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Abstract: The solution of the so-called mixed-integer optimization problem is an important challenge
for modern life sciences. A wide range of methods has been developed for its solution, including
metaheuristics approaches. Here, a modification is proposed of the differential evolution entirely par-
allel (DEEP) method introduced recently that was successfully applied to mixed-integer optimization
problems. The triangulation recombination rule was implemented and the recombination coefficients
were included in the evolution process in order to increase the robustness of the optimization. The
deduplication step included in the procedure ensures the uniqueness of individual integer-valued
parameters in the solution vectors. The developed algorithms were implemented in the DEEP soft-
ware package and applied to three bioinformatic problems. The application of the method to the
optimization of predictors set in the genomic selection model in wheat resulted in dimensionality
reduction such that the phenotype can be predicted with acceptable accuracy using a selected subset
of SNP markers. The method was also successfully used to optimize the training set of samples
for such a genomic selection model. According to the obtained results, the developed algorithm
was capable of constructing a non-linear phenomenological regression model of gene expression in
developing a Drosophila eye with almost the same average accuracy but significantly less standard
deviation than the linear models obtained earlier.

Keywords: differential evolution; genomic selection; gene expression; integer-valued parameters

1. Introduction

Modern life sciences, such as bioinformatics, heavily rely on numerical methods
and computer algorithms. Optimization problems in which some unknown parameters of
mathematical models are to be determined from data arise in many practical and theoretical
studies, such as the identification of genes, proteins and regulatory networks, association
between genotype and phenotype, prediction of agronomically important traits, and others.
Unknown parameters often represent not only coefficients of floating point type, but also
indices of some kind and thus are integer numbers. Consequently, the solution of so-called
mixed-integer optimization problems is an important challenge for modern bioinformatics.

A wide range of methods has been developed for solution of such problems. Partic-
ularly, stochastic optimizers can be employed to obtain a global minimum of objective
function given diverse biological data of a big volume. Different types of simulated anneal-
ing (SA) and genetic algorithms (GA) were successfully applied to biological problems [1].
Modern evolutionary algorithms, such as evolution strategies (ESs) or differential evolu-
tion (DE) [2], can outperform other methods in the estimation of parameters of several
biological models [3–5]. In a recent study [6], it was shown that DE is robust against
structural bias that may cause the optimization procedure to favor certain regions of the
search space over others. The development of new methods for solution of mixed-integer
optimization problem continues. In [7], mixed-integer evolution strategies (MIES) were
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presented, which are natural extensions of ES for mixed-integer optimization problems.
A two-timescale duplex neurodynamic approach to mixed-integer optimization, based
on a biconvex optimization problem reformulation with additional bilinear equality or
inequality constraints was proposed in [8]. A genetic algorithm for model-based mixed-
integer optimization (GAMBIT) was developed and extended with a parameterless scheme
in [9]. Several approaches to mixed-integer optimization can be found within a commercial
general algebraic modeling system (GAMS) framework [10]. Other alternatives include the
covariance matrix adaptation evolutionary strategy CMA-ES [11], mixed-integer sequential
quadratic programming (MISQP) [12,13] and a Bayesian network-based approach with
the mixed-integer Bayesian optimization algorithm (MIBOA) by [14]. A method for the
solution of very large mixed-integer dynamic optimization (MIDO) based on an parallel
cooperative scatter search metaheuristic with new mechanisms of self-adaptation and
specific extensions to handle large mixed-integer problems was introduced in [15].

The global optimization methods that may depend on problem-specific assumptions
introduce difficulties in adaptation to other types of problems together with challenges
in efficient implementation suitable in different areas. The suboptimal algorithm of tem-
perature reduction, termed the cooling schedule, in SA can increase the computational
time and lower the accuracy of the final solution. The correct choice of mutation, recombi-
nation and selection operators is crucial for success of GA application. The evolutionary
algorithms are highly dependent on the parameters of the evolution model. A wide range
of metaheuristic approaches have been developed for parameter estimation in biology.
For example, enhanced scatter search, proposed in [16], is computationally expensive but is
capable of obtaining integer and real parameters with high accuracy and outperforming
the state-of-the-art methods [17].

Differential evolution (DE) [2,18] is a metaheuristic algorithm proposed by Rainer
Storn and Kenneth Price. In the standard DE, population is randomly initialized and
evolved using mutation and crossover operators to produce trial offspring together with a
selection operator that accepts or rejects those trials into the population, comparing their
values of the objective function.

