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Abstract: A Riemannian manifold endowed with k > 2 orthogonal complementary distributions
(called here an almost multi-product structure) appears in such topics as multiply twisted or warped
products and the webs or nets composed of orthogonal foliations. In this article, we define the
mixed scalar curvature of an almost multi-product structure endowed with a linear connection, and
represent this kind of curvature using fundamental tensors of distributions and the divergence of a
geometrically interesting vector field. Using this formula, we prove decomposition and non-existence
theorems and integral formulas that generalize results (for k = 2) on almost product manifolds
with the Levi-Civita connection. Some of our results are illustrated by examples with statistical and
semi-symmetric connections.
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1. Introduction

Distributions on a manifold (that is subbundles of the tangent bundle) appear in
various situations and are used to build up notions of integrability, and specifically of
a foliated manifold, e.g., [1,2]. In this article, we consider a connected m-dimensional
Riemannian manifold (M, g) endowed with k ≥ 2 pairwise orthogonal ni-dimensional
distributions Di with dimension ∑ ni = m; thus, there exists an orthogonal splitting

TM = D1 ⊕ . . .⊕Dk.

This geometric structure, denoted here by (M, g,D1, . . . ,Dk) and called a Riemannian
almost multi-product structure (a Riemannian almost product structure when k = 2,
e.g., [3]), appears in the theory of webs or nets (families of orthogonal foliations), see [4,5],
and in recent studies of the curvature on multiply twisted and multiply warped products,
e.g., [6,7].

A natural question is when (M, g,D1, . . . ,Dk) is decomposed (or splits locally) into
the product of k manifolds. The best known result in this direction is the Decomposition
theorem of de Rham, which states that “if each distribution Di is parallel with respect to
the Levi-Civita connection of M, then any point p ∈ M has a neighborhood U, which is
isometric to a product M1× . . .×Mk of Riemannian manifolds such that the submanifolds,
which are parallel to the factor Mi, correspond to integral manifolds of the distribution
Di|U . In the case that M is simply connected and complete the assertion is true with
U = M”. This theorem was generalized to multiply warped and twisted products, to
pseudo-Riemannian and affinely connected manifolds, [8,9], and to more generally foliated
manifolds and submanifolds.
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On the other hand, many results of global Riemannian geometry (including splitting
or decomposition of manifolds and integral formulas) are carried out using restrictions
on the sign of curvature and the Stokes’ (or divergence) theorem or its modifications for
certain vector fields.

The mixed scalar curvature is the simplest curvature invariant of the almost multi-
product structure, its research even for k = 2 led to many results, for example, integral
formulas, splitting theorems and prescribing the curvature, e.g., [10–14].

The metric-affine geometry, founded by E. Cartan, generalizes Riemannian geometry:
it uses a metric g and a linear connection ∇̄ instead of the Levi-Civita connection ∇ (of g),
e.g., [1,15]. The following distinguished classes of metric-affine manifolds are considered
important.

• Statistical manifolds, where the tensor ∇̄g is symmetric in all its entries and con-
nection ∇̄ is torsion-free, constitute an important class of metric-affine manifolds
with applications in probability and statistics as well as in information geometry, e.g.,
[16,17].

• Riemann-Cartan manifolds, where the ∇̄-parallel transport preserves the metric,
∇̄g = 0, e.g., [11,18], with applications in physics; semi-symmetric connections con-
stitute their special class, see [7,19].

In the article, we generalize results for k = 2 in [11–14] on almost product manifolds
and twisted products. We introduce the mixed scalar curvature of (M, g,D1, . . . ,Dk) with
respect to a non-Levi-Civita linear connection and represent this kind of curvature using
fundamental tensors of the distributions and the divergence of a geometrically interesting
vector field. Using this formula, we prove decomposition and non-existence theorems
(sometimes called Liouville type theorems, e.g., [12,13]) and integral formulas (when M is
compact or a certain vector field is compactly supported on M) for some classes of almost
multi-product manifolds.

