
mathematics

Article

Explicit Stable Finite Difference Methods for
Diffusion-Reaction Type Equations

Humam Kareem Jalghaf 1,2 , Endre Kovács 3,* , János Majár 3, Ádám Nagy 3 and Ali Habeeb Askar 1,2

����������
�������

Citation: Jalghaf, H.K.; Kovács, E.;

Majár, J.; Nagy, Á.; Askar, A.H.

Explicit Stable Finite Difference

Methods for Diffusion-Reaction Type

Equations. Mathematics 2021, 9, 3308.

https://doi.org/10.3390/

math9243308

Academic Editors: José

Manuel Gutiérrez and Ángel

Alberto Magreñán

Received: 26 November 2021

Accepted: 16 December 2021

Published: 19 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Fluid and Heat Engineering, University of Miskolc, 3515 Miskolc, Hungary;
20310@uotechnology.edu.iq (H.K.J.); 20156@uotechnology.edu.iq (A.H.A.)

2 Mechanical Engineering Department, University of Technology, Baghdad 10066, Iraq
3 Institute of Physics and Electrical Engineering, University of Miskolc, 3515 Miskolc, Hungary;

fizmajar@uni-miskolc.hu (J.M.); fizadam@uni-miskolc.hu (Á.N.)
* Correspondence: fizendre@uni-miskolc.hu or kendre01@gmail.com

Abstract: By the iteration of the theta-formula and treating the neighbors explicitly such as the
unconditionally positive finite difference (UPFD) methods, we construct a new 2-stage explicit
algorithm to solve partial differential equations containing a diffusion term and two reaction terms.
One of the reaction terms is linear, which may describe heat convection, the other one is proportional
to the fourth power of the variable, which can represent radiation. We analytically prove, for the
linear case, that the order of accuracy of the method is two, and that it is unconditionally stable. We
verify the method by reproducing an analytical solution with high accuracy. Then large systems
with random parameters and discontinuous initial conditions are used to demonstrate that the new
method is competitive against several other solvers, even if the nonlinear term is extremely large.
Finally, we show that the new method can be adapted to the advection–diffusion-reaction term
as well.

Keywords: UPFD method; diffusion equation; heat transfer; explicit time-integration; stiff equations;
unconditional stability

1. Introduction

We are going to study the following diffusion-reaction equation:

∂u
∂t

= α∇2u− Ku + q− σu4, (1)

where u is the unknown concentration, while the known parameters are the diffusion
coefficient α, the coefficient of the linear reaction term K, and the source of particles q in case
of particle diffusion [1]. It is well known that this equation can describe heat transfer as well.
In this case, the physical meaning of u is the temperature and α is the thermal diffusivity. If
one uses Newton’s law of cooling, then heat transfer by convection can be expressed [2]
(Equation (3)) by a term proportional to ua − u, where ua is the ambient temperature
which can be considered as constant. It means that −Ku + q can represent conductive heat
transfer. Moreover, heat generation by chemical reactions, radioactive decay, etc. can also
be incorporated into q. According to the Stefan–Boltzmann law [3] (Chapter 8), the heat
transfer due to radiation can be taken into account by a term proportional to u4

a − u4, where
the proportionality constant includes the surface area and the Stefan–Boltzmann constant,
all of which are nonnegative quantities. The u4

a term can obviously be included into the
heat source term q. Therefore, in this paper, we will use the phrase radiation term when we
talk about the fourth order term −σu4.

At the end of the paper, we will also examine the linear advection–diffusion-reaction
equation in its most standard form:

∂u
∂t

= α
∂2u
∂x2 u− a

∂u
∂x
− Ku. (2)

Mathematics 2021, 9, 3308. https://doi.org/10.3390/math9243308 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3901-3410
https://orcid.org/0000-0002-0439-3070
https://orcid.org/0000-0001-7140-3868
https://doi.org/10.3390/math9243308
https://doi.org/10.3390/math9243308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9243308
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9243308?type=check_update&version=2

Mathematics 2021, 9, 3308 2 of 21

If the medium is not homogeneous, more general forms of the above equations must
be used. For example, Equation (1) can be generalized as

∂u
∂t

=
1
cρ
∇(k∇u)− Ku + q− σu4, (3)

where, in case of conductive heat transfer, k = k
(→

r , t
)
≥ 0, c = c

(→
r , t
)

> 0 and

ρ = ρ
(→

r , t
)
> 0 are the heat conductivity, specific heat and mass density, respectively.

The α = k/(cρ) relation holds between these quantities. Besides, K = K
(→

r , t
)
≥ 0 and

q = q
(→

r , t
)

are also known functions of the space and time coordinates.
There are plenty of numerical methods to solve these equations, such as several

versions of the finite difference methods (FDM) [4,5], finite element methods (FEM) [6]
or a combination of these [7]. However, these require the full spatial discretization of the
system, thus they can be computationally demanding. Scientists and engineers must also
deal with systems where the physical properties such as the heat conductivity can be highly
different [8] (p. 15), even in regions of the system which are in the vicinity of each other.
This implies that the coefficients such as α or k, and hence the eigenvalues of the problem
may have a range of several orders of magnitude, which means that the problem can be
rather stiff.

We explained in our previous papers [9–11], and also will demonstrate in this paper
that the widely used conventional solvers, either the explicit or the implicit ones, have
serious difficulties when they are used for these problems. The explicit methods are usually
only conditionally stable, so very small time step sizes have to be used [12], especially if the
stiffness of the problem is high. This is the main reason that these equations are typically
solved by implicit methods, as it has been conducted by Zhang and Zhao [13], Aamoah-
Mensah et al. [14], Nana and Munyakazi [15], Aminikhah and Alavi [16], Ali et al. [17] and
Singh et al. [18]. The authors of [14] claim that the larger computational cost of implicit
methods is compensated by their unrestricted stability. We think that this is perfectly true
when the number of cells is small, such as in their study, but when this number is very
large, which is almost always the case in two and especially in three space-dimensions, the
implicit solvers become extremely slow with huge memory usage.

Nevertheless, the search for and the application of alternative methods are continuous.
The most important example are the nonstandard finite difference schemes (NSFD) intro-
duced by Mickens [19], which have been applied by others to different equations containing
the diffusion term [20–22]. Since the formerly fast increase of the CPU clock frequencies
halted more than a decade and a half ago, and the trend towards increasing parallelism in
high performance computing is reinforced [23,24], we believe that the easily parallelizable
explicit and unconditionally stable methods for numerically solving these equations will
have an increasing role in the future. Albeit these methods are less known, some scholars
work with them. For example, Karahan used explicit Sauljev-type alternating direction
explicit (ADE) method for the advection–diffusion equation [25]. Sanjaya and Mungkasi
examined the performance of the same method and found that it is indeed accurate [26].
Pourghanbar et al. used ADE/Sauljev to solve a fully nonlinear PDE [27]. Harley applied
the odd-even hopscotch method to the Frank-Kamenetskii reaction-diffusion equation [28].
Then Al-Bayati et al. compared the ADE, the alternating direction implicit (ADI) and the
Hopscotch method in the case of the Gray–Scott reaction-diffusion equation [29]. These
methods perform quite well in an equidistant and regular mesh, but they heavily rely on
these beneficial properties of the mesh.

One of the very few alternatives which can be applied for a general mesh is the
unconditionally positive finite difference (UPFD) scheme of Chen-Carpentier and Ko-
jouharov [30]. It is reported that this method is indeed completely stable even for stiff
systems [31], but its accuracy is far from being optimal [32], even compared to other first
order methods, such as the standard explicit (Euler) FDM method [32,33] or our recently
invented constant-neighbor method [31]. In this paper, we construct and test a similar

Mathematics 2021, 9, 3308 3 of 21

method than the UPFD, but it consists of two stages, and therefore it is significantly more
accurate. Our current work was inspired by the so-called theta formulas, where the user
can adjust the extent of implicitness by the parameter θ.

The paper is structured as follows. In Section 2, we first introduce the new algorithm
for the simplest, one dimensional, equidistant mesh. Then, in Section 2.2, the analytical
investigation of the convergence and stability properties of this method is explained. After
this, we present the generalization of the algorithm for arbitrary meshes. In Section 3, we
begin with the verification of the new method by comparing it to an analytical solution and
the heat conduction equation with the radiation term. Then, in Sections 3.2 and 3.3, two
numerical experiments are presented for two space dimensional stiff systems consisting of
12,000 cells without and with the nonlinear radiation term, respectively. In Section 3.4 we
make attempts to apply the new method to the advection–diffusion-reaction equation. In
Section 4, we summarize the conclusions and sketch our future research plans.

2. The New Method
2.1. Construction of the New Method

In one space dimension, we take xi = i∆x , i = 0, . . . , N− 1, which is a common space dis-
cretization. Let us fix the time discretization to tn = t0 + nh , n = 0, . . . , T , T = (tfin− t0)/h.
We introduce the mesh-parameter r = αh

∆x2 and µ = ah
∆x . The original UPFD method applies

the most common [34] (p. 112) spatial discretization of the diffusion term based on the cen-
tral difference formula, while it applies the backward difference formula for the advection
term. However, the time levels are treated in a tricky way [32], such that the neighbors are
taken into account fully at the old time level, where their values are known, and only the
actual cell is treated implicitly. It means that for example un

i−1 is used instead of un+1
i−1 , with

which they obtained:

un+1
i − un

i
h

= α
un

i−1 − 2un+1
i + un

i+1
∆x2 − a

un+1
i − un

i−1
∆x

− Kun+1
i , (4)

This can be arranged to a fully explicit form to obtain the following Algorithm 1:

Algorithm 1: The original UPFD

un+1
i =

un
i + r

(
un

i−1 + un
i+1

)
+ µun

i−1

1 + 2r + µ + Kh
(5)

Now we adapt this method to Equation (1) where a = 0 but σ > 0. In principle
the nonlinear term can be incorporated into this scheme in many different ways. We
choose the following treatment: We insert the radiation term at the level of Equation (4)
as u4

i (t) ≈ un+1
i
(
un

i
)3, which again can be expressed in an explicit form, and with

this we obtain the following adaptation of the original UPFD algorithm to Equation (3)
(Algorithm 2):

Algorithm 2: UPDF for the diffusion-reaction-radiation Equation (3)

un+1
i =

un
i +r(un

i−1+un
i+1)+qih

1+2r+Kih+σh(un
i)

3

If r, qi, Ki and σ have arbitrary nonnegative values and the values of u at the beginning
of the time stapes are nonnegative, then both the numerator and the denominator is
nonnegative in this formula. It means that this formula preserves positivity similarly to
the original UPFD formula for the strongly nonlinear case as well. As we will see later, its
accuracy is not very good, thus we proceed to construct a two-stage method as well.

