

Article Differential Subordination and Superordination Results Associated with Mittag–Leffler Function

Adel A. Attiya ^{1,2,*}, Mohamed K. Aouf ², Ekram E. Ali ^{1,3} and Mansour F. Yassen ^{4,5}

- ¹ Department of Mathematics, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; ekram_008eg@yahoo.com
- ² Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; mkaouf127@yahoo.com
- ³ Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Port Said 42521, Egypt
- ⁴ Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Aflaj 11912, Saudi Arabia; mf.ali@psau.edu.sa
- ⁵ Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
- Correspondence: aattiy@mans.edu.eg

Abstract: In this paper, we derive a number of interesting results concerning subordination and superordination relations for certain analytic functions associated with an extension of the Mittag–Leffler function.

Keywords: analytic function; Mittag–Leffler function; differential subordination; differential superordination

MSC: 30C45; 33E12

1. Definitions and Preliminaries

Let \mathbb{H} be the class of analytic functions in the open unit disc $\mathbb{U} = \{z : |z| < 1\}$. Also, let $\mathbb{H}[a, n]$ denote the subclass of the functions $f \in \mathbb{H}$ of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \quad (a \in \mathbb{C}).$$
(1)

Furthermore, let

$$A_m = \left\{ f \in \mathbb{H} \mid f(z) = z + a_{m+1} z^{m+1} + a_{m+2} z^{m+2} + \dots \right\}.$$

Moreover, assume that $A = A_1$ which is the subclass of the functions $f \in \mathbb{H}$ of the form

$$f(z) = z + a_2 z^2 + \dots (2)$$

For $f, g \in \mathbb{H}$, we say that the function f is subordinate to g, written symbolically as follows:

$$f \prec g$$
 or $f(z) \prec g(z)$

if there exists a Schwarz function w, which (by definition) is analytic in \mathbb{U} with w(0) = 0and |w(z)| < 1 ($z \in \mathbb{U}$), such that f(z) = g(w(z)) for all $z \in \mathbb{U}$. In particular, if the function g is univalent in \mathbb{U} , then we have the following equivalence relation (cf., e.g., [1,2]; see also [3]):

$$f(z) \prec g(z) \Leftrightarrow f(0) \prec g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

Citation: Attiya, A.A.; Aouf, M.K.; Ali, E.E.; Yassen, M.F. Differential Subordination and Superordination Results Associated with Mittag–Leffler Function. *Mathematics* 2021, 9, 226. https://doi.org/ 10.3390/math9030226

Academic Editor: Teodor Bulboacă Received: 23 December 2020 Accepted: 22 January 2021 Published: 25 January 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Let λ and *h* be two analytic functions in \mathbb{U} , suppose

$$\Phi(r,s,t;z):\mathbb{C}^3\times\mathbb{U}\to\mathbb{C}.$$

If λ and $\Phi(\lambda(z), z\lambda'(z), z^2\lambda''(z); z)$ are univalent functions in \mathbb{U} and if λ satisfies the second-order superordination

$$h(z) \prec \Phi(\lambda(z), z\lambda'(z), z^2\lambda''(z); z), \tag{3}$$

then λ is called to be a solution of the differential superordination (3). (If f is subordinate to F, then F is superordination to f). An analytic function μ is called a subordinant of (3), if $\mu \prec \lambda$ for all the functions λ satisfying (3). A univalent subordinant $\tilde{\mu}$ that satisfies $\mu \prec \tilde{\mu}$ for all of the subordinants μ of (3), is called the best subordinant (cf., e.g., [2], see also [3]).

Miller and Mocanu [4] obtained sufficient conditions on the functions h, μ and Φ for which the following statement holds:

$$h(z) \prec \Phi(\lambda(z), z\lambda'(z), z^2\lambda''(z); z) \Rightarrow \mu(z) \prec \lambda(z).$$
(4)

The results of Miller and Mocanu [4] and Bulboaca [5] considered certain families of first-order differential superordination whenever superordination preserves integral operators [6]. Moreover, Ali et al. [7], used Bulboaca's results [5] and obtained the sufficient conditions for normalized analytic functions f to satisfy

$$\mu_1(z) \prec \frac{zf'(z)}{f(z)} \prec \mu_2(z),$$
(5)

where μ_1 and μ_2 are given univalent functions in \mathbb{U} with $\mu_1(0) = 1$. Also, Shanmugam et al. [8] obtained sufficient conditions for normalized analytic functions *f* to satisfy

$$\mu_1(z) \prec \frac{f(z)}{zf'(z)} \prec \mu_2(z),$$

and

$$\mu_1(z) \prec \frac{z^2 f'(z)}{(f(z))^2} \prec \mu_2(z).$$

where μ_1 and μ_2 are given univalent functions in \mathbb{U} with $\mu_1(0) = 1$ and $\mu_2(0) = 1$, while Obradovic and Owa [9] obtained some results of subordinations associated with $\left(\frac{f(z)}{z}\right)^{\delta}$.