The standard DE works with floating point parameters; therefore, DE algorithms for
discrete parameters [19] were proposed. A modified binary DE (MBDE) algorithm and
logical mutation operator was proposed in [20] based on the structure of binary bit strings.
In a binary-adapted DE (BADE), developed in [21], the scaling factor is considered the
probability that the scaled difference bit becomes “1”. In a discrete DE algorithm, proposed
in [22], the real value obtained from the DE operators is converted to binary values using
the sigmoid constraint function. The works [23,24] used the adaptive DE algorithm for
feature selection, where parameters in DE are automatically adapted depending on the task.
A hybrid approach, proposed in [25], combined strong exploratory properties of differential
evolution with a modified artificial bee colony observation process for trait selection. In [26]
the authors developed differential evolution with a binary mutation scheme for feature
selection. A novel adapted mixed-integer differential evolution algorithm was designed
in [27]. In [28], an improved binary difference evolution algorithm was developed for the
feature selection problem for general classification problems in data mining.

In this work, we propose a modification of the differential evolution entirely parallel
(DEEP) method introduced recently [29,30]. DEEP was successfully applied in mixed-
integer optimization problems, such as the identification of the biogeographic origins of
highly mixed individuals implemented in the online ancestry prediction tool reAdmix [31],
regression and dynamical models of flowering time in chickpea [32–34] and mungbean [35].
The DEEP method operates on real-valued parameters that can be converted to integers,
using either rounding operation or array index transformation in which the resulting
integers are the indices in the sorted array of real parameters. The rounding is better suited
for many practical tasks, as a drawback of another transformation is that a relatively small
change in real values can lead to a big perturbation of the solution. DEEP implements a
parameter adaptation scheme based on preserving the diversity of solutions [36] that was
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developed for classic DE strategies. The local search capabilities of DE can be enhanced by
including additional differences in the mutation. Consequently, in order to increase the
robustness of the procedure, the triangulation recombination rule was implemented based
on [37]. To control the diversity of the integer-valued parameters in intermediate and final
solution vectors, the deduplication step was included based on [38]. To implement a new
adaptation scheme, the control parameters of the resulting algorithm are made separate for
each vector in the population and included in the evolution process.

Thus the contribution of the paper is three fold: (i) DEEP was enhanced with the
triangulation recombination rule and deduplication step; (ii) the control parameters were
included in the evolution process for self-adaptation; (iii) the resulting method imple-
mented in the open-source software [39] was applied to three bioinformatic problems. The
first two of them, namely the optimization of the set predictors and the compilation of the
training sample, are important to reduce the dimensionality of the genomic selection model.
The third example illustrates the construction of the regression model of gene expression
in analytic form.

We compared the results for the genomic selection model with those for the DEEP
method without the proposed enhancements and the genetic algorithm and the results for
the third example were compared with a state-of-the-art package gramEvol specifically
designed for building models in analytic form using the genetic algorithm for optimiza-
tion [40].

The next sections of the paper give detailed description of the developed methods,
test problems and results. The papers on modifications of the DE are surveyed in Section 2.
The formal problem is stated in Section 3.1, and the differential evolution entirely parallel
method and proposed enhancements are presented in Sections 3.2–3.4. The bioinformatic
problems considered in this research are stated in Sections 3.5–3.8. The results are pre-
sented in Section 4 followed by their discussion in Section 5, and Section 6 provides the
conclusions.

2. Related Work

Numerous variants of DE have been developed to improve the reliability, scalabil-
ity, accuracy, convergence speed and other aspects of the method. Parameter adaptation
methods were introduced that resulted in self-adaptive DE variants, such as SaDE [41] and
ensemble-based SAEDE [42]. The mutation rule was improved by using the best member
from the selected fraction of individuals and an external archive containing suboptimal
individuals JADE [43]. Success history-based parameter adaptation SHADE was intro-
duced in [44]. The classic mutation operator DE/rand/1 was enhanced by attaching a
benchmark factor to the basis vector in IMMSADE [45]. A crossover probability sorting
mechanism and dynamic population reduction strategy was proposed in EJADE [46]. Scale
factor and crossover probability obeyed the Cauchy distribution and uniform distribution,
respectively, and were adaptively adjusted, according to their respective weighted Lehmer
means in ACDE [47]. Several ways for handling constraints imposed for parameters were
introduced and investigated [48].