Mathematics 2021, 9, 3308 4 of 21

We are going to combine the UPFD idea with the so called θ-method, which can be
applied for the diffusion term in the following way:

un+1
i = un

i + r
[
θ
(
un

i−1 − 2un
i + un

i+1
)
+ (1− θ)

(
un+1

i−1 − 2un+1
i + un+1

i+1

)]
, (6)

where θ ∈ [0, 1]. If θ = 1, this scheme is the forward-time central-space (FTCS) scheme,
which is basically the explicit Euler time integration. For smaller values of θ, this formula
is implicit, and for θ = 0, 1

2 one has the implicit (Euler) and the Crank–Nicolson method,
respectively [35]. Using the trick above and incorporating the reaction and the source terms
we can write:

un+1
i = un

i + r
[
−2θun

i − 2(1− θ)un+1
i + un

i−1 + un
i+1

]
− hKiun+1

i + hqi + σun+1
i (un

i)
3. (7)

If one takes θ = 0, the original UPFD treatment is obtained back. The point is that this
more general formula can also be easily rearranged to obtain an explicit formula, according
to which the new value of the u variable has the following form in the 1D equidistant case
(Algorithm 3):

Algorithm 3: Theta-generalization of Algorithm 2

un+1
i =

(1− 2rθ)un
i + r

(
un

i−1 + un
i+1

)
+ hqi

1 + 2r(1− θ) + hKi + σh
(
un

i
)3 (8)

Since we formally started from an implicit Formula (6) but made it fully explicit,
we started to call these methods pseudo-implicit. The main novelty of this paper is that
we organize Formula (8) into a two-stage method as follows inspired by the well-known
predictor-corrector methods [35–37]. The calculation starts with taking a fractional-sized
time step using the already known un

i values, and then a full time step is made Algorithm 4.

Algorithm 4: 2-stage pseudo-implicit method for the diffusion-reaction-radiation Equation (1)

Stage 1. Take a partial time step h1 = ph, p > 0 using Formula (8) with parameter θ1:

upred
i =

(1−2prθ1)un
i +pr(un

i−1+un
i+1)+qih1−v1Kih1un

i

1+2pr(1−θ1)+v2Kih1+σh1(un
i)

3

Stage 2. We redefine upred
i by calculating the linear combination with 0 < λ ≤ 1:

upred
i = λupred

i + (1− λ)un
i (9)

Take a full time step with the (8) formula with parameter θ2:

un+1
i =

(1− 2rθ2)un
i + r

(
upred

i−1 + upred
i+1

)
+ qih− Kih

(
w1un

i + w2upred
i

)
1 + 2r(1− θ2) + (1− w1 − w2)Kih + σh

(
upred

i

)2
un

i

,

where v1 , v2 , w1 , w2 are real numbers which are considered as free parameters. We must
mention that the mathematically correct form of (9) would be ulin

i = λupred
i + (1− λ)un

i ,
but we immediately put down it in the form which is to be used in a computer code to
spare memory. We also note that with this treatment of the nonlinear term we obtain a
second-order method with very good stability properties, as we will see later.

Mathematics 2021, 9, 3308 5 of 21

2.2. Analytical Investigations

We perform the calculations of Algorithm 4 for the linear σ = 0 case. First, we express
the new values un+1

i by the old values un
j . For this we calculate the linear combination (9)

with the Mathematica software. If we use notations κi = Kih and ψ = 1− θ1, then we have

upred
i = λ

(1−2prθ1)un
i +pr(un

i−1+un
i+1)+qi ph−v1 pκiun

i
1+2prψ+v2 pκi

+ (1− λ)un
i

=
[

λ(1−2prθ1−v1 pκi)
1+2prψ+v2 pκi

+ (1− λ)
]
un

i +
λp

1+2prψ+v2 pκi

(
run

i+1 + run
i−1 + hqi

)
,

which yields

un+1
i = 1

[1+2prψ+v2 pκi][1+2r(1−θ2)+(1−w1−w2)κi]

{
λpr2 un

i−2

+r[1 + 2pr(ψ− λ) + pκi[v2 − λ(v1 + v2 + w2)]]un
i−1

+[1− 2rθ2 + 2pr[−2(rθ2 − 1)ψ− ψ + rλ] + κi[(1 + 2prψ)(w1 + w2)− p(v2 + 2r(w2λ− v2θ2))]

− pκ2
i [λw2(v1 + v2)− v2(w1 + w2)]

]
un

i + r[1 + 2pr(ψ− λ) + pκi[v2 − λ(v1 + v2 + w2)]]un
i+1

+λpr2un
i−2 + λhprqi−1 + h[1 + 2prψ + pκi(v2 − w2λ)]qi + λhprqi+1} .

(10)

After spatial discretization as discussed above, Equation (1) for σ = 0 can be written
into a brief matrix-form:

d
→
u

dt
= M

→
u +

→
q . (11)

The system matrix M is tridiagonal (in the one-dimensional case) and it is the sum of
two terms related to the diffusion and the linear reaction terms, respectively:

M = MD + MR. (12)

In the equidistant case, these matrices have the following elements:

MD
ii = − 2α

∆x2 , MD
i, i+1 =

α

∆x2 , MD
i, i−1 =

α

∆x2 , MR
ii = −Ki. (13)

Let us start with the analysis of the convergence properties of the methods in the
one-dimensional case for constant values of the mesh ratio r, in other words, when the
equidistant spatial discretization is fixed.

Theorem 1. For σ = 0, the order of convergence of the Algorithm 4 is two for the system (6) of
linear ODEs:

d
→
u

dt
= M

→
u +

→
q ,
→
u (t = 0) =

→
u

0
, (14)

where M is defined in (11)–(13), if and only if the conditions

pλ =
1
2

, (15)

θ2 =
1
2

, (16)

2w1 + w2 = 1, (17)

v1 + v2 = 1, (18)

hold, where M is introduced in (11)–(13), while
→
q and

→
u

0
are arbitrary vectors.

Proof. We will show that the local error of the numerical solution (10) compared to the
analytical solution

Mathematics 2021, 9, 3308 6 of 21

→
u

n+1
= eMh→u

n
+
(

eMh − 1
)

M−1
→
Q =

(
1 + Mh + M2 h2

2
+ M3 h3

3!
+ . . .

)
→
u

n
+

(
h + M

h2

2
+ M2 h3

3!
+ . . .

)→
Q.

of the ODE system (14) is less than second order in the time step size h. Let us introduce
the notation β = r/h and express the exact solution in series up to second order in h:

un+1
i = 1 +

{
βun

i−1 − [Ki + 2β]un
i + βun

i+1 + qi
}

h

+
{

β2

2 un
i−2 −

[
2β2 + Ki β

2 +
Ki−1β

2

]
un

i−1 +

[
3β2 + 2βKi +

K2
i

2

]
un

i −
[
2β2 + Ki β

2 +
Ki+1β

2

]
un

i+1

+ β2

2 un
i+2 +

β
2 qi−1 −

[
β + Ki

2

]
qi +

β
2 qi+1

}
h2 + O

(
h3) .

If we do the same with the numerical solution (10), we obtain:

un+1
i = 1 +

{
βun

i−1 − [Ki + 2β]un
i + βun

i+1 + qi
}

h

+
{[

pβ2λ
]
un

i−2 −
[
2β2(1− θ2 + pλ) + Kiβ(pw2λ + 1− w1 − w2) + Ki−1 pβλ(v1 + v2)

]
un

i−1

+
[
2β2(2− 2θ2 + pλ) + 2βKi[2− θ2 − w1 − w2(1− pλ)] + K2

i [(1− w1 − w2) + pw2λ(v1 + v2)]
]
un

i

−
[
2β2(1− θ2 + pλ) + Kiβ(pw2λ + 1− w1 − w2) + Ki+1 pβλ(v1 + v2)

]
un

i+1 +
[
pβ2λ

]
un

i+2

+[pβλ]qi−1 − [2β(1− θ2) + Ki(pw2λ + 1− w1 − w2)]qi + [pβλ]qi+1}h2 + O
(
h3) .

(19)

It can be immediately seen that the two expressions coincide up to first order, but
some conditions must be fulfilled for second order equality. From the equality requirement

of the coefficients of un
i±2, and qi±1, we have pβ2λ = β2

2 and pβλ = β
2 , thus (15) must hold.

The same requirement for qi gives

2β(1− θ2) + Ki(pw2λ + 1− w1 − w2) = β +
Ki
2

,

which yields (16) and (17) if one uses condition (15). Now we substitute back the conditions
obtained until now to the coefficients of un

i±1 and un
i , and obtain

−
[
2β2 + Ki β

2 +
Ki±1β

2 (v1 + v2)
]
= −

[
2β2 + Ki β

2 +
Ki±1β

2

]
3β2 + 2Kiβ +

K2
i

2 [2w1 + (1− 2w1)(v1 + v2)] = 3β2 + 2βKi +
K2

i
2 ,

which yields (18), and the proof is now complete. �

We note that our original idea was to organize the original UPFD formula into a
two-stage method, which means θ1 = 0, θ2 = 0. With that idea we obtained a new
unconditionally positive method, but it was only first and not second order. After Theorem
1 and its proof one can understand the reason of this failure.