Section 2 contains definition and preliminary results. In Section 3 we prove new
integral formulas for multi-product manifolds. In Section 4 we obtain splitting results for
such manifolds (including multiply twisted products). Some of our results are illustrated
by examples with statistical and semi-symmetric connections. We suggest that the concept
of the mixed scalar curvature can be useful for differential geometry of multiply twisted
and warped products as well as in the theory of webs and nets of foliations.

2. Preliminaries

Let (M, g) be a Riemannian manifold, and let∇ denote its Levi-Civita connection. For
any linear connection ∇̄ we consider the difference T = ∇̄ −∇ (the contorsion tensor) and
define auxiliary (1,2)-tensors T∗ and T∧ by

〈T∗XY, Z〉 = 〈TXZ, Y〉, T∧XY = TYX, X, Y, Z ∈ XM.

For the case of a statistical connection ∇̄ we have T∧ = T and T∗ = T. For Riemann-
Cartan spaces we have T∗ = −T, and ∇̄ is said to be a metric compatible connection.

For the curvature tensor R̄X,Y = [∇̄Y, ∇̄X ] + ∇̄[X,Y] of a linear connection ∇̄, we have

R̄X,Y − RX,Y = (∇Y T)X − (∇X T)Y + [TY, TX ],

where RX,Y = [∇Y,∇X ] + ∇[X,Y] is the curvature tensor of ∇. The scalar curvature
S̄ = Trg Ric is the function on M, where Ric X,Y = 1

2 Tr(Z → R̄X,Z Y+R̄X,Z Y) is the sym-
metric Ricci tensor of ∇̄.

Let {e1, . . . , em} be a local adapted orthonormal frame on M, i.e., ea ∈ D for 1 ≤ a ≤
n = dimD. The mixed scalar curvature for two orthogonal complementary distributions
(D,D⊥) on a Riemannian manifold (Mm, g) with a linear connection ∇̄ is defined in [11] by



Mathematics 2021, 9, 229 3 of 11

S̄D,D⊥ =
1
2 ∑

1≤a≤n, n<b≤m

(
〈R̄ ea ,eb ea, eb〉+ 〈R̄ eb ,ea eb, ea〉

)
. (1)

If D is spanned by a unit vector field N, then S̄D,D⊥ = Ric N,N . When T = 0, the mixed
scalar curvature for (D,D⊥) is the function [14],

SD,D⊥ = ∑
1≤a≤n, n<b≤m

〈R ea ,eb ea, eb〉. (2)

The mixed scalar curvature of (M, g;D1, . . . ,Dk) is defined in [20] similarly to (2) as
an averaged mixed sectional curvature. A plane in TM spanned by two vectors belonging
to different distributions Di and Dj will be called mixed, and its sectional curvature will be
called mixed.

Given (M, g;D1, . . .Dk), there exists a local adapted orthonormal frame {e1, . . . , em}
on M, i.e., {e1, . . . , en1} ⊂ D1 and {en i−1+1, . . . , eni} ⊂ Di for i ≥ 2. All quantities defined
below using such frame do not depend on the choice of this frame.

In the following definition we extend (1), see also as Definition 1.1 in [20].

Definition 1. Given (M, g, ∇̄;D1, . . .Dk), the following function on M will be called the mixed
scalar curvature with respect to ∇̄:

S̄D1,...,Dk =
1
2 ∑

i<j
∑

n i−1<a≤ni , nj−1<b≤nj

(
〈R̄ea ,eb ea, eb〉+ 〈R̄eb ,ea eb, ea〉

)
. (3)

In particular, when T = 0, the function on M

SD1,...,Dk = ∑
i<j

∑
n i−1<a≤ni , nj−1<b≤nj

〈Rea ,eb ea, eb〉

is the mixed scalar curvature of (M, g;D1, . . .Dk) with respect to the Levi-Civita connection ∇.

Observe that the scalar curvature S̄ is decomposed as

S̄ = 2 S̄D1,...,Dk + ∑ i S̄ |Di ,

where S̄ |Di is the scalar curvature of (M, g) along the plane field Di.