Let $f \in A$. Attiya [10] introduced the operator $H_{\alpha,\beta}^{\gamma,k}(f)$, where $H_{\alpha,\beta}^{\gamma,k}(f) : A \to A$ is defined by

$$H^{\gamma,k}_{\alpha,\beta}(f) = \mu^{\gamma,k}_{\alpha,\beta} * f(z) \qquad (z \in \mathbb{U}),$$

with $\beta, \gamma \in \mathbb{C}$, $\operatorname{Re}(\alpha) > \max\{0, \operatorname{Re}(k) - 1\}$ and $\operatorname{Re}(k) > 0$. Also, $\operatorname{Re}(\alpha) = 0$ when $\operatorname{Re}(k) = 1$; $\beta \neq 0$. Here, $\mu_{\alpha,\beta}^{\gamma,k}$ is the generalized Mittag–Leffler function defined by [11], see also [10] and the symbol (*) denotes the Hadamard product or convolution.

Due to the importance of Mittag–Leffler function, it is involved in many problems in natural and applied science.

A detailed investigation of Mittag–Leffler function has been studied by many authors see e.g., [11–16].

Attiya [10] noted that

$$H_{\alpha,\beta}^{\gamma,k}(f)(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(\gamma+nk)\Gamma(\alpha+\beta)}{\Gamma(\gamma+k)\Gamma(\beta+\alpha n)n!} a_n z^n.$$
 (6)

From (6) follows (see [10])

$$z(H^{\gamma,k}_{\alpha,\beta}(f)(z))' = (\frac{\gamma+k}{k})(H^{\gamma+1,k}_{\alpha,\beta}(f)(z)) - \frac{\gamma}{k}(H^{\gamma,k}_{\alpha,\beta}(f)(z))$$
(7)

and

$$\alpha z (H_{\alpha,\beta+1}^{\gamma,k}(f)(z))' = (\alpha + \beta) (H_{\alpha,\beta}^{\gamma,k}(f)(z)) - \beta (H_{\alpha,\beta+1}^{\gamma,k}(f)(z)).$$

$$\tag{8}$$

In order to derive our results, we will use the following known definitions and lemmas.

Definition 1. *Ref* [4]. *Denote by* μ *the set of all functions f that are analytic and injective on* $\overline{\mathbb{U}} \setminus E(f)$ *, where*

$$E(f) = \{\zeta : \zeta \in \partial \mathbb{U} \text{ and } \lim_{z \to \zeta} f(z) = \infty\},\tag{9}$$

with $f'(\zeta) \neq 0$ for $\zeta \in \partial \mathbb{U} \setminus E(f)$.

Lemma 1. Ref [3]. Let the function μ be univalent in the unit disc \mathbb{U} , and let θ and φ be analytic in a domain D containing $\mu(\mathbb{U})$, with $\varphi(w) \neq 0$ when $w \in \mu(\mathbb{U})$. Set $\mu(z) = z\mu'(z)\varphi(\mu(z))$, $h(z) = \theta(\mu(z)) + \mu(z)$ and suppose that

(i)
$$\mu$$
 is a starlike function in \mathbb{U} (i.e, $\operatorname{Re}\left(\frac{z\mu'(z)}{\mu(z)}\right) > 0$ for $z \in \mathbb{U}$),
(ii) $\operatorname{Re}\left(\frac{zh'(z)}{\mu(z)}\right) > 0$ for $z \in \mathbb{U}$.
If λ is analytic in \mathbb{U} with $\lambda(0) = \mu(0), \lambda(\mathbb{U}) \subseteq D$ and

$$\theta(\lambda(z)) + z\lambda'(z)\varphi(\lambda(z)) \prec \theta(\mu(z)) + z\mu'(z)\varphi(\mu(z)), \tag{10}$$

then $\lambda(z) \prec \mu(z)$, and μ is the best dominant.

Lemma 2. Ref [6]. Let μ be a convex univalent function in the unit disc \mathbb{U} and let ϑ and φ be analytic in a domain D containing $\mu(\mathbb{U})$. Suppose that

(i) $\operatorname{Re}\left\{\frac{\vartheta'(\mu(z))}{\varphi(\mu(z))}\right\} > 0 \text{ for } z \in \mathbb{U};$ (ii) $z\mu'(z)\varphi(\mu(z))$ is starlike in \mathbb{U} .

If $\lambda \in \mathbb{H}[\mu(0), 1] \cap \mu$ with $\lambda(\mathbb{U}) \subseteq D$, and $\vartheta(\lambda(z)) + z\lambda'(z)\varphi(\lambda(z))$ is univalent in \mathbb{U} , and

$$\vartheta(\mu(z)) + z\mu'(z)\varphi(\mu(z)) \prec \vartheta(\lambda(z)) + z\lambda'(z)\varphi(\lambda(z)),$$

then $\mu(z) \prec \lambda(z)$ *, and* μ *is the best subordinant.*

Lemma 3. Ref [4]. Let μ be a convex function in \mathbb{U} and let $\psi \in C$ with $\varkappa \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ with

$$\operatorname{Re}\left(1+\frac{z\mu^{''}(z)}{\mu^{\prime}(z)}\right) > \max\left\{0; -\operatorname{Re}\left(\frac{\psi}{\varkappa}\right)\right\} \ (z \in \mathbb{U}).$$

If λ *is analytic in* \mathbb{U} *, and*

$$\psi\lambda(z) + \delta z\lambda'(z) \prec \psi\mu(z) + \varkappa z\mu'(z), \tag{11}$$

then $\lambda(z) \prec \mu(z)$, and μ is the best dominant.

