3. A function z € £ is a solution of the inequality (47) if and only if there is a function
w € & (where w depends on z) such that:

(i) |w(r)| <eT(r), VreJ;
(if) HD“Y (H@ff“”z) (1) = F(1) +w(t), T€J.

Remark 4. For the analysis of UHR stability and GUHR stability, we assume the
following assumption:

(Hy) There is an increasing function T € C(J,R™") and there is a constant A > 0, such that,
forany T € J, we obtain

TP T (1) < AT (). (52)

4.1. UH Stability and GUH Stability

In this subsection, we construct an essential lemma that will be used in proves on UH
and GUH stables of the problem (3).
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Lemma 10. Assume that « € (3,4], p € [0,1], and z € & is a solution of (45). Then,
z € & verifies

2(v) = 2(0) TPV F(r)| < A + B e, (53)
where
2(r) = T 0 (107 6(0,2(0) - T ST Fln)

~ (LR, 2(0) — T i, “’f’"’“mj))]

(54)
r2—-1 . +
+ O on (21, 2(0) - D T E))
~001 (297G(0,2(0)) — Xty &2 P l”fzmi))],
with Q, Qyj, 1, j € {1,2}, and A« + B) are given in Lemma 4 and (18).
Proof. Assume that z is a solution of (45). By Lemma 4 and (ii) of Remark 2, we get
Hpo Py (Hsaff”/’z) (1) = F(1) +0(r) T€ (a,b),
2() =0,  MDMz(a) =0, 5)
- 0o v
L Gial) = 177G (0,2(0)), Z u0 2 () = LU 2(0),

and then the solution of (55) can be given as

(1) = LIER@ Wilm[ﬂzz(lff’@(m(a»—féizﬁﬁﬂ”ﬁ(m))
i=1

—Op (IZﬁ"H@,z@» Syt ‘Pf””fz@f)ﬂ
j=1

yr2-l(1)

+Q[Q11< UG Z I;‘fﬁ“”f;"’fz(@))

—0n (I(Plpg o,z(c foz TPV E )) +I:fﬁ;¢v(r)

yntp-l(r at
+Q()< szszl () +Q122#] ot Poiiv (M))
j=

i=1

1}’72_1 T 1 .
+Q”< 0112% TP (Aj>+0212¢fz:rﬁ"”v<m>).

Thanks to (i) of Remark 2, it is implied that
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(z(r) ~ Z(1) —Iffﬁ”p]-"z(r)‘

. ‘If71+ﬁ_1 T a+
I;j_ﬁ’lpv(’r) + T() ( 022 Z gz +‘B l/’ 771 + 012 2 ]/l] at P9y lpj:z( )
j=

‘{T’Yzfl(t)

a ( /\11ZV] uﬂg o o(A; +0212€zf M( ))‘

IN

{‘P“W )+ iy (102179710 + 0w [ ) 3 08P )
i=1

n
gy (100l 0) 4 Q09721 0)) ) gt <Aj>}e
j=1

m n
= {‘Paﬂ;(b) + (o, D1) Y &P (1) + @(Qua, Ann) Y |Hj|‘P“+ﬁ_¢f ()\j)} €.
i=1 =1
The proof of (53) is done. O

Next, we establish UH and GUH stables of solutions to the problem (3).

Theorem 4. Assume that f : J x R® — R is continuous. Suppose that assumptions
(P1)-(Ps3) and

L1FB(b) + LokiFOTTP(b) + Lawi¥orerP(b) < 1. (56)
Then, the y-Hilfer FBVP describing Navier model with NIBCs (3) is UH and GUH stables.

Proof. Assume that z € £ is a solution of (45), and u € £ is a unique solution of (3).
From Lemma 4, which implies that u(7) = X (1) + I'ng YF, (1), where

X(T) _ wﬁﬁ L(t)

0o (2270, u(0)) — Ty &To PV Fulni) )

O (M u(0) — Dy Ty Y "’fuw))]

(57)
+ 5

Ot (T4 () — i TP I E))

~0n (207G (0, u(0) - Tt &2y "quwi))].

