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Abstract: A new class of differential variational inequalities (DVIs), governed by a variational
inequality and an evolution equation formulated in infinite-dimensional spaces, is investigated
in this paper. More precisely, based on Browder’s result, optimal control theory, measurability
of set-valued mappings and the theory of semigroups, we establish that the solution set of DVI is
nonempty and compact. In addition, the theoretical developments are accompanied by an application
to differential Nash games.
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1. Introduction

In the current paper, we introduce the following class of differential variational inequal-
ities (DVIs) governed by a variational inequality and an evolution equation formulated in
infinite-dimensional spaces:

x
′
(τ) ∈ Ax(τ) + Lu(τ) + H(τ, x(τ)), τ ∈ [0, T], (1)

u(τ) ∈ S(Ω, g(τ, x(τ)) +F (·), ξ), a.e. τ ∈ [0, T],

x(0) = x0,

where S(Ω, g(τ, x(τ)) + F (·), ξ) denotes the solution set of the following variational
inequality (VI): find u : [0, T]→ Ω such that

〈g(τ, x(τ)) +F (u(τ)), v− u(τ)〉+ ξ(v)− ξ(u(τ)) ≥ 0, ∀v ∈ Ω. (2)

Further, consider X and X1 as real infinite-dimensional Banach spaces, Ω ⊂ X1 is a
nonempty closed and convex subset, A : D(A) ⊂ X → X is the infinitesimal generator of
a C0-semigroup eAt in X , ξ : X1 → (−∞,+∞] is a convex, lower semicontinuous, 6≡ +∞
functional, L : X1 → X is a bounded linear operator, H : [0, T]×X → 2X is a set-valued
mapping, g : [0, T]× X → X ∗1 , and F : Ω → X ∗1 are given, which will be specified in
Section 2.

In accordance with Pang and Stewart [1], Pazy [2] and Liu et al. [3], the solutions of
evolutionary problem (DVI) are understood in the following mild sense:

Definition 1. A pair of functions (x, u), with x ∈ C([0, T];X ) and u : [0, T]→ Ω measurable,
is said to be a mild solution of evolutionary problem (DVI) if

x(τ) = eAtx0 +
∫ τ

0
eA(τ−s)[Lu(s) + h(s)]ds, τ ∈ [0, T],

where u(τ) ∈ S(Ω, g(τ, x(τ)) +F (·), ξ) and h(τ) ∈ H(τ, x(τ)), a.e. τ ∈ [0, T].
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As is well-known, differential variational inequalities were introduced as a power-
ful mathematical tool of variational analysis in order to investigate real-life problems
coming from operations research, engineering, and physical sciences. Various aspects
related to differential variational inequalities have been investigated so far, but in a finite-
dimensional framework (see, for instance, [4–13] and references therein). The results
established in Gwinner [6,7], Liu et al. [10], Pang and Stewart [1], Li et al. [14] are de-
voted to the case X = Rn, X1 = Rm and A = 0. Recently, the theory of differential
variational inequalities was extended to the more general level of infinite-dimensional
Banach or Hilbert spaces. The paper by Liu et al. [15] was devoted to discuss the well-
posedness and the generalized well-posedness of a differential mixed quasi-variational
inequality and to provide criteria of well-posedness in the generalized sense of the in-
equality. For solving the problems or phenomena described by nonconvex superpotential
functions, which are locally Lipschitz, Cen et al. [16] extended the results derived in
Liu et al. [15]. Migórski and Bai [17] studied a class of evolution subdifferential inclu-
sions involving history-dependent operators. Regarding the evolutionary problem (DVI),
references Liu et al. [3,18] could be seen as the most appropriate regarding the subject and
the mathematical development presented in this paper. Reference Liu et al. [3] considers
Lu(τ)+ H(τ, x(τ)) and g(τ, x(τ))+F (u(τ)) having the general form f (τ, x(τ), u(τ)) and
g(τ, x(τ), u(τ)), respectively. By considering the particular form g(τ, x(τ)) +F (u(τ)) for
g(τ, x(τ), u(τ)) is essential in the present paper since it allows us to use the Browder’s
theorem (see Theorem 1). On the other hand, the reference Liu et al. [18] does not contain
the functional ξ : X1 → (−∞,+∞] in the considered evolutionary problem. Thus, the evo-
lutionary problem (DVI) becomes more general in this direction and incorporates various
classes of problems and models.