Lemma 4. Ref [17] Let μ be convex univalent in \mathbb{U} and let $\delta \in C$, with $\operatorname{Re}(\delta) > 0$. If $\lambda \in \mathbb{H}[\mu(0), 1] \cap \mu$ and $\lambda(z) + \delta z \lambda'(z)$ is univalent in \mathbb{U} , then

$$\mu(z) + \delta z \mu'(z) \prec \lambda(z) + \delta z \lambda'(z), \tag{12}$$

implies

$$\mu(z) \prec \lambda(z) \quad (z \in \mathbb{U})$$

and μ is the best subordinant.

In this paper we drive a number of interesting results concerning subordination and superordination relations for the operator $H^{\gamma,k}_{\alpha,\beta}(f)(z)$. Also, some of interesting sandwich results of the operator $H^{\gamma,k}_{\alpha,\beta}(f)(z)$ have been obtained.

2. Subordination and Superordination Results with $H^{\gamma,k}_{\alpha,\beta}(f)(z)$

Theorem 1. Let μ be convex univalent in \mathbb{U} , with $\mu(0) = 1, \rho \in \mathbb{C}^*$, $\delta > 0$. Suppose μ satisfies

$$\operatorname{Re}\left(1+\frac{z\mu''(z)}{\mu'(z)}\right) > \max\left\{0; -\operatorname{Re}\left(\frac{\delta}{\rho}\right)\right\}.$$
(13)

If $f \in A$ *satisfies the following subordination relation*

$$\left(\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{z}\right)^{\delta} + \frac{\rho(\gamma+k)}{k} \left(\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{z}\right)^{\delta} \left(\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)} - 1\right).$$
$$\prec \mu(z) + \frac{\rho}{\delta} z \mu'(z) \tag{14}$$

then

$$\left(\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{z}\right)^{\delta} \prec \mu(z) \tag{15}$$

and $\mu(z)$ is the best dominant of (14).

Proof. Define the function λ by

$$\lambda(z) = \left(\frac{H^{\gamma,k}_{\alpha,\beta}(f)(z)}{z}\right)^{\delta} \quad (z \in \mathbb{U}).$$
(16)

The function λ is analytic in \mathbb{U} and $\lambda(0) = 1$. Differentiating the function λ with respect to z logarithmically, we have

$$\frac{z\lambda'(z)}{\lambda(z)} = \delta \Bigg[\frac{z \Big(H^{\gamma,k}_{\alpha,\beta}(f)(z) \Big)'}{H^{\gamma,k}_{\alpha,\beta}(f)(z)} - 1 \Bigg].$$

In the resulting equation by using the identity (7), we have

$$\frac{z\lambda'(z)}{\lambda(z)} = \delta\left(\frac{\gamma+k}{k}\right) \left[\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)} - 1\right].$$

Therefore,

$$\frac{z\lambda'(z)}{\delta} = \frac{(\gamma+k)}{k} \left[\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)} - 1 \right] \left(\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{z} \right)^{\delta}.$$

It follows from (14) that

$$\lambda(z) + \frac{\rho}{\delta} z \lambda'(z) \prec \mu(z) + \frac{\rho}{\delta} z \mu'(z).$$

Thus, an application of Lemma 3 with $\psi = 1$ and $\varkappa = \frac{\rho}{\delta}$, we obtain (15).

In view of (8), and by using the similar method of proof the Theorem 1, we get the proof of Theorem 2.

Theorem 2. Let μ be convex univalent in \mathbb{U} , with $\mu(0) = 1$, $\rho \in \mathbb{C}^*$, $\delta > 0$. Suppose μ satisfies (13). If $f \in A$ satisfies the subordination

$$\left(\frac{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{z}\right)^{\delta} + \frac{\rho(\alpha+\beta)}{\alpha} \left(\frac{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{z}\right)^{\delta} \left(\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)} - 1\right).$$

$$\prec \mu(z) + \frac{\rho}{\delta} z \mu'(z) \tag{17}$$

then

$$\left(\frac{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{z}\right)^{\delta} \prec \mu(z)$$
(18)

,

and $\mu(z)$ is the best dominant of (18).