Proposition 1 (see [20] for T = 0). For any (M, g, ∇̄;D1, . . .Dk) we have the following decom-
position of the mixed scalar curvature:

2 S̄D1,...,Dk = ∑ i S̄Di ,D⊥i
. (4)

Proof. For any pair of complementary distributions (Di,D⊥i ) on (M, g) we have

S̄Di ,D⊥i
= ∑

n i−1<a≤ni , b 6=(n i−1,ni ]

〈R̄ ea ,eb ea, eb〉.

Thus (4) follows directly from S̄Di ,D⊥i
= ∑ j 6=i S̄Di ,D⊥j

and the definition (3).

The symmetric second fundamental form hi : Di ×Di → D⊥i and the skew-symmetric
integrability tensor Ti : Di ×Di → D⊥i of Di are defined by

2 hi(X, Y) = P⊥i (∇XY +∇YX), 2 Ti(X, Y) = P⊥i (∇XY−∇YX) = P⊥i [X, Y],

where Pi : TM → Di and P⊥i : TM → D⊥i are orthoprojectors. The mean curvature
vector field of Di is Hi = Trg hi. Similarly, h⊥i , H⊥i = Trg h⊥i , T⊥i are defined for D⊥i .
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A distribution Di is integrable if Ti = 0, and Di is totally umbilical, harmonic, or totally
geodesic, if hi = (Hi/ni) g, Hi = 0, or hi = 0, respectively, e.g., [1].

Example 1. Totally umbilical and totally geodesic integrable distributions appear on multiply
twisted products. A multiply twisted product F1 ×u2 F2 × . . .×uk Fk of Riemannian manifolds
(F1, gF1), . . . , (Fk, gFk ) is the product M = F1× . . .× Fk with the metric g = gF1 ⊕ u2

2 gF2 ⊕ . . .⊕
u2

k gFk , where ui : F1 × Fi → (0, ∞) for i ≥ 2 are smooth functions, see [7]. The twisted products
(i.e., k = 2) and multiply warped products (i.e., ui : F1 → (0, ∞), see [6]) are special cases of
multiply twisted products. Let contorsion tensors TFi correspond to linear connections on (Fi, gFi ).
Then the contorsion tensor T = TF1 ⊕ . . .⊕ TFk corresponds to an adapted connection ∇̄ on M.

Let Di be the distribution on M obtained from the vectors tangent to horizontal lifts of Fi. The
leaves tangent to Di (i ≥ 2), are totally umbilical, with the mean curvature vector fields

Hi = −niP1∇(log ui)

tangent to D1, and the fibers (tangent to D1) are totally geodesic: h1 = 0. On a multiply twisted
product with k > 2 each pair of distributions is mixed totally geodesic: such (M, g) is diffeomorphic
to the direct product, and the Lie bracket does not depend on metric. Since

div Hi = −ni (∆1 ui)/ui − (n2
i − ni) ‖P1∇ui‖2/u2

i ,

where ∆1 is the Laplacian on C2(F1), and we have

SD1,...,Dk = ∑ i≥2 ni (∆1 ui)/ui .

The “musical” isomorphisms ] and [ will be used for rank one and symmetric rank 2
tensors. For example, if ω ∈ Λ1(M) is a 1-form and X, Y ∈ XM then ω(Y) = 〈ω], Y〉 and
X[(Y) = 〈X, Y〉. For arbitrary (0,2)-tensors B and C we also have 〈B, C〉 = Trg(B]C]) =

〈B], C]〉. The symmetric shape operator (Ai)Z of Di with Z ∈ D⊥i and the skew-symmetric
operator (T]

i )Z are defined by

〈(Ai)Z(X), Y〉 = hi(X, Y), Z〉, 〈(T]
i )Z(X), Y〉 = 〈Ti(X, Y), Z〉, X, Y ∈ Di.

Similarly, we define (A⊥i )Z and (T⊥]i )Z with Z ∈ Di. The squares of norms of tensors
are given by

〈hi, hi〉 = ∑
n i−1<a,b≤ni

〈hi(ea, eb), hi(ea, eb)〉, 〈Ti, Ti〉 = ∑
n i−1<a,b≤ni

〈Ti(ea, eb), Ti(ea, eb)〉, etc.

