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Abstract: Space-filling design selects points uniformly in the experimental space, bringing consider-
able flexibility to the complex-model-based and model-free data analysis. At present, space-filling
designs mostly focus on regular spaces and continuous factors, with a lack of studies into the discrete
factors and the constraints among factors. Most of the existing experimental design methods for
qualitative factors are not applicable for discrete factors, since they ignore the potential order or spa-
tial distance between discrete factors. This paper proposes a space-filling method, called maximum
projection coordinate-exchange (MP-CE), taking into account both the diversity of factor types and
the complexity of factor constraints. Specifically, the maximum projection criterion and distance
criterion are introduced to capture the “bad” coordinates, and the coordinate-exchange and the
optimization of experimental design are realized by solving one-dimensional constrained optimiza-
tion problem. Meanwhile, by adding iterative perturbations to the traditional coordinate exchange
process, the adjacent areas of the local optimal solution are explored and the optimum performances
of the current optimal solution are retained, while the shortcomings of random restart are effectively
avoided. Experiments in the regular space and constraint space, as well as experimental design for
the terminal interception effectiveness of a missile defense system, show that the MP-CE method
significantly outperforms existing popular space-filling design methods in terms of space-projection
properties, while yielding comparable or superior space-filling properties.

Keywords: experimental design; space-filling; multiple types of factors

1. Introduction

The experimental design aims to strategically select a combination of experimental
factors, so as to maximize benefits at the minimum computational cost. Space-filling
designs are used to observe the response by placing a set of experimental points uniformly
in the design space, which can provide insight into the performance of the experimental
object in the whole experimental space and has high flexibility in exploring the relationship
between the factors and the response. Typical space-filling design methods include Latin
hypercube design (LHD) and uniform design. LHD is the standard method for uniformly
placing points on each univariate dimension [1]. Johnson, Moore, and Ylvisaker proposed
a method to optimize LHD using space-filling criterion, including the Maximin LHD
(MmLHD) that maximizes the minimum distance between two points, and the Minimax
LHD that minimizes the maximum distance between two points [2]. Kaitai Fang and Yuan
Wang put forward a uniform design to find the test points uniformly distributed in the
design space [3]. Joseph believes that the computer experiment output is deterministic,
and any repeated design points will lead to a waste of computing resources. Therefore,
a good design of computer experiment should be non-overlapping. LHD improves one-
dimensional projection properties but cannot guarantee good space-filling properties in
higher-dimensional subspaces. Therefore, Joseph, Gul and Ba et al. proposed the maximum
projection (MaxPro) design, which can simultaneously optimize the space-filling properties
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of the design points with respect to all possible subsets of factors [4]. The test proves that it
also has a good performance in the space-filling distance.

The current experimental design mainly focuses on the continuous numerical factors
in the regular space, however, the actual experiments may involve discrete numerical
factors and ordered qualitative factors, and there may be complex constraints between
factors. For example, in the flight experiment of ship-to-air missile, the experimental factors
include target speed, target height, target distance and so on. The target speed is generally
a discrete numerical factor corresponding to the specific type of target, for example, the
speed of a helicopter in a low-speed hovering state can be regarded as 0 m/s, while that of
a subsonic anti-ship missile is around 300 m/s. The target height has three levels of high,
medium, and low altitude, and the target distance has three levels of near, medium and
far. They are both qualitative factors and their levels are in order. Furthermore, there are
constraints between the target speed and the target height.

In a bid to solve the above problems of experimental design with discrete factors and
qualitative factors, this paper proposes a coordinate exchange algorithm based on MaxPro
criterion and distance criterion, namely the MP-CE method, which incorporates discrete
factors for optimization, and calculates the probability of coordinate exchange based on
distance properties and projection properties to avoid falling into a local optimal solution
prematurely. Each time the local optimal solution is found, iterated perturbations are
added to avoid the shortcomings of random restart of the coordinate exchange algorithm.
As ordered qualitative factors can be transformed into discrete numerical factors, discrete
numerical factors and ordered qualitative factors are collectively referred to as discrete
factors in the following description.