Theorem 3. Let $\zeta_i \in \mathbb{C}$ (i = 1, 2, 3, 4), $\delta > 0$, $\xi > 0$ (ξ is a real number) and μ be convex univalent in \mathbb{U} , with $\mu(0) = 1$, $\mu(z) \neq 0$ ($z \in \mathbb{U}$) and assume that μ satisfies

$$\Re\left\{1+\frac{\zeta_2}{\xi}\mu(z)+\frac{2\zeta_3}{\xi}\mu^2(z)+\frac{3\zeta_4}{\xi}\mu^3(z)+\frac{z\mu^{''}(z)}{\mu^{'}(z)}-\frac{z\mu^{'}(z)}{\mu(z)}\right\}>0.$$
(19)

Suppose that $\frac{z\mu'(z)}{\mu(z)}$ is starlike univalent in U. Also, if $f \in A$ satisfies the following subordination relation:

$$\Omega(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \xi, \delta, \gamma, k, \alpha, \beta; z) \prec \zeta_1 + \zeta_2 \mu(z) + \zeta_3 \mu^2(z) + \zeta_4 \mu^3(z) + \xi \frac{z\mu'(z)}{\mu(z)},$$
(20)

where

$$\Omega(\zeta_{1},\zeta_{2},\zeta_{3},\zeta_{4},\xi,\delta,\gamma,k,\alpha,\beta;z) \prec \zeta_{1} + \zeta_{2} \left(\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)} \right)^{\delta} + \zeta_{3} \left(\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)} \right)^{2\delta} \\
+ \zeta_{4} \left(\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)} \right)^{3\delta} + \xi_{\delta} \frac{(\gamma+k)}{k} \left[\frac{H_{\alpha,\beta}^{\gamma+2,k}(f)(z)}{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)} - \frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)} \right] \\
+ \frac{\xi_{\delta}}{k} \left[\frac{H_{\alpha,\beta}^{\gamma+2,k}(f)(z)}{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)} - 1 \right],$$
(21)

then

$$\left(\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)}\right)^{\delta} \prec \mu(z)$$

and $\mu(z)$ is the best dominant of (20).

Proof. Define the function λ by

$$\lambda(z) = \left(\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)}\right)^{\delta} \quad (z \in \mathbb{U}).$$
(22)

The function λ is analytic in \mathbb{U} and we note that $\lambda(0) = 1$. After some computation and using (7), we have

$$\zeta_1 + \zeta_2 \lambda(z) + \zeta_3 \lambda^2(z) + \zeta_4 \lambda^3(z) + \xi \frac{z\lambda'(z)}{\lambda(z)} = \Omega(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \xi, \delta, \gamma, k, \alpha, \beta; z),$$
(23)

,

where $\Omega(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \xi, \delta, \gamma, k, \alpha, \beta; z)$ is given by (21). From (20) and (23) we obtain

$$\zeta_1 + \zeta_2 \lambda(z) + \zeta_3 \lambda^2(z) + \zeta_4 \lambda^3(z) + \xi \frac{z\lambda'(z)}{\lambda(z)} \prec \zeta_1 + \zeta_2 \mu(z) + \zeta_3 \mu^2(z) + \zeta_4 \mu^3(z) + \xi \frac{z\mu'(z)}{\mu(z)}.$$

By setting

$$\theta(w) = \zeta_1 + \zeta_2 w + \zeta_3 w^2 + \zeta_4 w^3 \text{ and } \phi(w) = \frac{\xi}{w}, \ w \neq 0,$$

we see that θ is analytic in the complex plane \mathbb{C} and ϕ is analytic in \mathbb{C}^* , also, $\phi(w) \neq 0$, $w \in \mathbb{C}^*$. Moreover

$$\mu(z) = z\mu'(z)\phi(\mu(z)) = \xi \frac{z\mu'(z)}{\mu(z)}$$

and

$$h(z) = \theta(\mu(z)) + \mu(z) = \zeta_1 + \zeta_2 \mu(z) + \zeta_3 \mu^2(z) + \zeta_4 \mu^3(z) + \xi \frac{z\mu'(z)}{\mu(z)}.$$

It is clear that $\mu(z)$ is starlike univalent in \mathbb{U} ,

$$\operatorname{Re}\left(\frac{zh'(z)}{\mu(z)}\right) = \operatorname{Re}\left\{1 + \frac{\zeta_2}{\xi}\mu(z) + \frac{2\zeta_3}{\xi}\mu^2(z) + \frac{3\zeta_4}{\xi}\mu^3(z) + \frac{z\mu''(z)}{\mu'(z)} - \frac{z\mu'(z)}{\mu(z)}\right\} > 0.$$

Thus, from Lemma 1, we have $\lambda(z) \prec \mu(z)$. By using (22), we obtain the required result. \Box

In view of (8), and by using the similar method of proof of Theorem 3, we get the proof of Theorem 4