3. Integral Formulas

Integral formulas (usually obtained by applying the Divergence Theorem to appro-
priate vector fields) provide a powerful tool for proving global results in analysis and
geometry, e.g., [10]. The first known integral formula for a closed Riemannian manifold en-
dowed with a codimension one foliation tells us that the total (i.e., integral) mean curvature
of the leaves vanishes, see [21]. The second formula in the series of total σk’s—elementary
symmetric functions of principal curvatures of the leaves—says that for a codimension one
foliation with a unit normal N to the leaves the total σ2 is a half of the total Ricci curvature
in the N-direction, e.g., [10]: ∫

M
( σ2 −

1
2

RicN,N)d vol = 0. (5)

We immediately have two consequences of (5):
(a) if the Ricci curvature is nonpositive and not identically zero then F cannot be

totally umbilical;
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(b) if the Ricci curvature is nonnegative and not identically zero then F cannot be
harmonic (i.e., with zero mean curvature of the leaves).

An integral formula in [14], containing the mixed scalar curvature of a Riemannian
manifold endowed with two complementary orthogonal distributions, generalizes (5)
and has many applications, e.g., survey [10]. In [11], this formula was extended for
a metric affine almost product manifold (with a linear connection instead of the Levi-
Civita connection). On the other hand, Walczak’s result [14] was generalized in [20] for a
Riemannian manifold with an almost multi-product structure, and here we continue this
study for the case of arbitrary linear connection.

For the divergence of a vector field X ∈ XM we have

div X = Tr(∇X).

The following two lemmas on the mixed scalar curvature of (M, g) endowed with
two complementary orthogonal distributions play a key role in this section.

Lemma 1 (see [14]). For the mixed scalar curvature SD,D⊥ of (M, g;D,D⊥), we have

div(H + H⊥) = SD,D⊥ + 〈h, h〉+ 〈h⊥, h⊥〉 − 〈H⊥, H⊥〉 − 〈H, H〉 − 〈T, T〉 − 〈T⊥, T⊥〉 (6)

Set V(D) = (D ×D⊥) ∪ (D⊥ ×D). Define the partial traces of a contorsion tensor
T by

TrD⊥i
T = ∑

b 6=(n i−1,ni ]

Teb eb, TrDi T = ∑
ni−1<a≤ni

Tea ea.

Lemma 2 (see Lemma 2 in [11]). For (M, g, ∇̄ = ∇+ T;D,D⊥) we get

div
(

P TrD⊥(T−T
∗) + P⊥ TrD(T−T∗)

)
= 2(S̄D,D⊥ − SD,D⊥)

−〈TrD T, TrD⊥ T
∗〉 − 〈TrD⊥ T, TrD T∗〉 − 〈TrD(T− T∗)− TrD⊥(T− T∗), H − H⊥〉

−〈T− T∗ + T∧ − T∗∧, A⊥ − T⊥] + A− T]〉+ 〈T∗, T∧〉 |V(D).

(7)

Remark 1. Using the auxiliary functions Q(D, g) and Q̄(D, g,T), given by

Q(D, g) = 〈H⊥, H⊥〉+ 〈H, H〉 − 〈h, h〉 − 〈h⊥, h⊥〉+ 〈T, T〉+ 〈T⊥, T⊥〉, (8)

2 Q̄(D, g,T) = 〈TrD T, TrD⊥ T
∗〉+〈TrD⊥ T, TrD T∗〉+〈TrD(T−T∗)−TrD⊥(T−T

∗), H − H⊥〉
− 〈T∗, T∧〉 |V(D) + 〈T− T∗ + T∧ − T∗∧, A⊥ − T⊥] + A− T]〉, (9)

Formulas (6) and (7) can be written shortly as

div(H + H⊥) = SD,D⊥ −Q(D, g), (10)

div
(

P TrD⊥(T− T∗) + P⊥ TrD(T− T∗)
)

= 2(S̄D,D⊥ − SD,D⊥)− 2 Q̄(D, g,T). (11)

In a local adapted frame, the last term in (9) and 〈T∗,T∧〉 |V(D) have the form

〈T− T∗ + T∧ − T∗∧, A⊥ − T⊥] + A− T]〉
= ∑

a≤n1, b>n1

(
〈(Teb − T∗eb

)ea + (Tea − T∗ea)eb, (A⊥ea − T⊥]ea )eb + (Aeb − T]
eb)ea〉

)
,

〈T∗, T∧〉 |V(D) = ∑
a≤n1, b>n1

(
〈Tea eb, T∗eb

ea〉+ 〈T∗ea eb, Teb ea〉
)
.