Clearly, if u(a) = z(a), D5V u(a) = H%z(a), Tt Guln) = T &z,
I9G(0u(0) = T6(0,2(0), Tl i DM u0) = T, w0 (), and

T H(Z, u(Z)) = TV H(G,2(Z)), then, we get that X (T) = Z(T).
By using Lemma 10 and |u + v| < |u| + |v], for any T € 7, yields that

|2(7) — u(7)|

= |z(v) - X ()~ TPV Fu (o)

< Jz2(1) = 2(v) TPV (o) + TP Fu(v) — Fu(n) + | 2(1) — X (1))
< A

Ala+B)e+ (,/;1‘}’“+/3(b) + Lok PO (b) + ngi“i’“"‘*ﬁ(b)) Iz(7) — u(1)|,
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thatis |z(7) — u(7)| < &f €, where

. Ale+B)
=1 (L1YB(b) + Lok P02+ (b) + Lyw¥OTath(b))

Hence, the problem (3) is UH stable in £. Moreover, if we take 7 (€) = €re with
T(0) =0, thus, (3) is GUH stable in £. [

4.2. UHR Stability and GUHR Stability
Next, the result will be applied in the investigation results of UHR and GUHR stables.

Lemma 11. Assume that « € (3,4], p € [0,1], and z € & is a solution of (47). Then, z € £
verifies

2(t) = Z(v) - TP F, (r)] < @eArT (1),

where

m n
O =1+ DO, M21) ) 1&i| + P(Q12, Q11) Y |14, (58)
i—1 =1

and Z(t) is given by (54).

Proof. Assume that z is a solution of (47). By applying Lemma 4 and (ii) of Remark 3,
then, the solution of the problem

Hy oy (H@ff”"z) (1) = Fa(t) +w(t) T€ (ab),
z(a) =0, H@f’f"lpz(a) =0,

Y &z(n) = I90G(0,2(0)), D]H@"’JP“” 2(A) = T H(E,2(0)),

i=1 =1

(59)

is given by

Z(T) = a+ﬁ¢~7:z( ) % lQZZ <Iqﬂpg g, Z Zéz ‘H_ﬁw]:z 771))

—%(zﬁﬁ 02(¢ 2 wIn I E( ))]

yr-1(g a+

+ I PV ()

Oy (zgz 2 NG ))

T"rl‘f‘ﬁ_l T
Q()< 022251 a+Byp (171 +0122V] “+/3 P ()\])>

2—1 atB—
‘Y,YQ< (an Iajﬁ a4 w(Aj +0212€z ALl (’71))-

Thanks to (7) of Remarks 3 and 4, one has
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‘z(’r) —Z(1) - z;"jﬁ””fz(r)‘

yn+p-1(r
I Pw(x HQ”( szZCz () +0122VJ A MJ))
j=

‘”é”( 0112}‘] 7 )+ Om ) aTi (m))‘

IN

{H'm(mmmﬁﬁ 6) + J0m P 0) 1 e
+% <|012|‘F71+ﬁ_1(b) + |Ql1|‘fm_l(b)> Iz }GATT(T)
j=1

= {1 +@(O2, O1) Y 18] + P(Q12, 1) ) |ﬂj|}€/\TT(T)-
i j=1

The proof is done. O
This result studies UHRR and GUHR stables of solutions to the problem (3).

Theorem 5. Let f : J x R® — R be continuous. Assume that (Py)-(P3), (52) is fulfilled, and
L1FHB(b) + Lok PO (b) + Lawi¥orerP(b) < 1. (60)

Then, the -Hilfer FBVIP describing Navier model with NIBCs (3) is UHR and
GUHR stables.

Proof. Assume that z € £ is a solution of (47), and x is a unique solution of (3). By ap-
plying Lemma 11, this yields that u(7) = X(1) + I:fﬁﬂp}'u(r), where X(T) is given
by (57). Similarly, if u(a) = z(a), "DE ¥ u(a) = HDPI¥z(a), YL, Gulns) = LI, &z(ni),

; ; ¢ 1IJ
7G(eule)) = T7¥G(o,2(0)), Ty w0, Pung) = o el (Ap, and
ZIH (G, u(0)) = T, H(E,2(2)), then X(7) = Z(1).

Applying Lemma 11 with triangle inequality, for any T € 7, it follows that

|2(7) — u(7)]
[2(7) = X (1) = LV Fu (o)
[2() = 2(0) = PP (o)) + L | Fu(1) = Fu(0)| 4| 2(7) = X (7))
@eArT (1) + (clwﬂg( )+ Lok woteth () + zgwwmw(b)) |2(T) — u(T)|,

IA

IN

where © is given as in (58); thus, |z(7) — x(7)| < &, 77T (7)€ such that

S A
FT 7 1= (LY B(b) + Lok ¥OT B (b) + Lowi¥ora+B (b))