Before starting to analyze the stability of the methods, we also note that in the case of
the original UPFD Algorithm 1 for K = 0, the new un+1

i values are the convex combinations
of the old un

j values which immediately implies not only unconditional stability, but the
positivity preserving property, too. If K is increased to any positive number, this latter
property still holds since K is in the denominator with a positive sign. However, the
new Algorithms 3 and 4 contain the theta-formula for θ 6= 0, thus they cannot be not
positivity-preserving. This is the price we have to pay for second order accuracy.

We are going to use the most standard von Neumann stability analysis (see [38],
Chapter 8, as well as [39]) to prove the unconditional stability of the method in the linear
case. For this, the un

i values in the expression of un+1
i must be replaced by the errors εn

i and
the error-function is decomposed into a Fourier series as follows:

εn
i = ∑

m
Em(t)eIkmx, εn

i± 1 = ∑
m

Em(t)eIkm(x±∆x),

Mathematics 2021, 9, 3308 7 of 21

where Em(t) is the amplitude of the m-th term eIkmx in the Fourier series of the error and I
is the imaginary unit

√
−1. We omit the m index for the sake of simplicity, and introduce

the notation γ = km∆x, with which we obtain the following relations:

εn+1
i = E(t + h)eIkx and

εn
i−1+εn

i+1
2 =

E(t)eIkx(e−Iγ+eIγ)
2 = E(t)eIkx cos γ ,

εn
i−2+2εn

i +εn
i+2

2 = 2E(t)eIkx cos2 γ ,

Using these expressions and simplifying with eIkmx one can obtain the amplification
factor, which is defined as G = E(t+h)

E(t) . If this factor is in the closed interval [−1, 1] for
arbitrary time step size h, then the errors cannot be amplified regardless of how large h one
uses, which means unconditional stability.

Theorem 2. If K = 0 and σ = 0, then Algorithm 3 is unconditionally stable for Equation (1) if
and only if θ = 0.

Proof. Performing the substitutions un
i → εn

i described above, we obtain the following
amplification factor for Algorithm 3:

G =
1− 2rθ + 2r cos(γ)

1 + 2r(1− θ)
.

In the θ = 0 case, G = 1+2r cos(γ)
1+2r is obviously between −1 and 1 for any values of γ and

any nonnegative r, which implies unconditional stability. On the other hand, if γ = π, we
have G = 1−2r(1+θ)

1+2r(1−θ)
, which is smaller than −1 for r > 1

2θ , and that implies instability for
large time step sizes in the θ > 0 case. �

This statement means that unfortunately we cannot obtain a new unconditionally
stable one-stage algorithm with the simple modification of setting the value of θ to a
positive number.

For the investigation of stability of Algorithm 4, we substitute back conditions (15)–
(18) into (10) to eliminate the p, v2, w2 parameters, set the external source term to zero and
the reaction term to the homogeneous Ki ≡ K. With notations κ = Kh and ϕ = 1− v1 this
we obtain:

un+1
i = 1

[1+ r
λ ψ+ κ

2λ ϕ](1+r+w1κ)


r2

2
(
un

i−2 + un
i+2
)
+ r
[
1 + r

λ (ψ− λ) + κ
2λ [ϕ− 2λ(1− w1)]

](
un

i−1 + un
i+1
)
+ 1− r− r

λ [(r− 2)ψ + ψ− rλ]− κ2

2λ [λ(1− 2w1)− ϕ(1− w1)]

+κ
[(

1 + r
λ ψ
)
(1− w1)− 1

2λ (ϕ + r(2λ(1− 2w1)− ϕ))
] un

i

. (20)

Theorem 3. If K = 0, λ + θ1 = 1, and the conditions (15)–(18) hold, then Algorithm 3 is
unconditionally stable for Equation (1).

Proof. We take K = 0 in the previous expression of un+1
i , and introduce the notation

η = ψ
λ = 1−θ1

λ . With this we obtain

un+1
i =

r2

2(1 + rη)(1 + r)
(
un

i−2 + un
i+2
)
+

r(1− r + rη)

(1 + rη)(1 + r)
(
un

i−1 + un
i+1
)
+

1− r− ηr2 + ηr + r2

(1 + rη)(1 + r)
un

i . (21)

This yields the following amplification factor:

G =
1 + r(−1 + r + η − rη) + 2r(1 + r(−1 + η)) cos(γ) + r2 cos(2γ)

(1 + r)(1 + rη)

Mathematics 2021, 9, 3308 8 of 21

Since 0 ≤ θ1 ≤ 1 , and 0 < λ ≤ 1, we have η = 1−θ1
λ ≥ 0. Now if r → ∞, we have

G → (1− η)[1− 2 cos(γ)] + cos(2γ)

η
,

which is guaranteed to be between −1 and 1 if and only if η = 1, i.e., λ + θ1 = 1. Using
this assumption, the G function will have a simpler form:

G =
1 + 2r cos(γ) + r2 cos(2γ)

1 + 2r + r2 ,

which is always in the interval [−1, 1] due to the triangle inequality. �

Remark 1. From Equation (21) one can see that if the λ + θ1 = 1 holds, the value of un+1
i does

not depend on the parameters θ1 and λ. So, for the K = 0 case we will use λ = 1, which implies
that the computer do not need to calculate linear combination (9), and the running times will be
slightly shorter.

Now we turn our attention to the case when the linear reaction term is nonzero. We
will prove the stability of the method with the following parameters:

λ =
1
2

, θ1 =
1
2

, v1 = 0 , w1 = 1, (22)

which, if substituted to conditions (15)–(18), yields

p = 1 , θ2 =
1
2

, v2 = 1 , w2 = −1. (23)

Theorem 4. If conditions (22) and (23) hold, then Algorithm 3 is unconditionally stable for
Equation (1) for arbitrary K ≥ 0.

Proof. Applying the assumptions of the theorem to (19) or (20) we obtain

un+1
i = 1

(1+r+κ)2

{
r2

2
(
un

i−2 + un
i−2
)
+ r(1 + κ)

(
un

i−1 + un
i+1
)
+
[
1 + κ(1− 2r)− κ2

2

]
un

i

}
,

which yields

G =
2− κ(−2 + 4r + κ)

2(1 + κ + r)2 +
2r(1 + κ)

(1 + κ + r)2 cos(γ) +
r2

(1 + κ + r)2 cos(2γ).

The G function is symmetric for γ = π, thus it is enough to examine the 0 ≤ γ ≤ π
interval. First let us examine the limits of G. For r → 0 we have

G → 2 + 2κ − κ2

2(1 + κ)2 ,

which function has a value of unity if κ = 0 and then it is monotonously decreasing with
increasing κ towards the limit value −1/2. For r → ∞ we have G → cos(2γ). For κ → ∞
we have G → − 1

2 . All of these values are finite and in the interval [−1, 1].
Since G is continuous, the limits are finite, the denominator cannot be zero, G is

bounded. Now it is enough to examine the condition G ∈ [−1, 1] in the extremal values.
We start with the variable γ while keeping the other two variables arbitrary.

∂G
∂γ

= −2r(1 + κ + 2r cos(γ))

(1 + κ + r)2 sin(γ) ,

Mathematics 2021, 9, 3308 9 of 21

thus, extremal values can be present in three cases:

γ1 = 0, γ2 = π

1 + κ + 2r cos(γ3) = 0 ⇒ cos(γ3) = − 1+κ
2r .

In the first case,

G|γ1=0 =
2(1 + r)2 + 2κ − κ2

2(1 + κ + r)2 =
(1 + r)2 + κ − κ2/2

(1 + r)2 + κ + rκ + κ2
,

which is obviously in the interval [−1, 1]. In the second case,

G|γ2=π =
(r− 1)2 + κ − κ2/2− 4κr

(1 + κ + r)2 ,

and it can be checked that the equation G|γ2=π = 1 and G|γ2=π = −1 have no solution for
any positive values of r and κ.

The third case gives an extremal value if 2r ≥ 1 + κ. We obtain the following function:

G3 = G|Cosγ3=−(1+κ)/2r =
1/2− (κ + r)2

1 + 2(κ + r) + (κ + r)2 ,

which can have values only in the interval [−1, 1] again, which completes the proof. �

Remark 2. As the |G| function is obviously continuous in its three variables with no singularities,
if there is an extremal value above 1 at a point (K*, g*, r*), then there is a neighborhood of (K*, g*,
r*) with values of |G| also above 1. Any sufficiently dense set of points

(
Ki, gj, rk

)
would intersect

with this neighborhood. Thus, we independently verify the discussion above by examining |G|
numerically. We coded three embedded for loops, one to sweep through the values of each of the
parameters K, g, and r in the allowed domain as follows

Ki = 0.001× 1.01i , i = 0 . . . NK , NK = 20, 000 ,
gj =

2j
Ng
− 1 , j = 0 . . . Ng , Ng = 20, 000 ,

rk = 0.001× 1.01k , k = 0 . . . Nr , Nr = 20, 000 .

During this process the value of |G| has been calculated 8× 1012 times while K and r reached
values larger than 1083, and it was found that |G| does not exceed unity. Although this numerical
procedure cannot be considered as an exact proof, we can conclude again that the algorithm is
unconditionally stable if the conditions of Theorem 3 hold.

Remark 3. If we take K ≥ 0 arbitrary, then we have proved the unconditional stability of
Algorithm 3 only for λ = 1

2 . In fact, it would require enormous energy to thoroughly examine the
full multidimensional parameter space. If the λ = 1

2 assumption does not hold, the amplification
factor can take values that are smaller than −1 in many cases. However, it does not mean that
violating the assumptions always implies unstable behavior. In fact, according to a large number
of numerical experiments, the value of G can be below −1 only if both Kh and r have a rather
large value, typically larger than 20, and even in these cases G is still close to −1 , for example
G = −1.002, especially if λ is not very close to 0. So, Algorithm 4 has very good stability properties
in the practically relevant cases for λ > 0.3 , as we will see in the next section.