Different variants of improved parameter control were introduced, such as a multiple
exponential recombination [49] and encoding of control parameters in individuals [50].
Improved individual-based parameter setting and selection strategy was developed in
IDEI [51]. A DE variant with novel control parameter adaptation that includes a grouping
strategy for adjusting the scaling factor and crossover probability and a parabolic reduction
rule for changing NP was suggested in PaDE [52]. Mechanisms of population size adaption
were also developed. In [53], the algorithm was proposed that evaluated the current popu-
lation diversity based on the European distance and adjusted the NP size according to the
evaluation results. The size of the population was also dynamically adjusted in APTS [54].
The population was divided into subpopulations in mDE-bES [55]. The population was
clustered in multiple tribes in sTDE-dR [56].
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Improved mutation and crossover strategies were proposed, such as a novel frame-
work based on the proximity characteristics among the individual solutions in Pro-DE [57],
a variant of the classical DE/current-to-best/1 scheme that uses the best of a selected
group individual in MDE-pBX [58], a collective information-powered DE proposed in
CIPDE [59], an improved DE algorithm with dual mutation strategies collaboration termed
DMCDE [60], DE with a fitness and diversity ranking-based mutation operator called
FDDE [61], ReDE [62] for which a revised mutation strategy for DE was introduced,
RNDE [63] which used a new mutation operator, and DE/neighbor/1 which balanced the
exploration and exploitation ability of the DE process. Other examples include DE with
eigenvector-based crossover [64], DE with multiple exponential crossover [65], a switched
parameter DE [66], a classification-based mutation strategy DE [67], and an orthogonal
crossover (OX) operator DE [68].

Various offspring generation strategies were combined to produce an algorithm with
enhanced properties, such as DE with composite strategies and parameters CoDE [65], DE
that selects mutation strategies and control parameters from the strategy and parameter
pools, respectively, to produce successful offspring population EPSDE [69], the framework
with two mechanisms, namely, the multiple variants adaptive selecting mechanism and the
multiple variants adaptive solutions preserving mechanisms [70], and improved ensemble
of differential evolution variants (IEDEV) [71]. A method with multiple variant coordina-
tion was proposed in [72], the archiving of promising directions was suggested [73], and
IMO-CADE was introduced in [74], where mutation operators were selected adaptively.

Hybrid algorithms were introduced with intent to integrate the advantages of DE and
other meta-heuristic algorithms, such as a hybrid DE with the gaining–sharing knowledge
algorithm (GSK) and Harris hawks optimization (HHO), DEGH [75], a hybrid artificial bee
colony with DE (HABCDE) [76], a semi-parametric adaptation method in the LSHADE
hybridized with covariance matrix adaptation evolution strategy (LSHADE-SPACMA) [77],
a hybrid algorithm based on self-adaptive gravitational search algorithm (SGSADE) [78], a
hybrid algorithm for DE and particle swarm optimization (DEPSO) [79], mixed DE with
whale optimization algorithm (MDE-WOA) [80], a hybrid adaptive teaching–learning-
based optimization algorithm with DE (ATLDE) [81], a hybrid symbiotic DE moth flame
optimization algorithm (HSDE-MFO) [82], a modified Boltzmann annealing [83] differen-
tial evolution algorithm (BADE) [84], an adaptive DE with PSO (A-DEPSO) [85], a hybrid
differential symbiotic organism search (HDSOS) algorithm [86], a new local search scheme
based on the Hadamard matrix (HLS) [87], an opposition-based learning DE (ODE) [88],
DE/EDA [89], which combined DE with the estimation of distribution algorithm, a DE vari-
ant with commensal learning and uniform local search, named CUDE [90], and ESADE [91],
which combines simulated annealing in the selection stage.

3. Materials and Methods
3.1. Problem Statement

Let us consider mixed-integer optimization problem (1) that combines unknowns
that take real and integer values.

Q(x, u) −→
x

min

cL
k < xk < cU

k , k ∈ K = {1, ..., K} (1)

xi ∈ N, i ∈ I ⊆ K,

where x = {xk|k = 1, ..., K} is the vector of parameters of the model of the length K that is
to be found to give the minimal value to the objective function Q and satisfy the constraints
with upper and lower limits cU and cL, respectively. Q computes the deviation of the
model with parameters x from experimental data u. The subset I holds the indices of
parameters that are integer numbers.
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3.2. Differential Evolution Entirely Parallel Method

Differential evolution (DE) was proposed in [18] as an effective stochastic method for
function minimization. DE operates on a set called population of parameter vectors called
individuals that are initially generated randomly. The size of population NP is constant,
and on each iteration, the set of parameter vectors may be referred to as generation. The
differential evolution entirely parallel (DEEP) method [29,30,92] combines enhancements
proposed in the literature as well as some specifically developed modifications. These
enhancements include the two-step scheme for adaptation of algorithmic parameters based
on the control of the population diversity developed in [36], an optional scatter search
step [16] that is performed each Ξ iteration, where Ξ is a control parameter, and a selection
rule [93] for consideration of several different objective functions. To avoid premature
convergence, the predefined number of individuals Ψ that were unable to update the
parameters after the predefined number of iterations Θ are substituted with the same
number of ones with the lowest values of the objective function. To satisfy the constraints
in the form of inequalities imposed for the model parameters, the infeasible solutions that
might be generated by the method are substituted with the values uniformly sampled from
the constrained interval.