2. Literature Review
2.1. Experimental Design with Discrete Factors

The space-filling designs with qualitative factors include the slice Latin hypercube
design [5–7], the marginally coupled design [8,9], the clustering filling design and so
on [10,11]. The optimal design strategy for experiments with discrete factors differs from
that for experiments with continuous factors, as the level of discrete factors may be re-
peated, and it also differs from that for experiments with qualitative factors, because the
difference between qualitative factors cannot be measured by distance. However, the
current main strategy for experimental designs with discrete factors is to ignore the order
between factors and treat them as disordered qualitative factors. Another strategy is to
treat the discrete numerical factors as continuous factors and then round each of them
to the nearest discrete value. The problem with this method is that the final design may
not be optimal, or even worse than the local optimal solution. Joseph first extends its
MaxPro design for experiments with continuous, discrete, and qualitative factors, which
can achieve good space-filling properties in the whole design space and all possible sub
dimensional projections [12]. The design matrix is randomly initialized by generating
a random LHD and folding each value of the factors to the closest given discrete level.
and the simulated annealing algorithm is used to iteratively search the optimal solution
by randomly exchanging two coordinates in a column of the design matrix. In fact, this
method does not change the distribution of discrete levels in the initial design, thus it is
not suitable for experiments with constraints between factors.

2.2. Experimental Design in Constrained Space

The typical methods of constructing space-filling designs in hypercubes are usually
not suitable for constrained experimental spaces. Although it is possible to create design
in unconstrained space and remove unacceptable points, this may result in unexplored
areas of the design space and require additional work to ensure that the number of design
points matches the requirements of the experiment. Draguic, Santner, and Dean introduced
the CoNcaD algorithm [13], which is used for a space-filling design in bounded non-
rectangular regions, focusing on maximum and low-dimensional properties. Beal et al.



Mathematics 2021, 9, 3314 3 of 13

(2014) improved the WSP algorithm to construct a space-filling design, which can be
applied to experimental designs with specific constraints and can increase the observation
density of specific regions of interest [14]. Lulu Kang (2019) provided a random coordinate
exchange algorithm for constructing experimental designs with space-filling criterion
in arbitrary regular or irregular constrained spaces, which improves the optimization
efficiency of coordinate exchange [15]. Lekivetz and Jones (2015) proposed a fast flexible
space-filling (FFF) design [16], which clusters random points in the design space to generate
design. Subsequently, the FFF algorithm was extended to allow qualitative factors to be
added to the design, while maintaining the flexibility of quickly creating space-filling
designs in rectangular and non-rectangular spaces [10]. However, none of these methods
propose an appropriate measure of space-filling properties for designs with discrete factors.

3. The MP-CE Method

Assuming there are p1 continuous factors, namely X1, . . . , Xp1, and p2 discrete factors,
namely Xp1+1, . . . , Xp, and p1 + p2 = p. The number of the discrete levels of the l-th discrete
factor Xl(l = p1 + 1, . . . , p), is denoted as ml . There are s constraints between factors, denoted
by the vector cons = (constraint1, . . . , constraints), then the value space of factors can be
denoted as Rp

cons
. Our task is to construct a design matrix Dn×p of the input factors, where

the i-th row xi = (xi1, xi2, . . . , xip) represents the i-th design point, so that these n design
points representing n experiments are uniformly filled in the design space.

In the literature [17–20] it was found that the ideal space-filling design should possess
high separation distance, low fill distance and excellent projection distance. The separation
distance refers to the minimum distance between any two experimental points. Designs
with high separation distance aim to maximize the following criterion:

min
xi ,xj∈D

d(xi, xj) (1)

The fill distance refers to the maximum distance between a given position in the
design space and the nearest test point. Designs with low filling distance aim to minimize
the following criterion:

max
x∈ R

cons
p
min
xi∈D

d(x, xi) (2)

There is almost no contradiction between the above two distance criteria. For projec-
tion distance, the MaxPro design with multiple factors proposed by Joseph can achieve
good projection properties in the whole design space and all possible sub dimensional
spaces. Referring to the literature [12], this method minimizes the following criterion:

MaxPro(D) =


1(
n
2

) n−1

∑
i=1

n

∑
j=i+1

1
p1

∏
l=1

(
xil − xjl

)2 p2

∏
k=1

(∣∣∣xik − xjk

∣∣∣+ 1
mk

)2


1

p1+p2

(3)

Expanding the above ideas, this paper proposes a new space-filling design method,
namely MP-CE, which applies the MaxPro criterion and distance criterion to guide coor-
dinate exchange, making it suitable for experimental designs with discrete factors and
constraints between factors.