Hence, the problem (3) is UHR stable in £.
Additionally, if we take € = 1, in |z(7) — x(7)| < €7, 7T (7)€, with T(0) = 0, hence (3)
is GUHR stablein £. O

5. Examples

This section shows some illustrative examples of the exactness and applicability of the
main results.
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Example 1. The y-Hilfer FBVP describing Navier model with NIBCs:

Hgyddhtan( &) (1840 an(£5)
kit Do x| (t) = f(r,u(t), (Ku)(t), Wu)(7)), T € (0,3/2),
_ H %’g%tan(ﬁa) _
u(0) =0, Do+ x(0) =0,
Z 9 —6 §ltan(Z%) (6 (6 (61)
Z(iﬂ)” 10 )ZIS*Z (M)Q(S’”(S >
i=1
S (4 j\ gy b (&) (41 Siatan(85),, (11 (11
E(é—f) Do (M) =5 #(0(30) )

Setting « = 3/2, p = 4/5, Y(1r) = 0.5tan(ntt/(t+3)),p = 6/5,a = 0,b = 3/2,
&= i/(i+1), 0 = (9~ 6)/10, @ = 6/5,0 = 6/5, uj = (4 )/ (6~ 1), ¢ = (10— })/5,
Aj = (4j—1)/10,v =3/2,{ =11/10,i = 1,2, and j = 1,2,3. From the given all datas,
we obtain Oy ~ 0.11786018, Oy ~ 0.5836819, (; ~ 0.94874011, Oy ~ 0.68483544,
and Q) = —0.47304769 # 0. We consider f(t,u(t), (Ku)(7), Wu)(t)), H(Z,u({)), and
G(o,u(0)) as follows:

(i) Given the function

™+212 -6 5e—2t1 |u(T)]
502+ 3t+4  4—sinnr 5+ |u(7)|
2T+6[ (K)(m] . _[Wu)(7))]
4+ [(Ku)(D)] 5+ [Wu) ()]’

f(ru(T), (Ku) (), Wu)(1)) =

35T+2
HEu@) = gro Gloul) = adl
where
(K0T = Fgr [, @O =9 W ok s)u(s)ds, (©2)
W) = gy [ @@ =96 Gl su)s, (©3)
with (i 2sin(r0) 320-2)
@)= Frarss ) = 5 costrs)”

For u;, v;, w; € R,i=1,2, T € [0,3/2], we obtain

1 1 1
|f(T,u1,01,w1) — f(T,up,v2,wp)| < §|M1 —up| + 1|U1 —vy| + §|w1 —ws|,
1 1
[H(T,u) = H(tu2)| < Sl —up| and |G(7,u1) = G(7,u2)| < Flur — -
The conditions (P1)—(Py) are satisfied with L1 = 1/3, Lo =1/4, L3 =1/5,H] =1/3,

Gi =1/2,ki = 2/5,and w] = 3/5. Hence, Ay + Ay ~ 0.6077104343 < 1. Since, Theorem 1
are fulfilled. Then, the problem (61) has a unique solution on [0,3/2]. Moreover, we have

Aa+B)
Cri= ~ (0.55937654 > 0.
F = T (LY B (b) + Lok YT B(b) + Law] Y72 (b)) ~
From Theorem 4, the problem (61) is UH and GUH stables on [0,3/2].  Take
T (1) = (y(7) — ¥(0))'/3, and we have

I'(4/3)

/ an3/2
LEHT(0) = Fimgy 90) = 91027 () < T a0 /S

2V/2I'(17/6)

T(7).
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The inequality (52) is fulfilled with A1 %ﬁ;(gﬂ) > 0and © = 4.6986661. Then,

OAT
Q: pr—
P77 1= (LY (b) + Lok ¥0F e (b) + Lawi ¥+ 76 (b))

~2 2.08782437 > 0.

Therefore, from Theorem 5, the problem (61) is UHR and GUHR stables on [0,3/2)].