DE operates on floating point parameters. The conversion from real to integer values
can be performed using one of the two approaches implemented in the DEEP method. The
first option employs the rounding operation that substitutes a real value with the nearest
integer number. The second approach involves the following operations:

• The values are sorted in ascending order.
• The index of the parameter in the floating point array becomes the value of the

parameter in the integer array.

The rounding method is more convenient for the solution of practical problems
because in the second procedure, a relatively small change in the real value of the parameter
can lead to a relatively important perturbation of the solution. The local search capabilities
of classic DE strategies can be improved by including additional differences in the mutation
formula. This was done using the triangulation recombination rule based on [37].

As the parameter adaptation scheme based on preserving the population diversity [36]
was developed for classic DE strategies, another approach is introduced in this work. To
avoid equally valued integer parameters in the trial and final solution vectors, the dedupli-
cation procedure is performed on each iteration based on [38]. The control parameters of
the triangulation recombination rule are made different for each individual vector in the
population. They are included in the evolution process and updated on each iteration with
the same formulae.

The operation of the method, including the two enhancements proposed in this work,
is described in the Algorithm 1 insertion. The input to the algorithm includes the following:

• The specification of the problem to be solved:

– The objective function;
– The data with which the solution is to be compared;
– Constraints for the parameters;

• Control parameters of the algorithm.

The execution starts with the initialization step that randomly assigns the values
satisfying the given constraints cL

k < xk < cU
k , k = 1, ..., K to a set of NP parameter vectors

X0 = v0
i |i = 1..., NP for starting generation G = 0.

The main loop of the algorithm consists of recombination, evaluation and selection
steps. Calculations are terminated when the stopping criterion is satisfied and can be
defined by the maximal allowed number of generations Gmax or the number of consecutive
iterations during which the objective function variation is less than a predefined small
value. Objective function Q for several vectors is calculated in parallel.
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The number of individuals in population NP, the frequencies Θ and Ξ, the number
Ψ of substituted individuals and stopping criterion parameter Gmax are the main control
parameters of the method that are to be set by the user.

The output of the algorithm contains the values of unknowns that provides the
minimal value of the objective function.

Algorithm 1 Differential evolution entirely parallel method

INITIALIZATION:
The NP individuals of the population are initialized randomly.
Generation G = 0
repeat

RECOMBINATION:
if The predefined number of iterations Ξ passed. then

Make Scatter Search Step
else

for all individuals in population do
Triangulation Recombination of model parameters (2)-(6)
Update scaling coefficients and weights (7), (8)

end for
end if
for all offsprings do

Make Deduplication of integer-valued parameters
end for
EVALUATION:
for all offsprings do

Calculate objective function Q
end for
SELECTION:
for all offsprings do

Accept or Reject an offspring to the next generation
end for
if The predefined number of generations Θ passed then

Substitute Ψ oldest individuals with the best ones
end if
G = G + 1

until Stopping criterion is met

3.3. Triangulation Recombination Rule

In order to increase the robustness of the procedure, the triangulation recombination
rule was implemented based on [37]. The trial vector vG+1

i = VG+1(FG, pG, b, t, r, XG, i)
for each i-th vector from population XG for current generation G is obtained according to
formulae (2)–(6):

b, t, r ∈ unif{[1, NP]/i}, (2)

xb, xt, xr ∈ XG, Q(xb) ≤ Q(xt) ≤ Q(xr) (3)

VG+1(FG, pG, b, t, r, XG) = xG
c,i + FG

1,i(xG
b − xG

t ) + FG
2,i(xG

b − xG
r )

+ FG
3,i(xG

t − xG
r ) (4)

xG
c,i = wG

1,ix
G
b + wG

2,ix
G
t + wG

3,ix
G
r , (5)

wG
j,i =

pG
j,i

∑3
j=1 pG

j,i
(6)

where b, t, and r are random indices sampled from the uniform distribution so that xG
b ,

xG
t , and xG

r are the best, better and the worst vectors with respect to objective function Q;
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wG
j,i and pG

j,i are the normalized and nonnormalized weights, respectively; and FG
j,i are the

scaling coefficients.
To adaptively change the weights and scaling coefficients, they are evolved using the

same formulae (4)–(6):

FG+1
:,i = VG+1(FG, pG, b, t, r, FG, i) (7)

pG+1
:,i = VG+1(FG, pG, b, t, r, pG, i) (8)

where FG+1
:,i and pG+1

:,i are trial vectors of scaling coefficients and nonnormalized weights,
respectively, and FG and pG are the sets of all such vectors for the current generation G.