Although all the free parameters are fixed due to the analytical considerations, we
will still consider λ as a free parameter. It means that with conditions (22)–(23) we have
Algorithm 5 with only one free parameter:

Mathematics 2021, 9, 3308 10 of 21

Algorithm 5: (Algorithm 4) For the diffusion-reaction-radiation Equation (1)

Stage 1. Take a partial time step h1 = h
2λ , λ > 0:

upred
i =

(1+r(1− 1
λ))un

i +
r

2λ (un
i−1+un

i+1)+qih1

1+r+Kih1+σh1(un
i)

3

Stage 2. Calculate the linear combination upred
i = λupred

i + (1− λ)un
i

Take a full time step:

un+1
i =

(1−r)un
i +r

(
upred

i−1 +upred
i+1

)
+qih+Kih

(
upred

i −un
i

)
1+r+Kih+σh

(
upred

i

)2
un

i

2.3. Generalization for Arbitrary Grids

In the case when one has a general mesh and the material properties are functions
of the space variables, the spatially discretized form of Equation (3) can be generalized
as follows:

dui
dt

= ∑
j 6=i

uj − ui

RijCi
. (24)

here, ui refers to the cells of various shapes and properties with heat capacity Ci., while Rij
is the thermal resistance between cells i and j. If we use the notations Vi for the volume
of the cell, Aij and dij for the surface between the cells and for the distance between the
cell-centers, then these quantities can be calculated approximately as

Ci = ciρiVi and Rij ≈
dij

kij Aij
, (25)

respectively. In our previous papers [9,11] this generalization procedure (which is based
on, e.g., Chapter 5 of the book [40]) is explained in more details. Figure 1 can help the
reader to visualize these quantities.

Mathematics 2021, 9, 3308 12 of 24

Algorithm 5: (Algorithm 4) For the diffusion-reaction-radiation Equation (1)
Stage 1. Take a partial time step 1 02

hh ,λλ= > :

()() ()
()

1

3
1 1

1 1pred
11 1 2

1

i

i

n n n
i i i

i n
i

rr u u u q h
u

r K h h u

λ λ

σ

− ++ − + + +
=

+ + +

Stage 2. Calculate the linear combination ()pred pred 1 n
ii iu u uλ λ= + −

Take a full time step:

() () ()
()2

pred pred pred
1 11

pred

1

1

i i

i

n n
i iii in

i
n
ii

r u r u u q h K h u u
u

r K h h u uσ

− ++
− + + + + −

=
+ + +

2.3. Generalization for Arbitrary Grids
In the case when one has a general mesh and the material properties are functions of

the space variables, the spatially discretized form of Equation (3) can be generalized as
follows:

j ii

ij ij i

u udu
dt R C≠

−
=  . (24)

here, ui refers to the cells of various shapes and properties with heat capacity Ci., while
ijR is the thermal resistance between cells i and j. If we use the notations iV for the

volume of the cell, ijA and ijd for the surface between the cells and for the distance
between the cell-centers, then these quantities can be calculated approximately as

i i i iC c V= ρ and ij
ij

ij ij

d
R

k A
≈ , (25)

respectively. In our previous papers [9,11] this generalization procedure (which is based
on, e.g., Chapter 5 of the book [40]) is explained in more details. Figure 1 can help the
reader to visualize these quantities.

Figure 1. Arrangement of the generalized variables for the case when the mesh is not necessarily
regular. The red double arrows are for conduction between cells with capacities iC and jC

through the resistances ijR .

In the general case of Equation (3), the nonzero elements of the matrix DM
introduced in (13) can be given as:

1 ,D D D
ij ii ij

ij i j i
M M M

R C ≠
= = − .

Figure 1. Arrangement of the generalized variables for the case when the mesh is not necessarily
regular. The red double arrows are for conduction between cells with capacities Ci and Cj through
the resistances Rij.

In the general case of Equation (3), the nonzero elements of the matrix MD introduced
in (13) can be given as:

MD
ij =

1
RijCi

, MD
ii = −∑

j 6=i
MD

ij .

We introduce the following notations

τi =
−1
MD

ii
, ri =

h
2τi

and Ai = h∑
j 6=i

MD
ij un

j = h∑
j 6=i

un
j

CiRij
,

Mathematics 2021, 9, 3308 11 of 21

where τi ≥ 0 is the characteristic time or time constant of cell i, ri is the generalization
of r = αh

∆x2 = −miih
2 (the usual mesh ratio in the case of the diffusion equation), and Ai

reflects the state of the neighbors of cell i. Now we can write the modified UPFD and our
pseudo-implicit algorithms in the general case as follows (Algorithm 6):

Algorithm 6: (Algorithm 2) UPDF for the diffusion-reaction-radiation equation, general
mesh-form

un+1
i =

un
i + Ai + qih

1 + 2ri + Kih + σh
(
un

i
)3 (26)

We emphasize that in Algorithm 7, ri = h
2τi

in both stages. We stress again that

Algorithm 4 is proven to be unconditionally stable only for λ = 1
2 .

Algorithm 7: (Algorithm 4) 2-stage pseudo-implicit method for the diffusion-reaction
Equation (1), general-mesh from

Stage 1. Take a partial time step h1 = h
2λ , λ > 0, with the (26) formula:

upred
i =

(1+(1− 1
λ)ri)un

i +Ai+qih1

1+ri+Kih1+σh1(un
i)

3 , where Ai = h1 ∑
j 6=i

un
j

Ci Rij
.

Stage 2. We redefine upred
i by calculating the linear combination

upred
i = λupred

i + (1− λ)un
i .

Take a full time step with the (26) formula:

un+1
i =

(1−ri)un
i +Ai+Kih

(
upred

i −un
i

)
+qih

1+ri+Kih+σh
(

upred
i

)2
un

i

, where Ai = h ∑
j 6=i

upred
j

Ci Rij
.

3. Numerical Results
3.1. Verification Using an Analitical Solution

We have constructed the following analytical solution of Equation (1) for α = 1, K = 2
and q(x, t) = σt4e4x−4t + ex−t:

uexact(x, t) = te x− t. (27)

Here we reproduce this analytical solution numerically for (t, x) ∈ [0.5, 1]× [−1, 1]
and σ = 3. The initial condition

u(x, t = 0.5) = 0.5ex−0.5,

and the Dirichlet boundary conditions at the ends of the interval

u(x = −1, t) = te−1− t, and u(x = 1, t) = te 1−t

are obtained using the analytical solution. The (global) numerical error is the absolute
difference of the numerical solutions unum

j produced by the examined method and the

reference solution uref
j (which is the analytical solution here) at final time tfin. We use these

individual errors of the nodes or cells to calculate the maximum error:

Error(L∞) = max
1≤j≤N

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣, (28)

where the L∞ errors as a function of the time step size h can be seen in Figure 2 for
∆x = 0.02.

Mathematics 2021, 9, 3308 12 of 21

Mathematics 2021, 9, 3308 14 of 24

reference solution ref
ju (which is the analytical solution here) at final time fint . We use

these individual errors of the nodes or cells to calculate the maximum error:

ref num
fin fin1

Error() max () ()j jj N
L u t u t∞ ≤ ≤

= − , (28)

where the L∞ errors as a function of the time step size h can be seen in Figure 2 for
0 02x .Δ = .

Figure 2. The L∞ errors as a function of time step size h for the numerical solutions of Equation (1)
in case of Algorithm 2 and the new pseudo-implicit Algorithm 4 for three different values of
parameter λ . This parameter causes only very slight differences, thus the three curves almost
coincide.

We have solved Equation (1) for several different space and time domains and values
of the parameters σ and xΔ , and very similar curves have been produced for those
cases as well. The new methods are completely stable, and the UPFD method is first order
while the new pseudo-implicit methods are second order in the time step size. We note
that in Section 3.4 this equation will be solved for a much larger radiation coefficient σ
as well, and it will be demonstrated that for a strongly nonlinear case and in a non-
equidistant grid, the parameter λ will be more relevant.

3.2. Comparison with Other Methods for a Large, Extremely Stiff System
In this subsection, we solve Equation (3) in a two space dimensional, topologically

rectangle-structured mesh with x zN N N= × cells (see Figure 1 for visualization). The
size of the system is fixed to 100xN = and 120zN = , thus the total cell number is 12,000.
Randomly generated cell capacities and thermal resistances

i x,i z,i
() () ()10 1, ,0 10C C Rx Rx Rz Rzrand rand randC R Rα β α β α β− × − × − ×= = = (29)

Figure 2. The L∞ errors as a function of time step size h for the numerical solutions of Equation (1) in
case of Algorithm 2 and the new pseudo-implicit Algorithm 4 for three different values of parameter
λ. This parameter causes only very slight differences, thus the three curves almost coincide.

We have solved Equation (1) for several different space and time domains and values
of the parameters σ and ∆x, and very similar curves have been produced for those cases as
well. The new methods are completely stable, and the UPFD method is first order while
the new pseudo-implicit methods are second order in the time step size. We note that in
Section 3.4 this equation will be solved for a much larger radiation coefficient σ as well,
and it will be demonstrated that for a strongly nonlinear case and in a non-equidistant grid,
the parameter λ will be more relevant.

3.2. Comparison with Other Methods for a Large, Extremely Stiff System

In this subsection, we solve Equation (3) in a two space dimensional, topologically
rectangle-structured mesh with N = Nx × Nz cells (see Figure 1 for visualization). The
size of the system is fixed to Nx = 100 and Nz = 120, thus the total cell number is 12,000.
Randomly generated cell capacities and thermal resistances

Ci = 10(αC−βC×rand), Rx,i = 10(αRx−βRx×rand), Rz,i = 10(αRz−βRz×rand) (29)

following a log-uniform distribution have been used, where the (pseudo)random number
rand is generated by MATLAB for each quantity with a uniform distribution in the unit
interval (0, 1). In this subsection, K = 0 and σ = 0, thus we deal with the linear heat
equation and M = MD. The exponents have been set to the following values:

αC = αRx = αRz = −3, βC = βRx = βRz = 3 ,

which means that log-uniformly distributed values between 0.001 and 1000 have been
given to the capacities and the resistances. Different random values have been generated
for the initial conditions ui(0) = rand and the source term qi = 0.2× rand− 0.1 as well.
The final time of the simulation has been set to tfin = 0.2.