MP-CE selects a “bed” coordinate of the current design by applying the coordinate
selection criterion, exchanges it into a better coordinate to improve the current design
criterion to generate a new design, which reduces the high-dimensional optimization
problem to one-dimensional optimization, and it overcomes the problem that the algorithm
is easy to fall into local optimization by applying iterated perturbation, as shown in Figure 1.
Next, we will describe coordinate selection, coordinate exchange and iterated perturbation.
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3.1. Coordinate Selection

The coordinates to be exchanged, also known as ‘bad’ coordinates, are selected accord-
ing to the projection criterion and distance criterion. Define the projection coefficient of the
l-th dimension between two points xi and xj as:

pro(xil , xjl) =
1∣∣∣xil − xjl

∣∣∣+ ω
, ω =

{
0, l = 1, · · · , p1

1
ml

, l = p1 + 1, · · · , p (4)

The steps of selecting coordinates are as follows:
(1) From the row vector of the design matrix, [x1, x2, . . . , xn]T, a pair of “bad” design

points (xa, xb) are randomly selected with a probability proportional to the following formula:

p
∏
l=1

(
pro(xil , xjl)

)2

n−1
∑

i=1

n
∑

j=i+1

p
∏
l=1

(
pro(xil , xjl)

)2
(5)

From the perspective of numerical stability, when p is large, the following formula can
be used instead: ( p

∏
l=1

pro(xil , xjl)

)−p

n−1
∑

i=1

n
∑

j=i+1

( p
∏
l=1

pro(xil , xjl)

)−p (6)

(2) Calculate the sum of the projection coefficients of xa, xb and other design points
respectively, and determine the row coordinate index i (i = a or i = b) with a probability
proportional to the following formula:

n
∑

r 6=a,r 6=b
pro(xa, xr)

n
∑

r 6=a,r 6=b
pro(xa, xr) +

n
∑

r 6=b,r 6=a
pro(xb, xr)

,

n
∑

r 6=b,r 6=a
pro(xb, xr)

n
∑

r 6=a,r 6=b
pro(xa, xr) +

n
∑

r 6=b,r 6=a
pro(xb, xr)

 (7)



Mathematics 2021, 9, 3314 5 of 13

(3) Finally, in the pair of “bad” design points (xa, xb), the column coordinate index
j (j = 1, . . . , p) is determined with a probability proportional to the following formula:

pro(xal , xbl)
p
∑

l=1
pro(xal , xbl)

(8)

3.2. Coordinate Exchange

According to the above steps, the coordinate to be improved is selected, which is xij,
and it will be optimized next. First of all, keep the remaining coordinates xil(l 6= j) un-
changed, which belongs to point xi, and substitute the values of the remaining coordinates
into the set of constraints cons = (constraint1, . . . , constraints), then solve the constraint
problem for xij, and get the updated range of xij, which is denoted as

[
lowxij , upxij

]
. Solve

the one-dimensional optimization problem in the new range and use the obtained optimal
solution xij* to generate new design D* iteratively.

For each iteration to solve the one-dimensional optimization problem, the sum of the
projection coefficients between other points remains unchanged except for the projection
coefficients involved in point xi. The sum of the projection coefficients between the other
points is expressed by the following formula.

n−1

∑
k=1,k 6=i

n

∑
f=k+1, f 6=i

p

∏
l=1

(
pro(xkl , x f l)

)2
(9)

The projection coefficients between point xi and other points remain unchanged except
the j-th dimension, and the projection coefficients matrix is expressed as follows:( pro

f 6=i,l=1,l 6=j
(xil , x f l)

)2

, · · · ,

(
pro

f 6=i,l=p,l 6=j
(xil , x f l)

)2

(n−1)×(p−1)

(10)

where the column vector

(
pro

f 6=i,l 6=j
(xil , x f l)

)2

is expressed as

( pro
f=1, f 6=i,l 6=j

(xil , x f l)

)2

, · · · ,

(
pro

f=n, f 6=i,l 6=j
(xil , x f l)

)2
T

when the coordinate xij is updated, the projection coefficients between point xi and other
points in the j-th dimension will all be updated accordingly, which can be represented by
the following column vector:( pro

f=1, f 6=i
(xij, x f j)

)2

, · · · ,

(
pro

f=n, f 6=i
(xij, x f j)

)2
T

(11)

After Formulas (10) and (11) are combined, the sum of the projection coefficients
between point xi and other points is calculated, and it is updated as follows:

n

∑
f=1, f 6=i

p

∏
l=1

(
pro(xil , x f l)

)2
(12)
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According to Formula (3), combining Formulas (9) and (12), our objective function is
to minimize Formula (13):