3.4. Deduplication

To avoid equal integer-valued parameters in intermediate and final solution vectors,
the deduplication step for each offspring was included based on [38]. The algorithm
performs the following operations for each trial vector vG+1

i :

- Sample another index h uniformly, different from b, t and r used in recombination.
- Create a helper array: assign 1 if the value firstly occurs in vG+1

i , assign 2 if the value
firstly occurs in vG+1

h and 3—if the value is duplicated.
- Sort the helper array in ascending order.
- Fill vG+1

i with the values that corresponds to the first K elements of the helper array.

The execution of the algorithm is illustrated in Table 1. Here, the values 8 (in the
second column), 22 and 15 are firstly met in vG+1

i ; 8 in the fourth column is duplicated;
and values 84, 47 and 105 are firstly met in vG+1

h . The helper array is filled accordingly and
then sorted. The values that correspond to the first K indices in the sorted helper array are
included in the updated vG+1

i .

Table 1. Deduplication algorithm. The first row is the concatenation of two individual vectors of
parameters, vG+1

i and vG+1
h . The next two rows illustrate original and sorted helper arrays. The last

row shows the result of the procedure.

vG+1
i 8 22 8 15 ...

vG+1
h

8 84 47 105

helper 1 1 3 1 ... 3 2 2 2

sorted 1 1 1 2 ... 2 2 3 3

vG+1
i 8 22 15 84 ... 47 105 8 8

The time need to complete the deduplication procedure depends on the number of
parameters K and, with the fast sorting algorithm, is estimated as O(2K(log(2K)).

3.5. Genomic Selection

More recently, it has become clear that improved crop production can only be achieved
if the potential of varieties can be assessed at different locations and seasons and in combi-
nation with a range of management options that cannot be tested in vivo [94–96]. Thus,
world-class breeding programs have reformed their yield improvement strategy by inte-
grating traditional yield estimates with gene–phenotype–system modeling tools [97–100].
This integration allows in silico identification of genotypes associated with phenotypes that
are likely to improve crop production [101–103]. Such approaches led to a 3–4% increase in
yields per year under the Australian sorghum program and ≈1% growth under the U.S.
Northern Production Zone corn program. These techniques have not only proven to be
effective, but are rapidly improving [100].
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Breeding value assessment models suffer from the so-called curse of dimensionality—a
scenario in which the number of possible SNP markers is significantly larger compared to
the available observations [104].

The standard approach to calculating genomic breeding value is to use the best linear
unbiased predictor (BLUP), using a linear model and ridge regression [105]. Bayesian
methods have also found widespread use [104]. In this work, an implementation provided
in rrBLUP package [106] for R software system [107] is utilized.

Here, we apply the developed algorithm to two independent problems with two
different datasets.

3.6. Optimization of the Set of Predictors

Ridge regression helps to overcome the dimensionality problem, but the set of pre-
dictors can be optimized to obtain the same accuracy with less SNPs used [28]. Thus
the optimization problem is formulated to select the subset of predictors that maximize
the correlation between the estimated and measured phenotype. To reduce overfitting,
4-fold cross-validation is utilized, and the objective function equals the mean Pearson’s
correlation coefficient for the model built by rrBLUP [106].

The algorithm was applied to a wheat dataset [108] phenotyped for baking quality
traits that was split into training and test samples of 1516 and 300 elements, respectively,
and genotyped for 5021 SNP markers.

3.7. Compilation of Training Sample

An important problem in the wide adoption of genomic selection is that the accuracy
of the prediction of the phenotype for new genotypes is hard to estimate beforehand. It was
shown that it is possible to achieve a substantial gain in accuracy by careful compilation of
the sample on which the genomic selection model is trained. As a result, EthAcc (estimated
theoretical accuracy) was proposed in [109] as an objective function for the training sample
optimization. EthAcc is based on causal quantitative trait loci assessed from a genome-wide
association study. EthAcc does not evaluate the training set but the genomic prediction
accuracy based on the training set. The choice of the best training set from the historical
panel of genotyped and phenotyped samples is a key task in the evaluation of newly
created breeding resources.