Theorem 4. Let $\zeta_i \in \mathbb{C}$ (i = 1, 2, 3, 4), $\delta > 0, \xi > 0$ (ξ is a real number) and μ be convex univalent function in \mathbb{U} , with $\mu(0) = 1$, $\mu(z) \neq 0 (z \in \mathbb{U})$ and assume that the function μ satisfies (19). Also, let $\frac{z\mu'(z)}{\mu(z)}$ be starlike univalent in \mathbb{U} . If $f \in A$ satisfies (20), where

$$\Omega(\zeta_1,\zeta_2,\zeta_3,\zeta_4,\xi,\delta,\gamma,k,\alpha,\beta;z) \prec \zeta_1 + \zeta_2 \left(\frac{H_{\alpha,\beta+2}^{\gamma,k}(f)(z)}{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}\right)^{\delta} + \zeta_3 \left(\frac{H_{\alpha,\beta+2}^{\gamma,k}(f)(z)}{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}\right)^{2\delta}$$

$$+ \zeta_{4} \left(\frac{H_{\alpha,\beta+2}^{\gamma,k}(f)(z)}{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)} \right)^{3\delta} + \xi_{\delta} \frac{\alpha + \beta}{\alpha} \left[\frac{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{H_{\alpha,\beta+2}^{\gamma,k}(f)(z)} - \frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)} \right] \\ + \frac{\xi_{\delta}}{\alpha} \left[\frac{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{H_{\alpha,\beta+2}^{\gamma,k}(f)(z)} - 1 \right],$$
(24)

then

$$\left(\frac{H_{\boldsymbol{\alpha},\boldsymbol{\beta}+2}^{\boldsymbol{\gamma},k}(f)(z)}{H_{\boldsymbol{\alpha},\boldsymbol{\beta}+1}^{\boldsymbol{\gamma},k}(f)(z)}\right)^{\boldsymbol{\delta}}\prec\mu(z)$$

and $\mu(z)$ is the best dominant of (20).

Theorem 5. Let $\zeta_i \in \mathbb{C}$ $(i = 1, 2, 3, 4), \xi > 0$ (ξ is a real number) and μ be convex univalent in \mathbb{U} , with $\mu(0) = 1$, $\mu(z) \neq 0 (z \in \mathbb{U})$ and assume that μ satisfies (19). Also, if $\frac{z\mu'(z)}{\mu(z)}$ is starlike univalent in \mathbb{U} . Moreover, if $f \in A$ satisfies (20), where

$$\Omega(\zeta_1,\zeta_2,\zeta_3,\zeta_4,\xi,\delta,\gamma,k,\alpha,\beta;z) \prec \zeta_1 + \zeta_2 \frac{zH_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{\left(H_{\alpha,\beta}^{\gamma,k}(f)(z)\right)^2} + \zeta_3 \frac{z^2 \left(H_{\alpha,\beta}^{\gamma+1,k}(f)(z)\right)^2}{\left(H_{\alpha,\beta}^{\gamma,k}(f)(z)\right)^4}$$

$$+\zeta_{4} \frac{z^{3} \left(H_{\alpha,\beta}^{\gamma+1,k}(f)(z)\right)^{3}}{\left(H_{\alpha,\beta}^{\gamma,k}(f)(z)\right)^{6}} + \xi \frac{\gamma+k}{k} \left[1 + \frac{H_{\alpha,\beta}^{\gamma+2,k}(f)(z)}{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)} - 2 \frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)}\right] \\ + \frac{\xi}{k} \left[\frac{H_{\alpha,\beta}^{\gamma+2,k}(f)(z)}{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)} - 1\right],$$
(25)

then

$$\frac{zH_{\boldsymbol{\alpha},\boldsymbol{\beta}}^{\boldsymbol{\gamma}+1,k}(f)(z)}{\left(H_{\boldsymbol{\alpha},\boldsymbol{\beta}}^{\boldsymbol{\gamma},k}(f)(z)\right)^2}\prec\mu(z)$$

and $\mu(z)$ is the best dominant of (20).

Proof. Define the function λ by

$$\lambda(z) = \frac{zH_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{\left(H_{\alpha,\beta}^{\gamma,k}(f)(z)\right)^2} \quad (z \in \mathbb{U}).$$
⁽²⁶⁾

Then the function λ is analytic in \mathbb{U} and $\lambda(0) = 1$. We note that

$$\zeta_1 + \zeta_2 \lambda(z) + \zeta_3 \lambda^2(z) + \zeta_4 \lambda^3(z) + \xi \frac{z\lambda'(z)}{\lambda(z)} = \Omega(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \xi, \delta, \gamma, k, \alpha, \beta; z),$$
(27)

where $\Omega(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \xi, \delta, \gamma, k, \alpha, \beta; z)$ is given by (25). From (20) and (27) we obtain

$$\zeta_1 + \zeta_2 \lambda(z) + \zeta_3 \lambda^2(z) + \zeta_4 \lambda^3(z) + \xi \frac{z\lambda'(z)}{\lambda(z)} \prec \zeta_1 + \zeta_2 \mu(z) + \zeta_3 \mu^2(z) + \zeta_4 \mu^3(z) + \xi \frac{z\mu'(z)}{\mu(z)}.$$

The remaining part of the proof of Theorem 5 is similar to that of Theorem 3 and hence we omit it. $\ \Box$

In view of (8), and by using the similar method of proof of Theorem 5, we get the proof Theorem 6.