2

(
n−1
∑

k=1,k 6=i

n
∑

f=k+1, f 6=i

p
∏
l=1

(
pro(xkl , x f l)

)2
+

n
∑

f=1, f 6=i

p
∏
l=1

(
pro(xil , x f l)

)2
)

n(n− 1)



1
p

(13)

To simplify the calculation, the one-dimensional optimization problem of coordinate
exchange can be simplified as follows:

x∗ij ← argmin
xij∈[lowxij ,upxij ]

n

∑
f=1, f 6=i

p

∏
l=1

(
pro(xil , x f l)

)2
(14)

For the implementation of our method, formula (14) is calculated using the R package
‘nloptr’ (Ypma, 2020). The entire coordinate exchange algorithm repeats the coordinate-
exchange optimization and compares the projection properties according to formula (13). If
the new design matrix D* obtained after the coordinate exchange is better than the current
optimal design matrix D, the coordinate exchange is implemented, and the current op-
timal design is updated. Algorithm 1 summarizes the detailed steps of coordinate exchange.

Algorithm 1 MaxPro coordinate-exchange.

Input: n:size of the design
p1:number of continuous factors
p:number of factors
cons:constraint functions
bounds:bounds of continuous factors and sets of discrete factors.
D← randomly generate an initial matrix with consandbounds as inputs
for i = 1, . . . , n − 1
for j = i + 1, . . . , n

for l = 1, . . . , p
pro(xil,xjl)← use Equation (4)

End for
End for

End for
opt← use Equation (3)
i.pair← sampl a pair of “bed” points with Equation (6) as the probability
i← sampl the “bed” point with Equation (7) as the probability
j← sampl the “bed” coordinate with Equation (8) as the probability
[lowxij,upxij]← generate new bound with cons,boundsand xil(l 6= j) as inputs
if j = 1, . . . , p1

xij*← use nloptr with Equation (14) and [lowxij,upxij] as input
else xij*← use Equation (14) and [lowxij,upxij]
pro(xil,xjl)*← use Equation (12)
opt(D*)← use Equation (13)
if opt(D*) < opt

opt← opt(D*)
xij ← xij*
D← D*

Output: D:design matrix
opt:objective function value.

3.3. Iterated Perturbation

The local search optimization algorithm may be affected by the initial design to
a certain extent. Generally, the problem of easily falling into local optimal solution is
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overcome by repeating the search (i.e., restarting the search with a new set of initial
experimental points). Studies have found that the restart strategy merely expands the
scope of search and increases the chance of avoiding local optimal solution. In addition,
the strategy lacks stability and is not applicable to large-scale experimental designs [21,22].
Therefore, we add iterated perturbation to MP-CE, and set the perturbation operator as
the coordinate. The iterated perturbation strategy is shown in Figure 1. Given the current
optimal solution D, it is perturbed to jump out of the local area, and the perturbed solution
is denoted as D’. Then the MP-CE algorithm is applied to D’, and a new current optimal
solution is obtained. The local search and perturbation are carried out repeatedly to return
to the optimal design after the number of iterations is reached.

Through experimental research, Cuervo found that the size of the perturbation op-
erator that leads to the best algorithm performance is PERT_SIZE = 10% [23]. Drawing
reference from its experimental conclusion, this paper sets the scale of coordinate perturba-
tion to 10% × (n × p). Algorithm 2 shows the detailed steps of iterated perturbation.

Algorithm 2 Iterated perturbation.

Input: maxstep:number of iterations.
D:use Algorithm 1;
opt:use Algorithm 1;
step← 0
while step < maxstep

step← step + 1
D’ ← D
repeat

i← randomly sample from 1 to n
j← randomly sample from 1 to p
[lowxij,upxij]← generate new bound with cons,boundsand xil(l 6= j)
xij ← randomly generate in [lowxij,upxij]

until 10% × (n × p) coordinates are perturbed break
update D’

D’*← use Algorithm 1
opt(D’*)← use Equation (13)
if opt(D’*) < opt

D← D’*
opt← opt(D’*)

end while
Output: D:design matrix
opt:objective function value.

4. Experimental Setup
4.1. Comparison Method

We chose several popular space-filling experimental design methods for comparison.
The following is a brief introduction to these comparison methods.

(1) uniform design

Kaitai Fang and Yuan Wang jointly put forward the uniform design in 1978, using the
uniform distribution theory in number theory to select n experimental points, and applying
number theory to ensure the points were uniformly distributed within the integration
range, and ensure the distribution points were sufficiently close to various values of the
integrand function. The uniform design is obtained through the “space-filling: uniform
design” in the DOE of JMP software.