The developed algorithm was applied to a wheat dataset provided in [109] containing
information on 1368 SNPs and 237 samples that were phenotyped for the heading date.
The algorithm and data for EthAcc computation were taken from the original paper [109].

3.8. Regression Model of Gene Expression

Gene expression controls all biological processes and gene regulation can be modeled
in several ways: differential equations for dynamical models and linear or non-linear
regression in statistical models [110]. The fruit fly Drosophila is an ideal model organism
for different biological studies. In [111], the robustness in development was investigated
using quantitative spatial gene expression in the morphogenetic furrow (MF), a wave of
differentiation that patterns the developing eye disc. The MF passes from the posterior to
the anterior of the disc over a period of two days (90 min per adjacent row of cells). The
method of hybridization chain reaction (HCR) was used to quantitatively measure spatial
gene expression, co-staining for several genes simultaneously. Three dimensional images
of mounted, HCR stained eye discs were acquired on a Zeiss LSM 780 laser scanning
microscope. Gene transcripts were detected within image stacks after processing.

The gene atonal plays a central role in establishing the correct eye structure. It is
known that its expression is under the control of hedgehog and Delta genes. In [111], a
regulation was modeled by linear regression function. A more general approach called
grammatical evolution (GE) [112] allows the user to determine the analytic form of func-
tional dependence by minimizing the deviation of model solution from data. In GE, as in
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a genetic programming method, the function is constructed according to the rules of the
given context-free grammar from “words” that are integer-valued vectors of parameters.

The data represent a quantitative description of gene expression, presented in the
form of bursts of intensities obtained by the processing of images of the eye discs of fruit
fly Drosophila larvae. The information is provided for 85 discs in the form of the table for
each processed sample with one row for each cell in a disc, approximately 1000 cells per
disc. The rows contain values of measured gene expression.

3.9. Experimental Setup

The described algorithm was implemented in C programming language in the frame-
work of the open-source software DEEP [39]. For each case study, the experimental setup
contained the formulation of the objective function Q to be minimized, the upper cU

k and
lower cL

k limits for unknown model parameters and selected control parameters for the
algorithm.

The control parameters Gmax = 300, NP = 200, Ξ = 5, Ψ = 2 and Θ = 24 were chosen
to be the same as those used in the successful previous applications of the method [32,35].
The objective function Q used in the evaluation step in Algorithm 1 measures the deviation of
the model solution from provided experimental data. In practice, any executable program
written in any programming language can be utilized; two R-scripts and a program written
in C++ were used in the case studies described in Sections 3.6–3.8, respectively.

The specification of the problem is stored in the INI-file that is loaded by the DEEP
software.

4. Results
4.1. Optimization of the Set of Predictors

The developed algorithm was used to optimize the set of SNPs that serve as predictors
in a linear regression model of genomic selection. The integer-valued parameters represent
the indices of SNPs that are included in the model that was built using the rrBLUP package
for R statistical software. The Pearson’s correlation coefficient between predicted and
measured phenotypes was used as an objective function. Several runs with different seeds
for a random number generator were performed that took, on average, 28.7 hours on a
cluster node equipped with 2xIntel Xeon CPU E5-2697 v3, 2.60GHz.

Each resulting model reduced the number of needed SNPs from 5021 to 1800–3800,
with the correlation coefficient ranging from 0.87 to 0.88 and from 0.74 to 0.76 for training
and test data, respectively. The accuracy is not dependent on the number of predictors
in these results (see Figure 1). The average number of selected SNPs was 2939, and the
average correlation coefficient is 0.75 for the test data and 0.875 for the training data. The
smallest model contains 1456 SNPs, and the correlation coefficient equals 0.74 for the
test set.

Three SNPs named IWA837, IWA1360, and IWA4243 were selected in 90% solutions
and six SNPs named IWA1008, IWA1273, IWA1637, IWA1870, IWA1929, and IWA4784
were selected in 87% solutions.

The results obtained with the developed method were compared with those for the
base DEEP method without proposed enhancements. The new method outperforms the
base one in terms of the smallest model, as the base method needs 2400 SNPs instead of
1456 with almost the same correlation coefficient, equal to 0.75, for the test set.
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Figure 1. Pearson correlation coefficient between data and model prediction with respect to the
number of SNPs used in the model for test and training samples.

Different combination of SNPs were obtained in different runs, and each SNP was
selected in aa different number of combinations (see Figure 2). The average frequency of
the SNP selection was 65%, and 264 SNPs were selected in more than 80% combinations.