The following result generalizes (10) for k > 2 and a linear connection ∇̄ instead of ∇.
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Proposition 2. For an almost multi-product manifold (M, g, ∇̄;D1, . . . ,Dk) with a linear con-
nection ∇̄ = ∇+ T we have

div ∑ i

(1
2
(

Pi TrD⊥i
(T− T∗) + P⊥i TrDi (T− T∗)

)
+ H i + H⊥i

)
= 2 S̄D1,...,Dk −∑ i

(
Q̄(Di, g,T) + Q(Di, g)

)
,

(12)

where Q(Di, g) and Q̄(Di, g,T) are given in (8) and (9) with D = Di.

Proof. Summing k copies of (10) with D = Di for i = 1, . . . , k, and using (4) gives the
equality (see also [20])

div ∑ i(H i + H⊥i ) = 2 SD1,...,Dk −∑ i Q(Di, g). (13)

Summing k copies of (11) with D = Di for i = 1, . . . , k and using (4) gives the equality

1
2

div ∑ i

(
Pi TrD⊥i

(T− T∗) + P⊥i TrDi (T− T∗)
)

= 2 S̄D1,...,Dk − 2 SD1,...,Dk −∑ i Q̄(Di, g,T).
(14)

Finally, the sum of (13) and (14) is (12).

Theorem 1. For a closed manifold M with an almost multi-product structure (g, ∇̄;D1, . . . ,Dk)
the following integral formula holds:∫

M

(
2 S̄D1,...,Dk −∑ i(Q(Di, g) + Q̄(Di, g,T))

)
d volg = 0 . (15)

Proof. Using the Divergence Theorem for (12), gives (15).

Remark 2. In Theorem 1 and in results below, instead of compactness of M, one may assume that
certain vector fields under the divergence operator are compactly supported on M. For T = 0, the
integral formula (15) reduces to the following result in [20]:∫

M

(
2 SD1,...,Dk −∑ i Q(Di, g)

)
d volg = 0 . (16)

Using the Divergence Theorem for (10) on a closed Riemannian manifold (M, g), gives the integral
formula (16) for k = 2 ∫

M

(
SD,D⊥ −Q(D, g)

)
d volg = 0,

and (11) and (10) give the following integral formula (15) for k = 2:∫
M

(
S̄D,D⊥ −Q(D, g)− Q̄(D, g,T)

)
d volg = 0.

Corollary 1. For a closed manifold M endowed with an almost multi-product structure and a
statistical connection ∇̄ = ∇+ T, we have the following integral formula:∫

M

(
2 S̄D1,...,Dk −∑ i

(
Q(Di, g) + 〈TrDi T, TrD⊥i

T〉 − 1
2
〈T, T〉 |V(Di)

))
d volg = 0. (17)

Proof. For (M, g;D1, . . . ,Dk) with a statistical connection ∇̄ = ∇+ T, we have for each i,

2 Q̄(Di, g,T) = 2 〈TrDi T, TrD⊥i
T〉 − 〈T, T〉 |V(Di)

,

see (19). Thus, (14) reduces to
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2 S̄D1,...,Dk − 2 SD1,...,Dk −∑ i

(
〈TrD⊥i

T, TrDi T〉 −
1
2
〈T, T〉 |V(Di)

)
= 0. (18)

Applying the Divergence Theorem gives (17) that also follows from (15).

In the rest of this section we give examples with integral formulas for statistical and
semi-symmetric connections.