(ii) Given the function

2cos(mT) +1 |u(t)|+3

f(r,u(T), (Ku)(t), Wu)(t)) = 3sin(r0)+2 2+ [u(7)]
a1 | _[Ru)(™)] + [Wu) (1)
5302 4+ [(Ku)(T)| + [(Wu)(T)] |
et = S5 ol ot = T

with (62) and (63), where k(t,s) = 2/(5+s"1) and w(t,s) = 3/(7 — 2sin(7s7)).
Foru,v,w € R, and t € [0,3/2], we estimate that

14+2cos(mt) |u(t)|+3  47—1 |v|+ |w]

|f(T’ u,v, w)| = 3sin(7‘f’r)+2 2 53T+2 4
cAt+2 Ju T,
< — .
The assumption (Py) is also valid with py(t) = (1 + 2cos(ntr))/(3n(TDF2),

pa(T) = (41— 1)/(4-572) = ps(1), @(7) = (47 +2)/(5 - 27), (1) = /9,
Ulul) = (Jul +3)/2, V([ul) = |u|/8 and W(|u[) = |u]. Thus, p; = 1/3, p; = 1/20 = p},
g1 =495 =1/6, ki = 2/5, and wy = 3/5. There is a positive constant M* > 0.37949755
verifying (Ps). Then, Theorem 2 is fulfilled, and we can summarize that the problem (61) has at
least one solution on [0,3/2].

Forany u;, v;, w; € R,i=1,2,and T € [0,3/2], one has

1 1
|f(T,u1,v1,w1) — f(T, U, 02, w2)| < —=|uq — un| + %V)l — v + %|w1 —wy|.

5
!
The conditions (P1)-(P,) are verified with L1 = 5/12, L, = L3 = 1/20, H = 1/2,
G7 =1/6,ki = 2/5and wy = 3/5. Thus, Ay + Ay ~ 0.44078217 < 1. Hence, the problem
(61) has a unique solution on [0,3/2]. Moreover, we obtain € := 0.56437711 > 0. Theorem 4 is
satisfied, the problem (61) is UH and GUH stables on [0,3/2]. Take T (1) = (p(7) — 1(0))1/2,

and we have
1 3/2 tan®/2(71/3)
AT () = 4\f( $(t) = 9(0))7 T (1) < “svin T (1)
The inequality (52) is satisfied with Ay = @2 (/3) 0 and © ~ 4.69866612. Then,

8v2m

O
Q: g
T 1= (LY F (b) + Lok ¥9H7B (b) + Lowp #0756 (b))

~2 2.10648855 > 0.

Hence, Theorem 5 is true, and the problem (61) is UHR and GUHR stables on [0,3/2].

(iii) Given the function
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375 VAT? + 27+ 4 i

o), (@), W) (0) = 0+ 2T (o)
]
9—21 1+2|(Ku)(1)]
% arctan (Wu) (1)),
o) B, ey AL

with (62) and (63), where k(t,s) = 4/(7 + s7) and w(t,s) = 2/ (7 + 2s cos?(7T)).
Forany u;, v;, w; € R,i=1,2,and T € [0,3/2], we obtain

2 1 4
|f(T,u1,01,w1) — f(T,up,02,w3)| < §|M1 — up| + §|Ul —vp| + §|w1 — Wy,
2 3
[H(T,u1) = H(T,u2)| < Zluy —ua| and |G(7,u1) = G(T,u2)| < Zfur — ua].

The conditions (Py)-(P,) are satisfied with L1 = 2/3, Lo =1/2, L3 =4/9, Hi = 2/5,
G =3/5,ki =4/7,and w} = 2/7. Hence, we have

(A1 Ay — Y B(b) Ly — WOTB (b, — 11f5+“+/3(b)w;£3) ~ 0.76735591 < 1.

Foru,v,w € R, and T € [0,3/2], we have

375 VAT + 27+ 4

<
fwwew)l < 7520+ Tamm 16 M
27 4cosT
oK) (0)] + oy [OWa) (o),
2|u| 5 27|u] 3

[H(T,u)| <

|G(T,u)| < 5+In(2t+5)  5+1In(2t+5)"

215 215

The condition (Ps) is verified with f1(t) = e3>/ In(5 —27), fo(T) = VA4T2 + 21+ 4
/(tsin(t) +6), f3(t) = 2t/(9 — 27), fas(t) = 4cost/3°7*2, hy(t) = 5/(t>+5),
ho(t) = 2/(t*+5), g1(1) = 3/(5+In(2t +5), and g (1) = 2t/(5 + In(2T + 5)). So,
Theorem 3 is verified, and we can summarize that the problem (61) has at least one solution on
[0,3/2].

In addition, the problem (61) has a unique solution on [0,3/2] with
A1+ A = 0.89211721 < 1. Moreover, we have that &f := 0.60023816 > 0. Then, Theorem 4 is
true, and the problem (61) is UH and GUH stables on [0,3/2]. Take T () = (¢(t) — 9(0))1/4,

3/2
and we get Ay = W ~ 0.45418619 > 0 and © ~ 4.69866612. Then, we obtain

&r 1 ~ 243827113 > 0. From Theorem 5, then, the problem (61), is UHR and GUHR stables
on [0,3/2].