N
um

be
r 

of
 o

cc
ur
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Figure 2. The number of occurrences for each SNP in obtained solutions. The colors are made
random for better visual appearance.
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4.2. Compilation of Training Sample

The DEEP method with proposed modifications was applied to a problem of com-
pilation of the set of samples from the given dataset to be used for training of regression
model for genomic selection using EthAcc as an objective function. The implementation
of the EthAcc computation algorithm and additional data were taken from the original
paper [109]. The integer-valued parameters of the model represented the indices of the
observations to be included in training. Several runs were performed with different initial
values for the random number generator, with the mean runtime of 42 minutes on a cluster
node equipped with 2xIntel Xeon CPU E5-2697 v3, 2.60 GHz.

The value of the objective function was reduced almost twice for a typical run accord-
ing to the convergence curve (see Figure 3). The value of the objective function EthAcc
was significantly positively correlated (r = 0.92, p-value= 9.20× 10−13) with the accu-
racy of the final model expressed as the correlation between the predicted and measured
phenotypes (see Figure 4), as was expected in [109].

Figure 3. The convergence curve for a typical optimization run. The value (1—EthAcc) is plotted as a
function of iteration number.

The frequency of inclusion of individual samples into training set varies greatly
between obtained solutions (see Figure 5). The mean number of samples in the resulting
training set was 70 out of 237 records, with the mean accuracy of 0.75; 28 samples were
included in 70% of solutions.
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Figure 4. Pearson correlation coefficient between predicted and measured values for models with
different EthAcc values. The strait line illustrates the linear dependence.
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Figure 5. The number of occurrences of each observation in the optimized training set. The colors
are made random for better visual appearance.

The results obtained with the developed method were compared with those for the
base DEEP method without proposed enhancements and the state-of-the-art genetic al-
gorithm implemented in package GA [113] for R statistical software. According to the



Mathematics 2021, 9, 3329 13 of 20

Mann–Whitney criterion, the comparison was statistically significant (p-value < 0.05); con-
sequently, the developed method outperformed the competitors in all cases (see Table 2).

Table 2. Comparison of results for the problem of compilation of training sample for the method de-
veloped in this work (new), for DEEP without enhancements with DE/rand/1/bin, DE/rand/1/bin,
DE/best/1/bin and DE/best/1/exp strategies and for GA with real-valued (GA/rvd) and binary
encoding (GA/bin), also with a additional local search step (GA/rvd/loc and GA/bin/loc).

Method Mean EthAcc p-Value for Comparison with New Method

new 0.75

DE/rand/1/bin 0.54 <2.2 ×10−16

DE/rand/1/exp 0.56 <2.2× 10−16

DE/best/1/bin 0.57 8.15×10−13

DE/best/1/exp 0.57 4.20×10−14

GA/rvd 0.63 4.31×10−5

GA/bin 0.62 9.44×10−9

GA/rvd/loc 0.57 2.36×10−9

GA/bin/loc 0.52 4.09×10−8

4.3. Regression Model of Gene Expression

The developed algorithm was used to optimize the analytic form of the phenomenolog-
ical function that describes how the expression of the atonal gene depends on the expression
of hedgehog and Delta genes in cells of morphogenetic furrow of developing eye disc. The
data on gene expression were split into k = 10 folds for cross validation. The model was
trained on k− 1 parts of the sample and tested on a remaining part.

Parameters of the mixed-integer optimization problem include integer indices inter-
preted according to the grammatical evolution rules and real-valued coefficients. The best
solution (9) with respect to the root mean squared (RMS) difference between predicted and
measured gene expression suggests the non-linear dependence between gene expression
levels (see Figure 6).

ATO =

(
−0.59 +

9.99HH
(38.19 + DL)2

)
HH

+(44.49 + 1.16DL) cos(1/(38.19 + DL))

−9.99 cos(sin(78.51HH)) (9)

R2
adj = 0.32

RMS = 97.53

where R2
adj is an adjusted coefficient of determination, HH, DL and ATO are expressions

of genes hedgehog, Delta and atonal, respectively. The average accuracy of the obtained
non-linear solutions (R̂2

adj = 0.25) is slightly better than that of linear regressions (R̂2
adj =

0.24) obtained in [111], but the deviation of accuracy is statistically significantly smaller
(σnon−lin = 0.03 < 0.10 = σlin) according to the F-test (p-value= 8.4× 10−11).
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Figure 6. The non-linear dependence of atonal expression on that of hedgehog and Delta genes in the
cells of developing Drosophila eye.

We compared the obtained results with a state-of-the-art method for grammatical
evolution implemented in the gramEvol [40] package for R statistical software [107].
We used default recommended settings 40, 200 and 300 for chromosome size, popu-
lation size and iterations, respectively. The default mutation probability was set to
10/(1 + chromosomesize) ≈ 0.244. The mean adjusted coefficient of determination for the
developed method 0.25 was statistically significantly better than that of the competitor,
0.21, according to the Mann–Whitney criterion (U = 806.0, p = 1.47× 10−7).