Theorem 6. Let $\zeta_i \in \mathbb{C}$ $(i = 1, 2, 3, 4), \xi > 0$; real and μ be convex univalent function in \mathbb{U} , with $\mu(0) = 1, \mu(z) \neq 0 (z \in \mathbb{U})$ and assume that μ satisfies (19). Also, let $\frac{z\mu'(z)}{\mu(z)}$ be starlike univalent in \mathbb{U} . If $f \in A$ satisfies (20), where

$$\Omega(\zeta_{1},\zeta_{2},\zeta_{3},\zeta_{4},\xi,\delta,\gamma,k,\alpha,\beta;z) \prec \zeta_{1} + \zeta_{2} \frac{zH_{\alpha,\beta+2}^{\gamma,k}(f)(z)}{\left(H_{\alpha,\beta+1}^{\gamma,k}(f)(z)\right)^{2}} + \zeta_{3} \frac{z^{2}\left(H_{\alpha,\beta+2}^{\gamma,k}(f)(z)\right)^{2}}{\left(H_{\alpha,\beta+1}^{\gamma,k}(f)(z)\right)^{4}} \\
+ \zeta_{4} \frac{z^{3}\left(H_{\alpha,\beta+2}^{\gamma,k}(f)(z)\right)^{3}}{\left(H_{\alpha,\beta+1}^{\gamma,k}(f)(z)\right)^{6}} + \zeta_{\frac{\alpha}{\gamma}} \frac{\mu_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{\mu_{\alpha,\beta+2}^{\gamma,k}(f)(z)} - 2\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}\right] \\
+ \frac{\zeta_{\alpha}}{\alpha} \left[\frac{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{H_{\alpha,\beta+2}^{\gamma,k}(f)(z)} - 1\right],$$
(28)

then

$$\frac{zH_{\alpha,\beta+2}^{\gamma,k}(f)(z)}{\left(H_{\alpha,\beta+1}^{\gamma,k}(f)(z)\right)^{2}} \prec \mu(z)$$

and $\mu(z)$ is the best dominant of (20).

Remark 1. Superordination results associated with $H_{\alpha,\beta}^{\gamma,k}(f)(z)$ can be done analogously by using Lemmas 2 and 4.

3. Sandwich Results

Combining results of differential subordinations and superordinations, we get the following sandwich theorem.

Theorem 7. Let μ_1 and μ_2 be convex univalent in \mathbb{U} , with $\mu_1(0) = \mu_2(0) = 1$. Suppose μ_2 satisfies (13), $\delta > 0$ and $\operatorname{Re}\{\rho\} > 0$. Let $f \in A$ satisfies

$$\left(\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{z}\right)^{\delta} \in \mathbb{H}[1,1] \cap \mu$$

and

$$\left(\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{z}\right)^{\delta} + \frac{\rho(\gamma+k)}{k} \left(\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{z}\right)^{\delta} \left(\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)} - 1\right)$$

be univalent in \mathbb{U} . If

$$\begin{split} \mu_1(z) + \frac{\rho}{\delta} z \mu_1'(z) \prec \left(\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{z}\right)^{\delta} + \frac{\rho(\gamma+k)}{k} \left(\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{z}\right)^{\delta} \left(\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)} - 1\right) \\ \prec \mu_2(z) + \frac{\rho}{\delta} z \mu_2'(z) \end{split}$$

then

$$\mu_1(z) \prec \left(\frac{H^{\gamma,k}_{\alpha,\beta}(f)(z)}{z}\right)^{\delta} \prec \mu_2(z)$$

and μ_1 and μ_2 are respectively the best subordinate and best dominant.

Theorem 8. Let μ_1 and μ_2 be convex univalent in \mathbb{U} , with $\mu_1(0) = \mu_2(0) = 1$. Suppose μ_2 satisfies (13), $\delta > 0$ and $\operatorname{Re}\{\rho\} > 0$. Let $f \in A$ satisfies

$$\left(\frac{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{z}\right)^{\delta} \in \mathbb{H}[1,1] \cap \mu$$

and

$$(1-\rho\frac{\beta}{\alpha})\left(\frac{H^{\gamma,k}_{\alpha,\beta+1}(f)(z)}{z}\right)^{\delta} + \frac{\rho(\beta+\alpha)}{\alpha}\left(\frac{H^{\gamma,k}_{\alpha,\beta+1}(f)(z)}{z}\right)^{\delta}\left(\frac{H^{\gamma,k}_{\alpha,\beta}(f)(z)}{H^{\gamma,k}_{\alpha,\beta+1}(f)(z)}\right)^{\delta}$$

be univalent in \mathbb{U} . If

$$\begin{split} \mu_1(z) + \frac{\rho}{\delta} z \mu_1'(z) \prec (1 - \rho \frac{\beta}{\alpha}) \Biggl(\frac{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{z} \Biggr)^{\delta} + \frac{\rho(\beta + \alpha)}{\alpha} \Biggl(\frac{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{z} \Biggr)^{\delta} \Biggl(\frac{H_{\alpha,\beta}^{\gamma,k}(f)(z)}{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)} \Biggr) \\ \prec \mu_2(z) + \frac{\rho}{\delta} z \mu_2'(z), \end{split}$$

then

$$\mu_1(z) \prec \left(\frac{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{z}\right)^{\delta} \prec \mu_2(z)$$

and μ_1 and μ_2 are respectively the best subordinate and best dominant.