(2) MmLHD

In the LHD, each factor has as many levels as designed, and these levels are uniformly
spaced from the lower limit to the upper limit of the factor. The MmLHD optimizes LHD
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by maximizing the minimum distance between design points. The MmLHD is obtained
through the maximinLHS function in R packet “lhs” (Carnell, 2020).

(3) Fast flexible space-filling (FFF)

The FFF design (Lekivetz and Jones, 2015) [16], which is a space-filling design based
on the Fast Ward clustering algorithm. First obtain a large sample U(χ), then use the
Ward’s minimum variance criterion (Ward Jr, 1963) for systematic clustering to form n
clusters, and finally obtain the final design points by using the MaxPro optimality criterion.
The FFF design is obtained through “space-filling: FFF Design: MaxPro criterion “in the
DOE of JMP software.

(4) Maximum projection

The maximum projection designs with quantitative and qualitative factors (Max-
ProQQ), which is a maximum projection design with quantitative and qualitative factors.
First, the design matrix is randomly initialized by generating a random LHD and folding
n levels to the nearest given discrete values of the factor. Use the simulated annealing
algorithm (Morris and Mitchell 1995) and MaxPro criterion to optimize the initial design,
and iteratively optimize in the design space by randomly selecting two coordinates in a
column in the design matrix to exchange. The MaxProQQ design is obtained through the
MaxProQQ function in R packet “MaxPro” (Ba, 2018).

4.2. Implementation Details

To implement the MP-CE method, we set the number of internal loop searches to
100 and the number of external perturbations to 20. We used the continuous optimiza-
tion algorithm nloptr to optimize the design matrix to find the local optimal solution of
coordinate-exchange. This function can be obtained in the R package “nloptr”. The scale of
the coordinate perturbation is set to 10% × (n × p).

For the initial design matrix, the continuous factors are uniformly distributed using
the LHD, and the discrete factor levels are allocated to each design point by random
sampling, and the feasibility of each design point is tested according to the constraints.
The comparison experiments, MmLHD and MaxProQQ, adopt the same initial design as
MP-CE. The number of iterations of MmLHD and MaxProQQ is set to 1000. The number
of restarts for uniform design and FFF design is set to 20.

In Section 3, we have pointed out the properties that the ideal space-filling design
should have, so in the experimental analysis of this paper, we use the MaxPro index to
evaluate the space projection of the design, see formula (3), and use the index φp based on
distance to evaluate the space-filling. The ∅p is defined as follows:

φp(D) = (
n

∑
i=1,i>j

d−p
ij )

1
p

(15)

where p is a positive integer and dij represents the distance between any two design points
in the design matrix Dn×m, that is, the row vectors xi and xj.

5. Results and Analysis
5.1. Space-Filling Design in [0,1]p

In this section, we compare the uniform design, MmLHD, FFF design, MaxProQQ
design, and our MP-CE design. We conducted experiments on several different input
configurations, including p = 2, p = 6, p = 10, and n = 25, n = 50, n = 100. The experiments
on these input configurations led to basically similar conclusions. Table 1 takes n = 50 as
an example to list the performance of different experimental design methods in 2, 6 and
10-dimensional space. The results produced by the best performer and the best baseline in
each column are boldfaced and underlined, respectively.
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Table 1. Performance comparison of space-filling design methods.

φp MaxPro

p = 2 p = 6 p = 10 p = 2 p = 6 p = 10

Uniform 81.44828 47.21208 33.47989 111.3468 39.33209 28.76458
MmLHD 119.7706 77.44039 69.75027 118.8044 39.82723 29.03003

FFF 63.1522 35.96823 31.62291 102.3185 36.18002 25.88254
MaxProQQ 63.58684 39.34273 29.84868 113.1384 36.84071 25.44766

MP-CE 63.28473 34.13822 28.93871 100.8138 34.56103 24.36288

First of all, it can be seen that MP-CE outperforms other space-filling design methods,
i.e., uniform design, MmLHD, FFF and MaxProQQ in terms of φp and MaxPro. When the
dimension of the experimental space changes from 2 to 10, the improvements of MP-CE
over the best baseline are increased. In detail, the improvements are −0.21%, 5.09%, and
3.05% in terms of φp, 1.47%, 4.47% and 4.26% in terms of MaxPro when p = 2, p = 6, p = 10,
respectively. It shows the superiority of this method in the space-filling of high-dimensional.
Since MP-CE is designed based on the MaxPro criterion, the improvements of MP-CE
in terms of MaxPro are larger than that of φp. In addition, both MaxProQQ and MP-CE
start with the same initial design, and MP-CE outperforms MaxProQQ in terms of φp and
MaxPro, indicating that the perturbed coordinate–exchange algorithm also has certain
advantages compared with the simulated annealing algorithm. The initial design also has
a certain impact on the final effect of MP-CE, especially when the number of design points
is small or the dimension is low, it can be overcome by increasing the number of iterations.