Example 2. (a) For the case of a statistical connection ∇̄ = ∇+ T, the equality (9) simplifies as

2 Q̄(D, g,T) = 2 〈TrD T, TrD⊥ T〉 − 〈T, T〉 |V(D) ; (19)

thus, (7) reduces to the equality

2 S̄D,D⊥ − 2 SD,D⊥ − 〈TrD⊥ T, TrD T〉+ 1
2
〈T, T〉 |V(D) = 0. (20)

Using (10) and (20) for a closed manifold M gives the following integral formula:∫
M

(
2 S̄D,D⊥ −Q(D, g)− 〈TrD T, TrD⊥ T〉+

1
2
〈T, T〉 |V(D)

)
d volg = 0.

(b) Let a Riemannian manifold (Mm, g) with a statistical connection ∇̄ admit a codimension-one
foliation F , and σk(F ) be elementary symmetric functions of principal curvatures of the leaves of
F . Let there exist unit normal vector field N to F . Put D = span(N) and integrate the sum of (6)
and (7) over a closed M. We get the integral formula generalizing (5):∫

M

(
2σ2(F )− RicN,N − 2 〈TN N, TrD⊥ T〉+ 〈TN , TN〉 | D⊥

)
d volg = 0. (21)

(c) Let a Riemannian manifold (Mm, g) with a statistical connection ∇̄ admit m pairwise orthogonal
codimension-one foliations Fi, and σk(Fi) be elementary symmetric functions of principal curva-
tures of the leaves of Fi. Let there exist unit vector fields Ni orthogonal to Fi and Di = span(Ni).
Writing down (21) for each Ni on a closed manifold M, and using

〈T, T〉 |V(Di)
= ∑j 6=i〈TNi Nj, TNi Nj〉, 〈TrDi T, TrD⊥i

T〉 = 〈TNi Ni, ∑j 6=i TNj Nj, 〉,

we obtain the following integral formulas for 1 ≤ i ≤ m:∫
M

(
2σ2(Fi)− RicNi ,Ni

− 〈TNi Ni, ∑ j 6=i TNj Nj, 〉 −
1
2 ∑ j 6=i〈TNi Nj, TNi Nj〉

)
d volg = 0.

(22)

Summing m copies of (22) for i = 1, . . . , m and using S̄ = ∑ i RicNi ,Ni , gives the integral formula
with the scalar curvature S̄ of (M, g) (which also follows from (15) when ni = 1),∫

M

(
∑ i

(
2 σ2(Fi)− 〈TNi Ni, ∑

j 6=i
TNj Nj, 〉+

1
2 ∑

j 6=i
〈TNi Nj, TNi Nj〉

)
− S̄

)
d volg = 0.

For T = 0, the above formula simplifies to the following integral formula (see also [20]):∫
M

(
2 ∑ i σ2(Fi)− S

)
d volg = 0. (23)

We immediately have the following consequences of (23):
(a) if S < 0, then each foliation Fi cannot be totally umbilical;
(b) if S > 0, then each foliation Fi cannot be harmonic.
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Example 3. (a) Assume that ∇̄ is a semi-symmetric connection on (Mm, g) with complementary
orthogonal distributions (D,D⊥). We have T∗ = −T (metric compatible connection) and

〈T− T∗ + T∧ − T∗∧, A⊥ − T⊥] + A− T]〉 = 2 Tr(AP⊥U − A⊥P>U),

〈T∗, T∧〉 |V(D) = 0,

TrD T = PU − nU, TrD⊥ T = P⊥U − n⊥U,

where n = dimD and n⊥ = dimD⊥. Thus, (7) takes the form

− div(nP⊥U + n⊥PU) =̄SD,D⊥ − SD,D⊥ + n n⊥U − n〈P⊥U, P⊥U〉 − n⊥〈PU, PU〉

−(n⊥ − n)〈U, H − H⊥〉 − Tr(AU⊥ − A⊥U>).
(24)

Using the Divergence Theorem for (24) and (10) on a closed Riemannian manifold (M, g), gives
the following integral formula:∫

M

(
S̄D,D⊥ −Q(D, g) + n n⊥U − n〈P⊥U, P⊥U〉 − n⊥〈PU, PU〉

− (n⊥ − n)〈U, H − H⊥〉 − Tr(AP⊥U − A⊥P>U)
)

d volg = 0.