Theorem 9. Let μ_1 and μ_2 be convex univalent functions in \mathbb{U} , with $\mu_1(0) = \mu_2(0) = 1$. Suppose μ_1 satisfies

$$\Re\left\{\frac{\zeta_2}{\xi}\mu_1(z) + \frac{2\zeta_3}{\xi}\mu_1^2(z) + \frac{3\zeta_4}{\xi}\mu_1^3(z)\right\} > 0.$$
(29)

and μ_2 satisfies (19). Let $f \in A$ satisfies $\left(\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)}\right)^{\delta} \in \mathbb{H}[1,1] \cap \mu$, and $\Omega(\zeta_1,\zeta_2,\zeta_3,\zeta_4,\xi,\delta,\gamma,k,\alpha,\beta;z)$ is univalent in \mathbb{U} , where $\Omega(\zeta_1,\zeta_2,\zeta_3,\zeta_4,\xi,\delta,\gamma,k,\alpha,\beta;z)$ is given by (21). If

$$\zeta_{1} + \zeta_{2}\mu_{1}(z) + \zeta_{3}\mu_{1}^{2}(z) + \zeta_{4}\mu_{1}^{3}(z) + \xi \frac{z\mu_{1}'(z)}{\mu_{1}(z)} \prec \Omega(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}, \xi, \delta, \gamma, k, \alpha, \beta; z) \prec \zeta_{1} + \zeta_{2}\mu_{2}(z) + \zeta_{3}\mu_{2}^{2}(z) + \zeta_{4}\mu_{2}^{3}(z) + \xi \frac{z\mu_{2}'(z)}{\mu_{2}(z)},$$
(30)

then

$$\mu_1(z) \prec \left(\frac{H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{H_{\alpha,\beta}^{\gamma,k}(f)(z)}\right)^{\delta} \prec \mu_2(z)$$

and μ_1 and μ_2 are respectively the best subordinate and best dominant.

Theorem 10. Let μ_1 and μ_2 be convex univalent in \mathbb{U} , with $\mu_1(0) = \mu_2(0) = 1$. Suppose μ_1 satisfies (29), and μ_2 satisfies (19). Let $f \in A$ satisfies $\left(\frac{H_{\alpha,\beta+1}^{\gamma,k}(f)(z)}{H_{\alpha,\beta+2}^{\gamma,k}(f)(z)}\right)^{\delta} \in \mathbb{H}[1,1] \cap \mu$ and $\Omega(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \xi, \delta, \gamma, k, \alpha, \beta; z)$ is univalent in \mathbb{U} , where $\Omega(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \xi, \delta, \gamma, k, \alpha, \beta; z)$ is given by (24). If (30) has been satisfied,

then

$$\mu_1(z) \prec \left(\frac{H^{\gamma,k}_{\alpha,\beta+1}(f)(z)}{H^{\gamma,k}_{\alpha,\beta+2}(f)(z)}\right)^{\delta} \prec \mu_2(z)$$

and μ_1 and μ_2 are respectively the best subordinate and best dominant.

Theorem 11. Let μ_1 and μ_2 be convex univalent in \mathbb{U} , with $\mu_1(0) = \mu_2(0) = 1$. Suppose μ_1 satisfies (29), and μ_2 satisfies (19). Let $f \in A$ satisfies $\frac{zH_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{(H_{\alpha,\beta}^{\gamma,k}(f)(z))^2} \in \mathbb{H}[1,1] \cap \mu$ and

 $\Omega(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \xi, \delta, \gamma, k, \alpha, \beta; z)$ is univalent in \mathbb{U} , where $\Omega(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \xi, \delta, \gamma, k, \alpha, \beta; z)$ is given by (25). If (30) has been satisfied, then

$$\mu_1(z) \prec \frac{z H_{\alpha,\beta}^{\gamma+1,k}(f)(z)}{\left(H_{\alpha,\beta}^{\gamma,k}(f)(z)\right)^2} \prec \mu_2(z)$$

and μ_1 and μ_2 are respectively the best subordinate and best dominant.

Theorem 12. Let μ_1 and μ_2 be convex univalent in \mathbb{U} , with $\mu_1(0) = \mu_2(0) = 1$. Suppose μ_1 satisfies (29), and μ_2 satisfies (19). Let $f \in A$ satisfies $\frac{zH_{\alpha,\beta+2}^{\gamma,k}(f)(z)}{\left(H_{\alpha,\beta+1}^{\gamma,k}(f)(z)\right)^2} \in \mathbb{H}[1,1] \cap \mu$ and $\Omega(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \xi, \delta, \gamma, k, \alpha, \beta; z)$ is univalent in \mathbb{U} , where $\Omega(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \xi, \delta, \gamma, k, \alpha, \beta; z)$ is given by (28). If (30) has been satisfied, then

$$\mu_1(z) \prec \frac{zH_{\alpha,\beta+2}^{\gamma,k}(f)(z)}{\left(H_{\alpha,\beta+1}^{\gamma,k}(f)(z)\right)^2} \prec \mu_2(z)$$

and μ_1 and μ_2 are respectively the best subordinate and best dominant.