Mathematics 2021, 9, 3308 13 of 21

We consider zero Neumann boundary conditions (isolated system). To implement
this, we omit those terms of the sum in Equation (3) which have infinite resistivity in the
denominator because of thermal isolation at the boundary. If the (nonzero) smallest and the
largest absolute value eigenvalues of the system matrix M, defined in (11)–(13), are denoted
by λMIN and λMAX, then the stiffness ratio of the system can be given as λMAX/λMIN. On
the other hand, hFTCS

MAX =
∣∣∣ 2

λMAX

∣∣∣ exactly gives the maximum possible time step size for the
FTCS (explicit Euler) scheme. This threshold is often called the CFL limit and it is valid
for the second order explicit Runge–Kutta (RK) methods as well [41]. Above this time
step size, the solutions will sooner or later explode due to instability. In the present case,
the stiffness ratio is 2.3× 1011 and hFTCS

MAX = 1.03× 10−6, respectively. We will see that this
implies serious under-performance of the conventional explicit methods, which are only
conditionally stable.

In Sections 3.2 and 3.3, the reference solution is obtained using the ode15s
built-in solver of MATLAB with sufficiently strict error tolerance ′Tol′ =10−12 (where
Tol .

= ′AbsTol′ =′ RelTol′) and therefore high precision. Besides the L∞ error defined in
(28), we also use the average error:

Error(L1) =
1
N ∑

1≤j≤N

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣,

and the so-called energy error:

Error(Energy) = ∑
1≤j≤N

Cj

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣,

which, in case of heat transfer, gives the error in terms of energy.
The performance of the new algorithms was compared with the following methods

coded by us. The original UPFD, the CNe [42], the 2-stage linear-neighbor (LNe) [11] and
the CpC methods [31], and finally the well-known Heun method, also called as explicit
trapezoidal rule, which may be the most common second order RK scheme [43]. Besides
these, the well-established and professionally coded MATLAB solvers have been used for
comparison purposes, namely:

• ode45, a fourth (fifth) order Runge–Kutta–Dormand–Prince method;
• ode23, second (third) order Runge–Kutta–Bogacki–Shampine method;
• ode113, 1 to 13 order variable-step and variable order VSVO Adams–Bashforth–

Moulton solver;
• ode15s, a 1 to 5 order numerical differentiation formulas with VSVO, designed for

stiff problems;
• ode23s, a second order modified Rosenbrock method;
• ode23t, uses the trapezoidal rule with a free interpolant;
• ode23tb, applies a trapezoidal rule in the first stage and a backward differentiation

formula in the second one.

It is known that ode45, ode23 and ode113 uses explicit algorithms while the rest are
implicit solvers. In case of the MATLAB solvers, the time step sizes cannot be determined
directly, thus we set the tolerances instead, starting from an extremely large value, such as
Tol =102 until a small minimum value, usually Tol =10−6.

For the calculations where running times are measured, a desktop computer with
an Intel Core i7-9700 CPU, 16.0 GB RAM is used, while the software is the MATLAB
R2020b [44]. The total running time of the algorithms is measured by the built-in tic-toc
function of that software.

We have examined the L∞, L1 and energy errors as a function of the time step size
h and the running time. In Figure 3 we present the L1 error as a function of h, while in
Figure 4 one can see the L1 errors vs. the total running times. Table 1 collects some results
which have been obtained by the numerical schemes coded by us and the “ode” solvers of
MATLAB. We set λ = 1 as it is explained in Remark 1.

Mathematics 2021, 9, 3308 14 of 21

Mathematics 2021, 9, 3308 16 of 24

It is known that ode45, ode23 and ode113 uses explicit algorithms while the rest are
implicit solvers. In case of the MATLAB solvers, the time step sizes cannot be determined
directly, thus we set the tolerances instead, starting from an extremely large value, such
as 2Tol = 10 until a small minimum value, usually 6Tol = 10− .

For the calculations where running times are measured, a desktop computer with an
Intel Core i7-9700 CPU, 16.0 GB RAM is used, while the software is the MATLAB R2020b
[44]. The total running time of the algorithms is measured by the built-in tic-toc function
of that software.

We have examined the L∞ , 1L and energy errors as a function of the time step size
h and the running time. In Figure 3 we present the 1L error as a function of h, while in
Figure 4 one can see the 1L errors vs. the total running times. Table 1 collects some
results which have been obtained by the numerical schemes coded by us and the “ode”
solvers of MATLAB. We set 1λ = as it is explained in Remark 1.

Figure 3. L1 (average) errors as a function of the time step size of the new pseudo-implicit (PI)
algorithm and some other methods for the first, extremely stiff system with 0 0K ,σ= = .
Figure 3. L1 (average) errors as a function of the time step size of the new pseudo-implicit (PI)
algorithm and some other methods for the first, extremely stiff system with K = 0 , σ = 0.

Mathematics 2021, 9, 3308 17 of 24

Figure 4. (average) errors as a function of the running time for the first (moderately stiff) system, in the case of the
algorithms coded by us as well as of the MATLAB routines.

Table 1. Comparison of different algorithms for the extremely stiff system of twelve thousand cells.

Numerical Method ()LError ∞ 1()LError Energy Error Running Time (s)
ode23, Tol = 10ିଵ 7.15 × 10ିଷ 6.68 × 10ି଻ 1.80 × 10ିହ 3.04 × 10ହ
ode15s, Tol = 10ିଶ 1.30 × 10ିଷ 7.33 × 10ିହ 8.79 × 10଴ 8.69 × 10ଶ
ode23s, Tol = 10ିଶ 4.33 × 10ିସ 2.37 × 10ିହ 2.80 × 10଴ 3.02 × 10ହ
ode23t, Tol = 10ିଶ 5.71 × 10ିସ 3.14 × 10ିହ 3.75 × 10଴ 1.00 × 10ଷ

ode23tb, Tol = 10ିଶ 4.28 × 10ିସ 2.33 × 10ିହ 2.77 × 10଴ 9.82 × 10ଶ
UPFD, ℎ = 1 × 10ି଺ 2.20 × 10ିଷ 1.24 × 10ିହ 4.86 × 10ିଵ 5.65 × 10ଵ
Heun, ℎ = 1 × 10ି଺ 1.23 × 10ିଵଵ 3.79 × 10ିଵଷ 4.01 × 10ି଼ 1.05 × 10ଶ
CNe, ℎ = 5 × 10ି଺ 5.85 × 10ିଷ 3.36 × 10ିହ 1.28 × 10଴ 8.28 × 10଴
LNe, ℎ = 1 × 10ିହ 2.70 × 10ିଷ 1.28 × 10ିହ 3.58 × 10ିଵ 8.07 × 10଴

CpC p = 1/2, ℎ = 2.5 × 10ିହ 1.21 × 10ିଶ 4.61 × 10ିହ 1.08 × 10଴ 3.17 × 10଴
PI 𝜆 = 1, ℎ = 2.5 × 10ିହ 8.44 × 10ିଷ 3.66 × 10ିହ 8.62 × 10ିଵ 3.26 × 10଴
PI 𝜆 = 1, ℎ = 1 × 10ିହ 2.54 × 10ିଷ 1.00 × 10ିହ 2.41 × 10ିଵ 8.19 × 10଴
PI 𝜆 = 1, ℎ = 5 × 10ି଺ 9.25 × 10ିସ 3.41 × 10ି଺ 8.50 × 10ିଶ 1.63 × 10ଵ

One can see that the new scheme is slightly more accurate than the LNe and the CpC,
and significantly more accurate than the first order UPFD and CNe methods. We note that
the Heun method is not present in the figures, because it is convergent only below the CFL
limit, which is lower than the time step sizes presented in the case of our methods. The
explicit MATLAB solvers ode45 and ode113 were not able to provide any meaningful
results and in the case of the ode23, it was a hard work to find those tolerances for which
the method works, albeit very slowly. The implicit MATLAB routines performed usually

Figure 4. (average) errors as a function of the running time for the first (moderately stiff) system, in the case of the algorithms coded by
us as well as of the MATLAB routines.

Mathematics 2021, 9, 3308 15 of 21

Table 1. Comparison of different algorithms for the extremely stiff system of twelve thousand cells.

Numerical Method Error(L∞) Error(L1) Energy Error Running Time (s)

ode23, Tol = 10−1 7.15× 10−3 6.68× 10−7 1.80× 10−5 3.04× 105

ode15s, Tol = 10−2 1.30× 10−3 7.33× 10−5 8.79× 100 8.69× 102

ode23s, Tol = 10−2 4.33× 10−4 2.37× 10−5 2.80× 100 3.02× 105

ode23t, Tol = 10−2 5.71× 10−4 3.14× 10−5 3.75× 100 1.00× 103

ode23tb, Tol = 10−2 4.28× 10−4 2.33× 10−5 2.77× 100 9.82× 102

UPFD, h = 1× 10−6 2.20× 10−3 1.24× 10−5 4.86× 10−1 5.65× 101

Heun, h = 1× 10−6 1.23× 10−11 3.79× 10−13 4.01× 10−8 1.05× 102

CNe, h = 5× 10−6 5.85× 10−3 3.36× 10−5 1.28× 100 8.28× 100

LNe, h = 1× 10−5 2.70× 10−3 1.28× 10−5 3.58× 10−1 8.07× 100

CpC p = 1/2, h = 2.5× 10−5 1.21× 10−2 4.61× 10−5 1.08× 100 3.17× 100

PIλ = 1, h = 2.5× 10−5 8.44× 10−3 3.66× 10−5 8.62× 10−1 3.26× 100

PIλ = 1, h = 1× 10−5 2.54× 10−3 1.00× 10−5 2.41× 10−1 8.19× 100

PIλ = 1, h = 5× 10−6 9.25× 10−4 3.41× 10−6 8.50× 10−2 1.63× 101

One can see that the new scheme is slightly more accurate than the LNe and the CpC,
and significantly more accurate than the first order UPFD and CNe methods. We note that
the Heun method is not present in the figures, because it is convergent only below the
CFL limit, which is lower than the time step sizes presented in the case of our methods.
The explicit MATLAB solvers ode45 and ode113 were not able to provide any meaningful
results and in the case of the ode23, it was a hard work to find those tolerances for which
the method works, albeit very slowly. The implicit MATLAB routines performed usually
much better, but even they are severely outperformed by the explicit and stable algorithms
if running times are considered.