(iv) Consider f(t,u(t), (Ku)(t), (Wu)(1)) = 01((7) — $(0))*" and
G(r,u(1) = e2(p(v) —(0)™,  H(z,u(r)) = e3((r) — (0))™.

By Lemma 4 witho1 =2,00 =3,03 =4, @1 =1/7, 0y = 1/5,and w3 = 1/3, the solution
of the problem (61) is given by



Mathematics 2021, 9, 3292 26 of 31

x(7)

20(8/7)(p(1) = p(0) TP (p(x) —p(0))" P
T(8/7+a+p) Or (1 + B)

|, [(3TE/5) (o) = p(0))"°  ¢8 2T(8/7)8i((m:) — (0)) /77
2 r(12/5) l; T(8/7+a+B)

0 <4F(4/3)(¢(C) 9O - 2B/ (9 () - p(0)" ”“*’3‘4’1‘”
12 r'(17/6) = T(8/7+a+pB—¢))

() — 9(0)™~" [Q <4r<4/3)<¢<c> 1 ()
11

T ar(n) T(17/6)

n 2T(8/7)p;(9(A}) — (0)) /7 HHF

Z T(8/7+a+p—¢))

o [3E6/5)(p(@) —p(0))"° & 20(8/7)E(y(n) — p(0))! 7+
—()r r(12/5> g (8/7+D¢+‘B) .

A graph displaying of u(t) for the problem (61) under « = 1.65,1.70,...,2.00 and
B =1.86,1.88,...,2.00 with (1) = V¥ VP (sinT)V*HVE, (a + )5, (In(r +1)) VoA, is

shown in Figures 1—4.

2 T T
o = 2.00,3 = 2.00
o =1953=198
1.5F a=190,8=196
o =1853=194
o =180,3 =192
1F o =1.75,8=1.90
a=1.70,8=1.88
o =1653=186

0.5

3 1 I
0 0.5 1 1.5
0<7<15

Figure 1. The graph displaying of u(7) for (61) with (1) = Ve VB for T € [0,3/2].
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o =2.00,8 = 2.00
a=19508=198
o =1.90,8=1.96 4
a=18508=194
o =1.80,8=1.92
o=1750=1.90
a=1.70,4=188
o =165,8=1.86

0 0.5 1 1.5
0<7<15

Figure 2. The graph displaying of u(7) for (61) with ¢(7) = (sin T)\/&Jr\/f3 for T € [0,3/2].

o =2.00,8 = 2.00
«=1950=198
45F a=1.90,3=196
a=1850=194
o =1.80,0 =1.92

A4 ——a=175,8=1.90
a=170,3=188
—  0=1653=186

3.5

Lt 25
]

1.5

0 0.5 1 1.5
0<7<15

Figure 3. The graph displaying of u(t) for (61) with ¢(t) = (x + )2 for T € [0,3/2].
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0.8 T T

2.00, 8 = 2.00
1.95,8 = 1.98
1.90,8 = 1.96
1.85,8=1.94
1.80,8 = 1.92
1.75,8 = 1.90
a=1.70,8=1.88
o =1.65,8=1.86

[ T

«
(67
«
o
o
o]

06

0.5

0.4

u(T)

0.3

0.2

0.1

0.1 1 1
0 0.5 1 1.5
0<7<15

Figure 4. The graph displaying of u(7) for (61) with ¢(t) = (In(t + 1)) V** for T € [0,3/2].

6. Conclusions

The main aims of this study have been accomplished. Firstly, the uniqueness result
for a nonlinear -Hilfer FBVIP describing Navier model with NIBCs was analyzed by
helping Banach'’s fixed point theorem. Afterward, the existence results were established
by applying fixed point theory of Leray-Schauder’s and Kransnoselskii’s types, while the
guarantee of the existence of solutions was shown by the powerful techniques, such as
Ulam’s stability, including UH, GUH, UHR, and GUHR stables. Finally, we ensured the
theoretical results via some illustrates in the special cases of ¢ are polynomial, trigonometry,
exponential, and logarithm functions. This paper has considered different methods and is
attractive for researchers who are interested in the work of the integro-differential equation
describing Navier model under -Hilfer fractional operators. We will concentrate on
examining the qualitative theories of solutions to nonlinear equations or systems of real-
world models with boundary conditions in the context of other fractional calculus in the
future. It also remains to extend the results obtained to new Hilfer-type operators; see, for
example, Reference [59].
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