5.2. Space-Filling Design in Constrained Spaces

This section will discuss the performance of the MP-CE design in constrained spaces.
The experimental setting is the same as above, considering a constrained space of p = 2,
Figure 2 plots the design results of n = 10 and n = 100. FFF, which performs well in
the regular space and is used for comparison with MP-CE. Figure 3 compares these two
methods in terms of the space projection and space-filling properties with different run
sizes. As the measurements are different with different run sizes, Figure 3b,d show the
performance improvement of MP-CE over FFF in terms of ratio, in a bid to make the results
more intuitive. The following two points can be observed from Figures 2 and 3. On the one
hand, in the constrained space of p = 2, FFF and MP-CE have very close performance in
terms of space-filling and space-projection, which confirms the applicability of our method
in constrained spaces. On the other hand, compared with FFF, MP-CE provides optimal
maximin and maximum projection design for each run size. In particular, MP-CE performs
better as the size of the design increases.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 15 

 

 

certain advantages compared with the simulated annealing algorithm. The initial design 
also has a certain impact on the final effect of MP-CE, especially when the number of de-
sign points is small or the dimension is low, it can be overcome by increasing the number 
of iterations. 

Table 1. Performance comparison of space-filling design methods. 

 pφ  MaxPro 

 p = 2 p = 6 p = 10 p = 2 p = 6 p = 10 

Uniform 81.44828 47.21208 33.47989 111.3468 39.33209 28.76458 

MmLHD 119.7706 77.44039 69.75027 118.8044 39.82723 29.03003 

FFF 63.1522 35.96823 31.62291 102.3185 36.18002 25.88254 

MaxProQQ 63.58684 39.34273 29.84868 113.1384 36.84071 25.44766 

MP-CE 63.28473 34.13822 28.93871 100.8138 34.56103 24.36288 

5.2. Space-Filling Design in Constrained Spaces 
This section will discuss the performance of the MP-CE design in constrained spaces. 

The experimental setting is the same as above, considering a constrained space of p = 2, 
Figure 2 plots the design results of n = 10 and n = 100. FFF, which performs well in the 
regular space and is used for comparison with MP-CE. Figure 3 compares these two meth-
ods in terms of the space projection and space-filling properties with different run sizes. 
As the measurements are different with different run sizes, Figure 3b,d show the perfor-
mance improvement of MP-CE over FFF in terms of ratio, in a bid to make the results 
more intuitive. The following two points can be observed from Figures 2 and 3. On the 
one hand, in the constrained space of p = 2, FFF and MP-CE have very close performance 
in terms of space-filling and space-projection, which confirms the applicability of our 
method in constrained spaces. On the other hand, compared with FFF, MP-CE provides 
optimal maximin and maximum projection design for each run size. In particular, MP-CE 
performs better as the size of the design increases. 

  

(a) (b) 

Figure 2. Cont.



Mathematics 2021, 9, 3314 10 of 13
Mathematics 2021, 9, x FOR PEER REVIEW 11 of 15 

 

 

  

(c) (d) 

Figure 2. Design under constraints: (a) FFF, n = 10; (b) MP-CE, n = 10; (c) FFF, n = 100; (d) MP-CE, n 
= 100. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3. Space-filling performance: (a) MaxPro; (b) MaxPro increase percentage; (c) 
pφ ; (d) increase percentage of 

pφ . 

For the above experimental design in a 2-dimensional constrained space, a discrete 
factor was added, with the value of 0, 0.5, 1, and the constraints between the factors remain 
unchanged. 

Figure 2. Design under constraints: (a) FFF, n = 10; (b) MP-CE, n = 10; (c) FFF, n = 100; (d) MP-CE,
n = 100.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 15 

 

 

  

(c) (d) 

Figure 2. Design under constraints: (a) FFF, n = 10; (b) MP-CE, n = 10; (c) FFF, n = 100; (d) MP-CE, n 
= 100. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3. Space-filling performance: (a) MaxPro; (b) MaxPro increase percentage; (c) 
pφ ; (d) increase percentage of 

pφ . 