3.3. Comparison with Other Methods for a Large System with Strong Nonlinearity

In the second case study, we set Ki = 3× rand, qi = 2× rand and σ = 1000. The latter
coefficient has been chosen so large because we would like to demonstrate the performance
of the new method for a strongly nonlinear case, but the values of the variable u are
typically between zero and one, thus their fourth power is usually a rather small number.
We give new values to the α and β exponents:

αC = 3, βC = 6, αRx = αRz = 3, βRx = βRz = 0.

We calculate the stiffness ratio and the CFL limit in two different ways, both of them
without taking into account the nonlinear term. If we use the full M matrix, we obtain
that the stiffness ratio is 7.7× 105, much smaller than in the previous case, while the CFL
limit for the standard FTCS was hEE

MAX = 9.76× 10−4, which, we stress again, holds for
the Heun method as well. If we use only the MD matrix instead of M, the stiffness ratio is
6.8× 109, while the CFL limit is hEE

MAX = 9.75× 10−4. The reason behind these numbers is
that the eigenvalues close to zero have been significantly increased (in absolute value) by
the new reaction term while those with large absolute values remained almost the same.

All other parameters and circumstances, such as the size of the system and the range
of the initial values are the same as in the previous subsection. We note that we were not
able to adapt our previous methods CNe, LNe and CpC for the K 6= 0 , σ 6= 0 case, nor
when the advection term is present, without losing their order of convergence (that is why
we started to develop the current methods), thus they are not presented in this and the
next subsection. In Figures 5 and 6 the energy and the average errors are presented as a

Mathematics 2021, 9, 3308 16 of 21

function of the time step size and the total running time, respectively. In Table 2 we report
the data that belong to this numerical experiment.

Mathematics 2021, 9, 3308 18 of 24

much better, but even they are severely outperformed by the explicit and stable algorithms
if running times are considered.

3.3. Comparison with Other Methods for a Large System with Strong Nonlinearity
In the second case study, we set 3iK rand= × , 2iq rand= × and 1000σ = . The

latter coefficient has been chosen so large because we would like to demonstrate the
performance of the new method for a strongly nonlinear case, but the values of the
variable u are typically between zero and one, thus their fourth power is usually a rather
small number. We give new values to the α and β exponents:

C3, 6, 3, 0C Rx Rz Rx Rzα β α α β β= = = = = = .

We calculate the stiffness ratio and the CFL limit in two different ways, both of them
without taking into account the nonlinear term. If we use the full M matrix, we obtain that
the stiffness ratio is 57.7 10× , much smaller than in the previous case, while the CFL limit
for the standard FTCS was 49 .76 10EE

MAXh −= × , which, we stress again, holds for the Heun
method as well. If we use only the DM matrix instead of M, the stiffness ratio is 96.8 10×
, while the CFL limit is 49 .75 10EE

MAXh −= × . The reason behind these numbers is that the
eigenvalues close to zero have been significantly increased (in absolute value) by the new
reaction term while those with large absolute values remained almost the same.

All other parameters and circumstances, such as the size of the system and the range
of the initial values are the same as in the previous subsection. We note that we were not
able to adapt our previous methods CNe, LNe and CpC for the 0 0K ,σ≠ ≠ case, nor
when the advection term is present, without losing their order of convergence (that is why
we started to develop the current methods), thus they are not presented in this and the
next subsection. In Figures 5 and 6 the energy and the average errors are presented as a
function of the time step size and the total running time, respectively. In Table 2 we report
the data that belong to this numerical experiment.

Figure 5. Energy errors as a function of the time step size for the second (very stiff) system, in the
case of the UPFD Algorithm 2, the Heun method and the new PI algorithms.
Figure 5. Energy errors as a function of the time step size for the second (very stiff) system, in the
case of the UPFD Algorithm 2, the Heun method and the new PI algorithms.

Table 2. Comparison of different algorithms for the very stiff system of ten thousand cells.

Numerical Method Error(L∞) Error(L1) Energy Error Running Time (s)

ode45, Tol = 10−1 4.49× 10−3 1.57× 10−6 8.54× 10−1 4.05× 101

ode23, Tol = 10−1 7.97× 10−2 2.25× 10−6 1.17× 101 1.67× 101

ode113, Tol = 10−1 9.23× 10−2 1.07× 10−5 1.57× 100 1.63× 101

ode15s, Tol = 10−3 3.14× 10−4 4.94× 10−5 4.20× 101 1.65× 103

ode23s, Tol = 10−4 9.94× 10−5 2.31× 10−5 1.93× 101 3.84× 104

ode23t, Tol = 10−4 6.78× 10−5 1.78× 10−5 1.50× 101 1.68× 103

ode23tb, Tol = 10−4 1.41× 10−4 5.25× 10−5 4.48× 101 1.67× 103

UPFD, h = 5× 10−5 1.79× 10−4 1.22× 10−5 1.19× 101 8.67× 10−1

Heun, h = 5× 10−4 1.12× 10−4 7.85× 10−6 6.50× 100 3.33× 10−1

PI λ = 1/3, h = 1.25× 10−3 3.92× 10−4 1.53× 10−5 1.19× 101 1.04× 10−1

PI λ = 1/2, h = 1.25× 10−3 3.85× 10−4 1.29× 10−5 8.97× 100 1.06× 10−1

PI λ = 1/2, h = 5× 10−4 7.76× 10−5 2.58× 10−6 1.76× 100 2.65× 10−1

PI λ = 1, h = 1.25× 10−3 4.17× 10−4 4.70× 10−5 3.71× 101 1.00× 10−1

Mathematics 2021, 9, 3308 17 of 21Mathematics 2021, 9, 3308 19 of 24

Figure 6. (average) errors as a function of the running time for the second (very stiff) system, in the case of the new
algorithms and some other methods.

Table 2. Comparison of different algorithms for the very stiff system of ten thousand cells.

Numerical Method ()LError ∞ 1()LError Energy Error Running Time (s)
ode45, Tol = 10ିଵ 4.49 × 10ିଷ 1.57 × 10ି଺ 8.54 × 10ିଵ 4.05 × 10ଵ
ode23, Tol = 10ିଵ 7.97 × 10ିଶ 2.25 × 10ି଺ 1.17 × 10ଵ 1.67 × 10ଵ

ode113, Tol = 10ିଵ 9.23 × 10ିଶ 1.07 × 10ିହ 1.57 × 10଴ 1.63 × 10ଵ
ode15s, Tol = 10ିଷ 3.14 × 10ିସ 4.94 × 10ିହ 4.20 × 10ଵ 1.65 × 10ଷ
ode23s, Tol = 10ିସ 9.94 × 10ିହ 2.31 × 10ିହ 1.93 × 10ଵ 3.84 × 10ସ
ode23t, Tol = 10ିସ 6.78 × 10ିହ 1.78 × 10ିହ 1.50 × 10ଵ 1.68 × 10ଷ

ode23tb, Tol = 10ିସ 1.41 × 10ିସ 5.25 × 10ିହ 4.48 × 10ଵ 1.67 × 10ଷ
UPFD, ℎ = 5 × 10ିହ 1.79 × 10ିସ 1.22 × 10ିହ 1.19 × 10ଵ 8.67 × 10ିଵ
Heun, ℎ = 5 × 10ିସ 1.12 × 10ିସ 7.85 × 10ି଺ 6.50 × 10଴ 3.33 × 10ିଵ

PI 𝜆 = 1/3, ℎ = 1.25 × 10ିଷ 3.92 × 10ିସ 1.53 × 10ିହ 1.19 × 10ଵ 1.04 × 10ିଵ
PI 𝜆 = 1/2, ℎ = 1.25 × 10ିଷ 3.85 × 10ିସ 1.29 × 10ିହ 8.97 × 10଴ 1.06 × 10ିଵ

PI 𝜆 = 1/2, ℎ = 5 × 10ିସ 7.76 × 10ିହ 2.58 × 10ି଺ 1.76 × 10଴ 2.65 × 10ିଵ
PI 𝜆 = 1, ℎ = 1.25 × 10ିଷ 4.17 × 10ିସ 4.70 × 10ିହ 3.71 × 10ଵ 1.00 × 10ିଵ

As it is expected, due to the larger CFL limit and weaker stiffness, the conventional
explicit methods performed much better than the implicit ones, and especially the ode45
can compete with our methods if high accuracy is required. However, for low and
medium accuracy requirements, the new pseudo-implicit method has the best
performance.

Figure 6. (average) errors as a function of the running time for the second (very stiff) system, in the case of the new
algorithms and some other methods.

As it is expected, due to the larger CFL limit and weaker stiffness, the conventional
explicit methods performed much better than the implicit ones, and especially the ode45
can compete with our methods if high accuracy is required. However, for low and medium
accuracy requirements, the new pseudo-implicit method has the best performance.