(b) Next, consider an almost multi-product manifold (M, g, ∇̄;D1, . . . ,Dk) with a semi-symmetric
connection ∇̄ = ∇+ T. By (24) and (4), we have the equality

− div ∑ i(niP⊥i U + n⊥i PiU) = 2(S̄D1,...,Dk − SD1,...,Dk )+∑ i

(
nin⊥i U − ni〈P⊥i U, P⊥i U〉

− n⊥i 〈PiU, PiU〉 − (n⊥i − ni)〈U, Hi − H⊥i 〉 − Tr(Ai,P⊥i U−A⊥i,P>i U)
)
.

(25)

Using the Divergence Theorem for (25) and (16) on a closed Riemannian manifold (M, g), gives
the following integral formula:∫

M

(
2 S̄D1,...,Dk + ∑ i

(
ni n⊥i U − ni〈P⊥i U, P⊥i U〉 − n⊥i 〈PiU, PiU〉

− (n⊥i − ni)〈U, Hi − H⊥i 〉 − Tr(Ai,P⊥i U−A⊥i,P>i U)
)
−Q(Di, g)

) )
d volg = 0.

4. Splitting and Nonexistence Theorems

Here, we apply Propositions 1 and 2 to obtain splitting results for almost multi-product
manifolds and multiply twisted products.

We say that an almost multi-product manifold (M, g;D1, . . . ,Dk) splits if all distribu-
tions Di are integrable and M is locally the direct product M1 × . . .×Mk with canonical
foliations tangent to Di. It is well known that if a simply connected manifold splits then it
is the direct product.

We apply the submanifolds theory to almost multi-product manifolds.

Definition 2. A pair (Di,Dj) with i 6= j of distributions on (M, g;D1, . . . ,Dk) (with k > 2) is
(a) mixed totally geodesic, if h ij(X, Y) = 0 for all X ∈ Di and Y ∈ Dj.
(b) mixed integrable, if T ij(X, Y) = 0 for all X ∈ Di and Y ∈ Dj.

Lemma 3 (see [20]). If each pair (Di,Dj) with i 6= j on (M, g;D1, . . . ,Dk) is
(a) mixed totally geodesic, then hq1,...,qr (X, Y) = 0,
(b) mixed integrable, then Tq1,...,qr (X, Y) = 0,

where q1, . . . , qr is any subset of r distinct elements of {1, . . . , k} and X ∈ Dq(1), Y ∈ Dq(2).

The next definition is introduced to simplify the presentation of results. A linear
connection ∇̄ = ∇+ T on (M, g;D1, . . . ,Dk) will be called adapted if T is decomposed into
Di-components,

TXY = 0 (X ∈ Di, Y ∈ Dj, i 6= j).
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Lemma 4. For an almost multi-product structure on M with an adapted statistical connection we
have S̄D1,...,Dk = SD1,...,Dk .

Proof. For statistical connection, the equality (18) is true. For adapted connection, we have
Q̄(Di, g,T) = 0 for i ≥ 1, see Corollary 1. Thus, (18) implies the claim.

The following splitting result generalizes Theorem 6 (with k = 2) in [12] and Theo-
rem 2.1 in [20].

Theorem 2. Suppose that an almost multi-product manifold (M, g, ∇̄;D1, . . . ,Dk) with a statis-
tical adapted connection ∇̄ = ∇+ T has integrable harmonic distributions D1, . . . ,Dk and each
pair (Di,Dj) is mixed integrable. If S̄D1,...,Dk ≥ 0, then (M, g) splits.

Proof. From the equality H1...r = Pr+1...k(H1 + . . . + Hr) it follows that Hi = 0 for all i ≥ 1,
then H⊥i = 0 for all i ≥ 1. Similarly (by Lemma 3), if T ij = 0 for all i ≥ 1, then T⊥i = 0 for
all i ≥ 1. By conditions, (8) with D = Di, (12) and Corollary 1,

2 S̄D1,...,Dk + ∑ i(‖hi‖2 + ‖h⊥i ‖2) = 0.

By the above, hi = 0 (i ≥ 1). By well-known Decomposition theorem of de Rham,
(M, g) splits.