For the above experimental design in a 2-dimensional constrained space, a discrete 
factor was added, with the value of 0, 0.5, 1, and the constraints between the factors remain 
unchanged. 

Figure 3. Space-filling performance: (a) MaxPro; (b) MaxPro increase percentage; (c) φp; (d) increase percentage of φp.

For the above experimental design in a 2-dimensional constrained space, a discrete
factor was added, with the value of 0, 0.5, 1, and the constraints between the factors remain
unchanged.

For the purpose of comparing with MP-CE method, we adopted the “custom designs”
platform of JMP, which can define factor types and factor constraints. Enter two continuous
factors, specify constraints on the design space, and impose constraints on the third factor to
make it infinitely approximate to the level of discrete value. Then select the FFF design and
set the optimality criterion to MaxPro. Set n = 27. In Figure 4, we made the 2-dimensional
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mapping discrete diagram to show the results from the two experimental design methods.
The circle, triangle, and plus sign in the Figure represent x3 = 0, 0.5, 1, respectively. It can
be seen from the diagram that the space-filling performance of the FFF is obviously inferior
to that of MP-CE.
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5.3. Case Study

Sections 5.1 and 5.2 discussed the performance of MP-CE in rule space and constraint
space. This section will discuss the applicability and performance of MP-CE in the con-
strained space with multiple types of factors, in combination with an experimental design
for the terminal interception effectiveness of the missile defence system.

At the terminal of the missile-target intersection, when the missile attacks the target,
the kill probability is associated with many factors, including the accuracy of the missile
guidance system, the miss distance, the positional relationship when the missile and target
meet, the initiation trigger performance of the warhead, the explosion power, and the anti-
damage ability of the target, etc. In one word, it is the result of randomly combined multiple
factors. Table 2 lists the factors that may be related to missile interception effectiveness. The
assessment of missile intercepting low-speed hovering helicopter targets, subsonic aircraft
targets, subsonic missile targets, supersonic maneuverable missile targets, and supersonic
anti-ship missile targets correspond to the following target speeds in Table 2. Regarding
the constraint between the factors, when the target speed is 0, the target height can only
correspond to ultra-low altitude and hollow altitude.

Table 2. Experimental actors.

Type Factor Levels

continuous factor encounter distance 5–50 (km)

discrete factor
target speed 0, 250, 300, 800, 1000 (m/s)

target height ultra-low altitude, hollow
altitude, high altitude

target maneuver overload 4, 5, 6, 7, 8, 9(G)

First of all, the experimental factors are normalized. The encounter distance is mapped
to X1 = [0,1], the target speed is converted to discrete values X2 = 0, 0.25, 0.3, 0.8, 1, the
target height is converted to discrete values X3 = 0, 0.7, 1, and the target maneuver overload
is converted to discrete values X4 = 0, 0.2, 0.4, 0.6, 0.8, 1. Constraint between factors is
when X2 = 0, X3 = 0 or 0.7.

Additionally, we used the FFF design of JMP as the baseline, set the optimality criterion
to MaxPro, entered 4 continuous factors, and imposed constraints on the second, third, and
fourth factors to make it infinitely approximate the value of each discrete level. Taking
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n = 10 as an example, the final experimental design results returned by FFF and MP-CE are
shown in Table 3.

Table 3. Comparison of design results.

FFF MP-CE

factor X1 X2 X3 X4 X1 X2 X3 X4

Scheme

0.57758 1 0.7 1 0.18365 0.8 1 0.6
0.82557 0.8 0.7 0 0.96417 1 0 0
0.01474 1 1 0.4 1 0.3 1 1
0.03785 0 0.7 0.2 0.80396 1 0.7 0.6
0.48243 0 0 0.8 0.94084 0.8 0 1
0.88392 0.25 1 0.2 0.28508 0 0 0.2
0.99889 0.3 0.7 0.8 0.44436 1 0 0.8
0.94088 0 0 0.6 0.66973 0 0 1
0.07680 0.25 0 1 0.40446 0.25 0.7 0
0.27224 0.8 0 0.2 0.52813 0.3 1 0.4

φp 6.7468 6.5176
MaxPro 6.3057 4.6605

Experimental designs with different number of points were performed, as shown in
Figure 5, leading to similar conclusions as described above. For the experimental design
with multiple types of factors and complex constraints, MP-CE performs similarly to FFF in
terms of space-filling distance but performs much better in terms of projection properties.
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6. Conclusions