3.4. Solution of the Advection-Diffusion-Reaction Equation

In the case of the advection–diffusion-reaction Equation (2), we found two meaningful
possibilities to discretize the advection term. The first one applies the central difference
formula for the first spatial derivative:

un+1
i = un

i + r
[
−2θun

i − 2(1− θ)un+1
i + un

i−1 + un
i+1

]
− µ

un
i+1 − un

i−1
2

− Khun+1
i .

with this we obtain

un+1
i =

(1− 2rθ)un
i + r

(
un

i−1 + un
i+1
)
− µ

2
(
un

i+1 − un
i−1
)

1 + 2r(1− θ) + Kh
. (30)

The second solution is what the original paper [30] proposes: the backward difference
formula where the left neighbor is taken at the old, while the actual node is at the new
time level:

un+1
i = un

i + r
[
−2θun

i − 2(1− θ)un+1
i + un

i−1 + un
i+1

]
− µ

(
un+1

i − un
i−1

)
− Khun+1

i ,

which yields

un+1
i =

(1− 2rθ)un
i + r

(
un

i−1 + un
i+1
)
+ µun

i−1
1 + 2r(1− θ) + µ + Kh

. (31)

Mathematics 2021, 9, 3308 18 of 21

Both treatments can be applied in the first and in the second stage, thus we have four
combinations Algorithms 8–11 as listed below.

Algorithm 8: For the advection–diffusion-reaction equation

Stage 1. Take a partial time step h1 = ph, p > 0 using Formula (30) and λ = 1
2p :

upred
i =

(1−2pr(1−λ))un
i +pr(un

i−1+un
i+1)−p µ

2 (un
i+1−un

i−1)
1+r+Kh1

Stage 2. Calculate the linear combination upred
i = λupred

i + (1− λ)un
i , and using this, take a full

time step with the (30) formula:

un+1
i =

(1−r)un
i +r

(
upred

i−1 +upred
i+1

)
−Kh

(
un

i −upred
i

)
− µ

2 (un
i+1−un

i−1)
1+r+Kh

Algorithm 9: For the advection–diffusion-reaction equation

Stage 1. Take a partial time step h1 = ph, p > 0 using Formula (31) and λ = 1
2p :

upred
i =

(1−2pr(1−λ))un
i +pr(un

i−1+un
i+1)+pµun

i−1
1+r+pµ+Kh1

Stage 2. Same as Stage 2 in Algorithm 8.

Algorithm 10: For the advection–diffusion-reaction equation

Stage 1. Same as Stage 1 in Algorithm 8.
Stage 2. Calculate the linear combination upred

i = λupred
i + (1− λ)un

i , and using this, take a full
time step with the (31) formula:

un+1
i =

(1−r)un
i +r

(
upred

i−1 +upred
i+1

)
−Kh

(
un

i −upred
i

)
+µun

i−1

1+r+µ+Kh

Algorithm 11: For the advection–diffusion-reaction equation

Stage 1. Same as Stage 1 in Algorithm 9.
Stage 2. Same as Stage 2 in Algorithm 10.

We reproduce the following analytical solution of Equation (2) found in the paper of
Appadu [32]:

uexact(x, t) = e (α+a−K)t−x.

Here we examine the numerical solution for (t, x) ∈ [0, 0.1]× [0, 2] and α = 1, a = 2,
K = 1 . The initial condition is uexact(x, t = 0), and we considered Dirichlet boundary
conditions at the ends of the interval

u(x = −1, t) = te−1− t, and u(x = 1, t) = te 1−t.

The L∞ errors as a function of the time step size h are presented in Figure 7 for ∆x = 0.02
in the case of the original UPFD algorithm and the new Algorithms 5–8 above.

We found that the UPFD method is first order (as it is expected) while the new pseudo-
implicit methods are second order in the time step size. However, the UPFD method and
2 of the new methods (those which use (31) in the second stage) have a problem with
consistency. Moreover, there is an optimal time step size h for the given space step size ∆x
where some errors cancel each other and the algorithms are very accurate. In connection
with the UPFD methods, earlier papers referred to these phenomena [30,32], and now we
can see them in the case of the new pseudo-implicit methods as well.

Mathematics 2021, 9, 3308 19 of 21

Mathematics 2021, 9, 3308 21 of 24

Algorithm 11: For the advection–diffusion-reaction equation
Stage 1. Same as Stage 1 in Algorithm 9.
Stage 2. Same as Stage 2 in Algorithm 10.

We reproduce the following analytical solution of Equation (2) found in the paper of
Appadu [32]:

()exact (,) a K t xu x t e α+ − −= .

Here we examine the numerical solution for () [] []0 0 1 0 2t , x , . ,∈ × and 1 2 1, a , Kα = = = .

The initial condition is exact (, 0)u x t = , and we considered Dirichlet boundary conditions
at the ends of the interval

1 1(1,) , and (1,)t tu x t te u x t te− − −= − = = = .

The L∞ errors as a function of the time step size h are presented in Figure 7 for 0 02x .Δ =
in the case of the original UPFD algorithm and the new Algorithms 5–8 above.

We found that the UPFD method is first order (as it is expected) while the new
pseudo-implicit methods are second order in the time step size. However, the UPFD
method and 2 of the new methods (those which use (31) in the second stage) have a
problem with consistency. Moreover, there is an optimal time step size h for the given
space step size xΔ where some errors cancel each other and the algorithms are very
accurate. In connection with the UPFD methods, earlier papers referred to these
phenomena [30,32], and now we can see them in the case of the new pseudo-implicit
methods as well.

Figure 7. The L∞ errors as a function of time step size h for the numerical solutions of Equation (1) in
case of Algorithm 1 and the new pseudo-implicit Algorithms 8–11 for λ = 1

2 . The thin dashed grey
line is proportional to h2 again.

4. Discussion and Summary

In the current paper, we reached our goal to construct a fully explicit and stable
numerical algorithm to solve the time-dependent diffusion (or heat) equation with linear
and nonlinear reaction terms, where the latter represented heat loss due to radiation. Using
the UPFD idea, we organized the theta-formula into a two-stage algorithm, where, in
each stage, the latest available u values of the neighbors are used to make the originally
implicit theta-formula completely explicit. We analytically proved for the linear case that
the obtained method is second order in time step size and unconditionally stable.

For verification, an analytical solution of the nonlinear PDE was used. Then two
2-dimensional stiff systems containing 12,000 cells with discontinuous random parameters
and initial conditions were constructed. The performance of the new algorithm as well as
several other methods was examined for these systems. According to the numerical results,
the new method is quite competitive. It is second order and stable for the nonlinear case as
well, and it gives quite accurate results orders of magnitude faster than the professionally
optimized MATLAB routines and it is more accurate than all other examined explicit and
unconditionally stable methods. Although it is not positivity preserving as the original
UPFD algorithm, it is stable for relatively large time step sizes as well, even if the nonlinear-
ity is strong. Moreover, it is easy to implement and can be applied for unstructured grids
as well. The conclusion is that this new pseudo-implicit algorithm has the most important
advantages of the conventional explicit and the implicit methods at the same time.

In the near future, we are going to search for higher order and thus even more
accurate versions of these algorithms and adapt these to nonlinear parabolic equations as
well. We also plan to systematically investigate the application of these methods to the
advection–diffusion-reaction Equation (2), and, also, to similar nonlinear equations like the
Burgers–Fisher and the Burgers–Huxley equations. Moreover, we have started to consider
applying these methods to real-life engineering problems, most importantly heat transfer

Mathematics 2021, 9, 3308 20 of 21

by convection, conduction, and radiation in buildings [45] and solar panels [46], to increase
energy-efficiency and therefore to contribute to the prevention of the climate-change.

Author Contributions: Conceptualization, methodology, supervision and resources, E.K.; software,
Á.N.; validation, E.K. and H.K.J.; formal analysis (proofs), J.M.; investigation, H.K.J. and A.H.A.;
data curation, Á.N.; writing—original draft preparation, E.K. and J.M.; writing—review and editing,
Á.N.; visualiza-tion, A.H.A. and H.K.J.; project administration, E.K. and Á.N. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the EU and the Hungarian State, co-financed by the ERDF
in the framework of the GINOP-2.3.4-15-2016-00004 project.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data is available at the following link https://github.com/Drendre/
Pseudo-Implicit-method-codes-data, accessed on 25 November 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nikezic, D.; Urosevic, V. Radon transport through concrete and determination of its diffusion coefficient. Radiat. Prot. Dosim.

2007, 128, 516. [CrossRef]
2. Ochoa, G.V.; Sanchez, W.E.; Truyoll, S.D.L.H. Experimental and theoretical study on free and force convection heat transfer.

Contemp. Eng. Sci. 2017, 10, 1143–1152. [CrossRef]
3. Holman, J.P. Heat Transfer; McGraw-Hill Science: New York, NY, USA, 2010; ISBN 978-0-07-352936-3.
4. Savović, S.; Djordjevich, A. Numerical solution of the diffusion equation describing the flow of radon through concrete SEQ

CHAPTER. Appl. Radiat. Isot. 2008, 66, 552–555. [CrossRef]
5. Suárez-Carreño, F.; Rosales-Romero, L. Convergency and stability of explicit and implicit schemes in the simulation of the heat

equation. Appl. Sci. 2021, 11, 4468. [CrossRef]
6. Lima, S.A.; Kamrujjaman; Islam, S. Numerical solution of convection–diffusion–reaction equations by a finite element method

with error correlation. AIP Adv. 2021, 11, 085225. [CrossRef]
7. Ivanovic, M.; Svicevic, M.; Savovic, S. Numerical solution of Stefan problem with variable space grid method based on mixed

finite element/ finite difference approach. Int. J. Numer. Methods Heat Fluid Flow 2014, 24, 2682–2695. [CrossRef]
8. Lienhard, I.V.; John, H. A Heat Transfer Textbook, 4th ed.; Phlogiston Press: Cambridge, MA, USA, 2017; ISBN 9780971383524.
9. Saleh, M.; Nagy, Á.; Kovács, E. Construction and investigation of new numerical algorithms for the heat equation: Part 3.

Multidiszciplináris Tudományok 2020, 10, 349–360. [CrossRef]
10. Nagy, Á.; Saleh, M.; Omle, I.; Kareem, H.; Kovács, E. New stable, explicit, shifted-hopscotch algorithms for the heat equation.

Math. Comput. Appl. 2021, 26, 61. [CrossRef]
11. Kovács, E. A class of new stable, explicit methods to solve the non-stationary heat equation. Numer. Methods Partial. Differ. Equ.