Observe that for X ∈ Di and Y ∈ D⊥i we have

div⊥i X = div X + 〈X, H⊥i 〉, diviY = div Y + 〈Y, Hi〉, (26)

where
div i X = ∑

n i−1<a≤ni

〈∇ea X, ea〉, div⊥i X = ∑
b 6=(n i−1,ni ]

〈∇eb X, eb〉.

The following splitting result generalizes Theorem 2 in [14], see also Corollary 14 (where
k = 2) in [11].

Theorem 3. Suppose that an almost multi-product manifold (M, g, ∇̄;D1, . . . ,Dk) with a statisti-
cal adapted connection ∇̄ = ∇+ T has integrable distributions D1, . . . ,Dk and each pair (Di,Dj)
is mixed integrable. Suppose that Dj is harmonic (i.e., Hj = 0) for some index j and Hi ∈ Dj and
all i 6= j. If S̄D1,...,Dk > 0, then a foliation tangent to Dj has no compact leaves.

Proof. By conditions, we have H⊥i ∈ Dj or all i. Assume that Dj has a compact leaf L.
By (26), we have divL Hi = div Hi + ‖Hi‖2 for i 6= j and divL H⊥i = div H⊥i + ‖H⊥i ‖2 for
all i. Thus,

divL
(
∑ i 6=j H i + ∑ i H⊥i

)
= div

(
∑ i 6=j H i + ∑ i H⊥i

)
+∑ i 6=j ‖H i‖2 + ∑ i ‖H⊥i ‖2.

Therefore, integrating (12) along L and using Lemma 4, gives

0 =
∫

L
divL

(
∑ i 6=j H i + ∑ i H⊥i

)
d volL

=
∫

L

(
2 S̄D1,...,Dk + ∑ i(‖h i‖2 + ‖h⊥i ‖2)

)
d volL > 0

– a contradiction.

The following splitting result generalizes ([20], Theorem 2.2).
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Theorem 4. Suppose that an almost multi-product manifold (M, g, ∇̄;D1, . . . ,Dk) with a statisti-
cal adapted connection ∇̄ = ∇+ T has totally umbilical distributions such that each pair (Di,Dj)

is mixed totally geodesic, 〈Hi, Hj〉 = 0 for all i 6= j. If (M, g) is complete open, ‖ξ‖ ∈ L1(M, g)
for ξ = ∑ i(Hi + H⊥i ) and S̄D1,...,Dk ≤ 0, then (M, g) splits.

Proof. By assumptions and Lemma 4, from (12) we get

div ξ = 2 S̄D1,...,Dk −∑ i Q(Di, g), (27)

where Q(Di, g) is given in (8) with D = Di. By conditions, for any i ≥ 1 we have

‖H⊥i ‖2 − ‖h⊥i ‖2 = ∑j 6=i

nj − 1
nj
‖P⊥i Hj‖2 ≥ 0,

where P⊥i is the orthoprojector onto D⊥i . Hence, Q(Di, g) ≥ 0, and from S̄D1,...,Dk ≤
0 and (27) we get div ξ ≤ 0. By conditions and Lemma 5 below, div ξ = 0. Thus,
see (27), S̄D1,...,Dk = 0 and Ti and hi vanish. By the Decomposition theorem of de Rham,
(M, g) splits.

Modifying Divergence theorem on a complete open manifold (M, g) gives the following.

Lemma 5 (see Proposition 1 in [22]). Let (Mm, g) be a complete open Riemannian manifold
endowed with a vector field ξ such that div ξ ≥ 0. If the norm ‖ξ‖g ∈ L1(M, g) then div ξ ≡ 0.

The following corollary of Theorem 4 generalizes ([20], Corollary 4) with T = 0
and ([20], Corollary 22) with k = 2.

Corollary 2. Let a multiply twisted product manifold (M, g) of k Riemannian manifolds be
complete open and endowed with a statistical adapted connection and let 〈Hi, Hj〉 = 0 for i 6= j.
If S̄D1,...,Dk ≤ 0 and ‖∑ i(Hi + H⊥i )‖ ∈ L1(M, g), then (M, g) is the direct product.
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