This paper proposes the MP-CE method to solve the problem of experimental design
with multiple types of factors and complex constraints between factors. A coordinate
selection strategy based on the projection property and distance property of design points
is designed. By assigning probability of coordinate selection to overcome the shortcomings
of randomness and easy to fall into local optimum and by adding perturbation to each local
search of coordinate exchange, a new solution is explored in the areas where the exchange
of coordinates may have an improvement, so as to retain the good features and attributes
of the existing solution and avoid the shortcomings of random restart. The experimental
results and analysis show that the MP-CE method is effective for experimental designs with
multiple types of factors in complex constraints spaces, coupled with good performance in
terms of space-filling properties.
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13. Draguljić, D.; Santner, T.J.; Dean, A.M. Noncollapsing space-filling designs for bounded nonrectangular regions. Technometrics

2012, 54, 169–178. [CrossRef]
14. Beal, M.; Claeys, B.M. Constructing space-filling designs using an adaptive WSP algorithm for spaces with constraints. Chemom.

Intell. Lab. Syst. 2014, 133, 84–91. [CrossRef]
15. Kang, L. Stochastic coordinate-exchange optimal designs with complex constraints. Qual. Eng. 2018, 31, 401–416. [CrossRef]
16. Lekivetz, R.; Jones, B. Fast flexible space-filling designs for nonrectangular regions. Qual. Reliab. Eng. Int. 2015, 31, 829–837.

[CrossRef]
17. Haaland, B.; Wang, W.; Maheshwari, V. A framework for controlling sources of inaccuracy in gaussian process emulation of

deterministic computer experiments. SIAM/ASA J. Uncertain. Quantif. 2018, 6, 497–521. [CrossRef]
18. Wang, W.; Haaland, B. Controlling sources of inaccuracy in stochastic kriging. Technometrics 2019, 61, 309–321. [CrossRef]
19. Wang, W.; Tuo, R.; Wu, C.F.J. On prediction properties of kriging: Uniform error bounds and robustness. J. Am. Stat. Assoc. 2019,

115, 920–930. [CrossRef]
20. Tuo, R.; Wang, W. Kriging prediction with isotropic Matern correlations: Robustness and experimental designs. J. Mach. Learn.

Res. 2020, 21, 1–38.
21. Jones, B. Computer Aided Designs for Practical Experimentation. Ph.D. Thesis, University of Antwerp, Antwerp, Belgium, 2008.
22. Loureno, H.R.; Martin, O.C. Iterated local search: Framework and applications. In Handbook of Metaheuristics; Springer Science &

Business Media: Berlin/Heidelberg, Germany, 2010.
23. Cuervo, D.P.; Goos, P.; Sörensen, K. Optimal design of large-scale screening experiments: A critical look at the coordinate-exchange

algorithm. Stat. Comput. 2016, 26, 15–28. [CrossRef]

http://doi.org/10.1016/0378-3758(90)90122-B
http://doi.org/10.1093/biomet/asv002
http://doi.org/10.1080/01621459.2011.644132
http://doi.org/10.3390/math7090854
http://doi.org/10.1080/00401706.2014.957867
http://doi.org/10.5705/ss.2013.388
http://doi.org/10.1007/s00362-019-01156-1
http://doi.org/10.1002/qre.2429
http://doi.org/10.1080/00401706.2015.1094416
http://doi.org/10.1080/00224065.2019.1611351
http://doi.org/10.1080/00401706.2012.676951
http://doi.org/10.1016/j.chemolab.2013.11.009
http://doi.org/10.1080/08982112.2018.1508695
http://doi.org/10.1002/qre.1640
http://doi.org/10.1137/17M1131210
http://doi.org/10.1080/00401706.2018.1514328
http://doi.org/10.1080/01621459.2019.1598868
http://doi.org/10.1007/s11222-014-9467-z

	Introduction 
	Literature Review 
	Experimental Design with Discrete Factors 
	Experimental Design in Constrained Space 

	The MP-CE Method 
	Coordinate Selection 
	Coordinate Exchange 
	Iterated Perturbation 

	Experimental Setup 
	Comparison Method 
	Implementation Details 

	Results and Analysis 
	Space-Filling Design in [0,1]p 
	Space-Filling Design in Constrained Spaces 
	Case Study 

	Conclusions 
	References