2021, 37, 2469–2489. [CrossRef]
12. Savovic, S.; Djordjevich, A. Explicit finite difference solution for contaminant transport problems with constant and oscillating

boundary conditions. Therm. Sci. 2020, 24, 2225–2231. [CrossRef]
13. Zhang, J.; Zhao, C. Sharp error estimate of BDF2 scheme with variable time steps for molecular beam expitaxial models without

slop selection. J. Math. 2021, 41, 1–19.
14. Amoah-mensah, J.; Boateng, F.O.; Bonsu, K. Numerical solution to parabolic PDE using implicit finite difference approach. Math.

Theory Model. 2016, 6, 74–84.
15. Mbroh, N.A.; Munyakazi, J.B. A robust numerical scheme for singularly perturbed parabolic reaction-diffusion problems via the

method of lines. Int. J. Comput. Math. 2021, 1–20. [CrossRef]
16. Aminikhah, H.; Alavi, J. An efficient B-spline difference method for solving system of nonlinear parabolic PDEs. SeMA J. 2017, 75,

335–348. [CrossRef]
17. Ali, I.; Haq, S.; Nisar, K.S.; Arifeen, S.U. Numerical study of 1D and 2D advection-diffusion-reaction equations using Lucas and

Fibonacci polynomials. Arab. J. Math. 2021, 10, 513–526. [CrossRef]
18. Singh, M.K.; Rajput, S.; Singh, R.K. Study of 2D contaminant transport with depth varying input source in a groundwater

reservoir. Water Supply 2021, 21, 1464–1480. [CrossRef]
19. Mickens, R.E. Nonstandard Finite Difference Models of Differential Equations; World Scientific Publishing: Singapore, 1993;

ISBN 978-981-02-1458-6.
20. Agbavon, K.M.; Appadu, A.R. Construction and analysis of some nonstandard finite difference methods for the FitzHugh–

Nagumo equation. Numer. Methods Partial. Differ. Equ. 2020, 36, 1145–1169. [CrossRef]
21. File, G.; Garoma, H. Numerical solution of singularly perturbed differential difference equations with mixed parameters. J. Math.

Model. 2021, 9, 691–705. [CrossRef]

https://github.com/Drendre/Pseudo-Implicit-method-codes-data
https://github.com/Drendre/Pseudo-Implicit-method-codes-data
http://doi.org/10.1093/rpd/ncn077
http://doi.org/10.12988/ces.2017.79124
http://doi.org/10.1016/j.apradiso.2007.08.018
http://doi.org/10.3390/app11104468
http://doi.org/10.1063/5.0050792
http://doi.org/10.1108/HFF-11-2016-0443
http://doi.org/10.35925/j.multi.2020.4.38
http://doi.org/10.3390/mca26030061
http://doi.org/10.1002/num.22730
http://doi.org/10.2298/TSCI190722422S
http://doi.org/10.1080/00207160.2021.1954621
http://doi.org/10.1007/s40324-017-0139-8
http://doi.org/10.1007/s40065-021-00330-4
http://doi.org/10.2166/ws.2021.010
http://doi.org/10.1002/num.22468
http://doi.org/10.22124/jmm.2021.18365.1576

Mathematics 2021, 9, 3308 21 of 21

22. Verma, A.K.; Kayenat, S. An efficient Mickens’ type NSFD scheme for the generalized Burgers Huxley equation. J. Differ. Equ.
Appl. 2020, 26, 1213–1246. [CrossRef]

23. Reguly, I.Z.; Mudalige, G.R. Productivity, performance, and portability for computational fluid dynamics applications. Comput.
Fluids 2020, 199, 104425. [CrossRef]

24. Gagliardi, F.; Moreto, M.; Olivieri, M.; Valero, M. The international race towards Exascale in Europe. CCF Trans. High Perform.
Comput. 2019, 1, 3–13. [CrossRef]

25. Karahan, H. Unconditional stable explicit finite difference technique for the advection–diffusion equation using spreadsheets.
Adv. Eng. Softw. 2007, 38, 80–86. [CrossRef]

26. Sanjaya, F.; Mungkasi, S. A simple but accurate explicit finite difference method for the advection-diffusion equation. J. Phys.
Conf. Ser. 2017, 909, 12038. [CrossRef]

27. Pourghanbar, S.; Manafian, J.; Ranjbar, M.; Aliyeva, A.; Gasimov, Y.S. An efficient alternating direction explicit method for solving
a nonlinear partial differential equation. Math. Probl. Eng. 2020, 2020, 9647416. [CrossRef]

28. Harley, C. Hopscotch method: The numerical solution of the Frank-Kamenetskii partial differential equation. Appl. Math. Comput.
2010, 217, 4065–4075. [CrossRef]

29. Al-Bayati, A.Y.; Manaa, S.A.; Al-Rozbayani, A.M. Comparison of Finite Difference Solution Methods for Reaction Diffusion
System in Two Dimensions. AL-Rafidain J. Comput. Sci. Math. 2011, 8, 21–36. [CrossRef]

30. Appadu, A.R. Performance of UPFD scheme under some different regimes of advection, diffusion and reaction. Int. J. Numer.
Methods Heat Fluid Flow 2017, 27, 1412–1429. [CrossRef]

31. Kovács, E.; Nagy, Á.; Saleh, M. A set of new stable, explicit, second order schemes for the non-stationary heat conduction equation.
Mathematics 2021, 9, 2284. [CrossRef]

32. Drljača, B.; Savović, S. Unconditionally positive finite difference and standard explicit finite difference schemes for power flow
equation. Univ. Thought—Publ. Nat. Sci. 2019, 9, 75–78. [CrossRef]

33. Savović, S.; Drljača, B.; Djordjevich, A. A comparative study of two different finite difference methods for solving advection–
diffusion reaction equation for modeling exponential traveling wave in heat and mass transfer processes. Ric. Mat. 2021, 1–8.
[CrossRef]

34. Holmes, M.H. Introduction to Numerical Methods in Differential Equations; Springer: New York, NY, USA, 2007; ISBN 978-0387-30891-3.
35. Wikipedia. Predictor–Corrector Method. Available online: https://en.wikipedia.org/wiki/Predictor-corrector_method (accessed

on 16 December 2021).
36. Shokri, A. The symmetric two-step P-stable nonlinear predictor-corrector meth- ods for the numerical solution of second order

initial value problems. Bull. Iran. Math. Soc. 2015, 41, 191–205.
37. Hirsch, C. Numerical Computation of Internal and External Flows, Volume 1: Fundamentals of Numerical Discretization; Wiley: Hoboken,

NJ, USA, 1988.
38. Wikipedia. Von Neumann Stability Analysis. Available online: https://en.wikipedia.org/wiki/Von_Neumann_stability_analysis

(accessed on 16 December 2021).
39. Munka, M.; Pápay, J. 4D Numerical Modeling of Petroleum Reservoir Recovery; Akadémiai Kiadó: Budapest, Hungary, 2001;

ISBN 9630578433.
40. Muñoz-Matute, J.; Calo, V.M.; Pardo, D.; Alberdi, E.; van der Zee, K.G. Explicit-in-time goal-oriented adaptivity. In Computer

Methods in Applied Mechanics and Engineering; Elsevier: Amsterdam, The Netherlands, 2019; Volume 347, pp. 176–200. [CrossRef]
41. Kovács, E. New stable, explicit, first order method to solve the heat conduction equation. J. Comput. Appl. Mech. 2020, 15, 3–13.

[CrossRef]
42. Heun’s Method—Wikipedia. Available online: https://en.wikipedia.org/wiki/Heun%27s_method (accessed on 30 July 2021).
43. MATLAB. R2020b at a Glance. 2020. Available online: https://uk.mathworks.com/products/new_products/release2020b.html

(accessed on 16 December 2021).
44. Chen-Charpentier, B.M.; Kojouharov, H.V. An unconditionally positivity preserving scheme for advection–diffusion reaction

equations. Math. Comput. Model. 2013, 57, 2177–2185. [CrossRef]
45. Jumabekova, A.; Berger, J.; Foucquier, A. An efficient sensitivity analysis for energy performance of building envelope: A

continuous derivative based approach. Build. Simul. 2021, 14, 909–930. [CrossRef]
46. Matusz-Kalász, D.; Bodnár, I. Operation problems of solar panel caused by the surface contamination. Energies 2021, 14, 5461.

[CrossRef]

http://doi.org/10.1080/10236198.2020.1812594
http://doi.org/10.1016/j.compfluid.2020.104425
http://doi.org/10.1007/s42514-019-00002-y
http://doi.org/10.1016/j.advengsoft.2006.08.001
http://doi.org/10.1088/1742-6596/909/1/012038
http://doi.org/10.1155/2020/9647416
http://doi.org/10.1016/j.amc.2010.10.020
http://doi.org/10.33899/csmj.2011.163605
http://doi.org/10.1108/HFF-01-2016-0038
http://doi.org/10.3390/math9182284
http://doi.org/10.5937/univtho9-23312
http://doi.org/10.1007/s11587-021-00665-2
https://en.wikipedia.org/wiki/Predictor-corrector_method
https://en.wikipedia.org/wiki/Von_Neumann_stability_analysis
http://doi.org/10.1016/j.cma.2018.12.028
http://doi.org/10.32973/jcam.2020.001
https://en.wikipedia.org/wiki/Heun%27s_method
https://uk.mathworks.com/products/new_products/release2020b.html
http://doi.org/10.1016/j.mcm.2011.05.005
http://doi.org/10.1007/s12273-020-0712-4
http://doi.org/10.3390/en14175461

	Introduction
	The New Method
	Construction of the New Method
	Analytical Investigations
	Generalization for Arbitrary Grids

	Numerical Results
	Verification Using an Analitical Solution
	Comparison with Other Methods for a Large, Extremely Stiff System
	Comparison with Other Methods for a Large System with Strong Nonlinearity
	Solution of the Advection-Diffusion-Reaction Equation

	Discussion and Summary
	References