Remark 2. By specifying the function Ω and selecting the particular values of α , β , γ and k we can derive a number of known results. Some of them are given below.

(*i*) If we put $\gamma = k = 1$ and $\alpha = 0$ in Theorem 1, we obtain the results obtained by Murugusundaramoorthy and Magesh ([18], Corollary 3.3),

(*ii*) If we put $\gamma = k = 1$ and $\alpha = 0$ in Theorem 7 we obtain the results obtained by Raducanu and Nechita ([19], Corollary 3.10).

4. Conclusions

We obtained a number of interesting results concerning subordination and superordination relations for the operator $H_{\alpha,\beta}^{\gamma,k}(f)(z)$ of analytic functions associated with an extension of the Mittag–Leffler function in the open unit disk U. Also, some of interesting sandwich results of the operator $H_{\alpha,\beta}^{\gamma,k}(f)(z)$ have been obtained.

Author Contributions: The authors contributed equally to the writing of this paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been funded by Scientific Research Deanship at University of Hai'l-Saudi Arabia through project number RG-20020.

Acknowledgments: This research has been funded by Scientific Research Deanship at University of Hai'l- Saudi Arabia through project number RG-20020. The authors would like to thank the referees for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Bulboacă, T. Differential Subordinations and Superordinations New Results; House of Scientific Boook Publ.: Cluj-Napoca, Romania, 2005.
- 2. Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [CrossRef]
- 3. Miller, S.S.; Mocanu, P.T. *Differential Subordinations Theory and Applications*; Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000.
- 4. Miller, S.S.; Mocanu, P.T. Subordinations of differential superordinations. *Complex Var.* **2003**, *48*, 815–826.
- 5. Bulboacă, T. Classes of first-order differential subordinations. Demonstr. Math. 2002, 35, 287–392.
- 6. Bulboacă, T. A class of superordination preserving integral operators. Indag. Math. New Ser. 2002, 13, 301–311. [CrossRef]
- 7. Ali, R.M.; Ravichandran, V.; Khan, M.H.; Subramaniam, K.G. Differential sandwich theorems for certain analytic functions. *Far East J. Math. Sci.* **2004**, *15*, 87–94.
- 8. Shanmugam, T.N.; Ravichandran, V.; Sivasubramanian, S. Differential sandwich theorems for some subclasses of analytic functions. *Austral. J. Math. Anal. Appl.* **2006**, *3*, 1–11.
- 9. Obradovic, M.; Owa, S. On certain properties for some classes of starlike functions. *J. Math. Anal. Appl.* **1990**, *145*, 357–364. [CrossRef]
- 10. Attiya, A.A. Some Application of Mittag-Leffler Function in the unit disk. Filomat 2016, 30, 2075-2081. [CrossRef]
- 11. Srivastava, H.M.; Tomovski, Z. Fractional calculus with an itegral operator containing a generalized Mittag–Leffler function in the kernal. *Appl. Math Comp.* 2009, 211, 198–210. [CrossRef]
- 12. Aouf, M.K.; Seoudy, T.M. Certain subclasses of multivalently non-Bazilevic functions involving a generalized Mittag–Leffler function. *ROMAI J.* **2019**, *15*, 13–24.
- 13. Aouf, M.K.; Mostafa, A.O. Certain inequalities of meromorphic univalent functions associated with the Mittag–Leffler function. *J. Appl. Anal.* **2019**, *25*, 173–178. [CrossRef]
- 14. Yassen, M.F. Subordination results for certain class of analytic functions associated with Mittag–Leffler function. *J. Comp. Anal. Appl.* **2019**, *26*, 738–746.
- 15. Yassen, M.F.; Attiya, A.A.; Agarwal, P. Subordination and Superordination Properties for Certain Family of Analytic Functions Associated with Mittag–Leffler Function. *Symmetry* **2020**, *12*, 1724. [CrossRef]
- 16. Zayed, H.M.; Aouf, M.K. Subclasses of analytic functions of complex order associated with q-Mittag Leffler function. *J. Egypt. Math. Soc.* 2018, *26*, 278–286. [CrossRef]
- 17. Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [CrossRef]
- 18. Murugusundaramoorthy, G.; Magesh, N. Differential subordinations and superordinations for analytic functions defined by Dziok-Srivastava linear operator. *J. Ineq. Pure Appl. Math.* **2006**, *7*, 1–20.
- 19. Rducanu, D.; Nechita, V.O. A differential sandwich theorem for analytic functions defined by the generalized Salagean operator. *Aust. J. Math. Anal. Appl.* **2012**, *9*, 1–7.