5. Discussion

Feature selection methods are often subdivided in two main groups [114,115]: filtering
and wrapper methods. The filtering methods select features based on information content
or statistics and do not depend on any learning algorithm. Thus, the filtering techniques
are generally less computationally expensive, and are fast, and suitable for large datasets.
Moreover, they are easily applicable to various learning algorithms. For ranking features,
filtering methods are commonly used, such as Fisher’s score, T statistic, entropy-based
feature ranking, Bhattacharya distance, etc. [116,117]. However, the filtering methods
ignore the interaction of features and the performance of the classification algorithm with
the selected features, while the wrapper methods evaluate subsets of features based on
the classification efficiency, which is highly dependent on the specific algorithm used. It
is known that wrapper methods, such as, for example, SVM (SVM-R), cooperative index
(CI), K-top scoring pair (k-TSP), microarray significance analysis (SAM), positive synergy
index (PSI) and greedy forward selection (GFS) [118,119] are more accurate than filtering
methods, but require more computation and are more likely to lead to overfitting. In [28],
an improved binary differential evolution (BDE) algorithm was developed for the feature
selection problem for general classification problems in data mining.

The differential evolution entirely parallel (DEEP) method introduced recently [29,30]
is capable of finding integer-valued parameters that can represent indices of selected
features. In this work, the method was enhanced by the deduplication step based on [38]
to avoid equal integer-valued parameters in the intermediate and final solution vectors
and by the triangulation recombination rule based on [37] to increase the robustness of
the procedure.



Mathematics 2021, 9, 3329 15 of 20

The implementation of DEEP [39] was applied to mixed-integer problems, such as
the optimization of the predictors set and training set for genomic selection and the gene
regulation regression model in symbolic form.

The accuracy of regression models in genomic selection is suppressed by the fact that
the number of SNP markers is usually much larger than the number of observations—the
so-called curse of dimensionality [104]. Consequently, the dimensionality reduction and
training set optimization are important challenges.

The ability of the developed algorithm to optimize the set of SNP predictors for
genomic selection was evaluated on the wheat dataset presented in [108]. The developed
algorithm successfully constructed a model with fewer predictors and acceptable accuracy,
thereby reducing the dimensionality of the problem. The average number of selected SNPs
was 2939, and the average correlation coefficient was 0.75 for the test data and 0.875 for
the training data. The small set of 9 markers—IWA1008, IWA1273, IWA1637, IWA1870,
IWA1929, IWA4784, IWA837, IWA1360, and IWA4243—was selected in more than 87% of
solutions, which suggests their high impact on the modeled phenotype.

The developed algorithm was successfully used to determine the optimal training set
for genomic selection for the heading date in wheat, using the maximization of EthAcc
(estimated theoretical accuracy) as an objective function [109]. The mean number of
samples in the resulting training set was 70 out of 237 records with the mean accuracy of
0.75; 28 samples were included in 70% of solutions.

The DEEP method with proposed modifications was used to obtain a non-linear
phenomenological model of the expression of atonal gene expression under the control of
hedgehog and Delta genes in the developing Drosophila eye, using the grammatical evolution
(GE) approach [112]. The quantitative data on gene expression obtained by processing of
images of the eye discs were used for model construction [111]. The obtained solutions are
highly non-linear, and the adjusted coefficient of determination showed almost the same
average accuracy but significantly less deviation than the linear models obtained earlier.

These problems represent important areas of application of mathematical modeling in
biology. The prediction of important phenotypic characteristics based on the combination of
genetic markers can be used in selection, as in the tested case study, and also in biomedicine
for early screening of diseases. The models of the regulation of gene expression help to
decipher the mechanism of development. The successful application of the method to these
diverse problems supports its applicability in other biological tasks.

6. Conclusions

The differential evolution entirely parallel method was enhanced by the deduplication
step and by the triangulation recombination rule for solving mixed-integer optimization
problems.

The application of the method resulted in dimensionality reduction in the genomic
selection model in wheat such that the phenotype can be predicted with acceptable accuracy,
using a selected subset of SNP markers. The method was also successfully used to optimize
the training set of samples for such a genomic selection model.

According to the obtained results, the developed algorithm is capable of constructing
a non-linear phenomenological model of gene expression in the developing Drosophila
eye with almost the same average accuracy but significantly less deviation than the linear
models obtained earlier.
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