In this paper, based on the Browder’s theorem, optimal control theory, KKM theorem,
measurability of set-valued mappings and the theory of semigroups, we study the existence
of solutions associated with DVI in separable reflexive Banach spaces of infinite dimension.
First, we prove important properties associated with the solution set of DVI as the strongly-
weakly upper semicontinuity, superpositionally measurability, compactness and convexity.
Further, we formulate and prove the main result established that the solution set for DVI
is nonempty and compact. Additionally, the theoretical developments presented in this
paper are accompanied by an application to differential Nash games. As is well known
(see, for instance, Chen and Wang [4], Gwinner [6,7], Han and Pang [8], Li et al. [14],
Liu et al. [10], Pang and Stewart [1], Wang and Huang [13]), this kind of evolutionary
problem governed by variational inequalities includes various situations such as Coulomb
friction problems for contacting bodies, dynamic traffic network, economical dynamics,
electrical circuits with ideal diodes, control systems etc.

The paper is divided as follows. The first part of Section 2 includes basic defini-
tions and results used further. Next, we establish a general existence result for a class
of variational inequalities closely related to DVI. In addition, the strongly-weakly upper
semicontinuity, compactness and superpositionally measurability are investigated for the
solution set of the considered variational inequality. The final part of Section 2 provides
some existence and qualitative properties for the solution set of the evolutionary problem
(DVI). In order to illustrate the effectiveness of the theoretical results presented in this
paper, an application to differential Nash games is also provided.

2. Main Results

In this section, we study the existence of solutions for DVI in infinite-dimensional
Banach spaces, and we also formulate some properties of the solution set. First, we recall
some notations, notions and results which will be useful in the sequel.

Let 2S be the collection of all nonempty subsets for any nonempty set S. Additionally,
we introduce

Ω(S) := {D ∈ 2S : D is compact}

Ων(S) := {D ∈ 2S : D is compact and convex}
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and denote by “→” and “⇀” the strong convergence and the weak convergence, respec-
tively, in a given Banach space X .

Definition 2 (see [19]). The set-valued mapping F : [0, T]→ 2X is said to be measurable if the
set {τ ∈ [0, T] : F(τ) ⊂ O} is measurable on R, for every open subset O ⊂ X .

Definition 3. Let X and X1 be Banach spaces and let I ⊂ R be an interval. The set-valued
mapping U : I ×X → 2X1 is superpositionally measurable if Φ : I → 2X1 , Φ(τ) = U(τ, x(τ))
is measurable, for every measurable set-valued mapping x : I → 2X .

Lemma 1 (see [5]). Let X1 be a Hausdorff topological vector space, Ω ⊂ X1 is a nonempty subset
and G : Ω→ 2X1 is a set-valued mapping such that

(i) for any {v1, · · · , vn} ⊂ Ω, one has that its convex hull co{v1, · · · , vn} is included in⋃n
i=1 G(vi) (i.e., G is a KKM mapping);

(ii) G(v) is closed in X1 for every v ∈ Ω;
(iii) G(v0) is compact in X1 for some v0 ∈ Ω.
Then it holds

⋂
v∈Ω G(v) 6= ∅.

Lemma 2 (see [20]). U : I × X → Ω(X1) is superpositionally measurable if it satisfies the
Carathéodory condition or U is upper or lower semicontinuous.

Then, the next theorem represents the first main result of this paper.

Theorem 1. Let X1 be a reflexive Banach space, Ω be a nonempty closed and convex subset of X1
and assume that

(i) F : Ω→ X ∗1 is monotone on Ω, that is

〈F (v)−F (u), v− u〉 ≥ 0, ∀u, v ∈ Ω,

and satisfies

lim
λ→0+

inf〈F (λu + (1− λ)v)), v− u〉 ≤ 〈F (v), v− u〉, ∀u, v ∈ Ω;

(ii) ξ : X1 → (−∞,+∞] is lower semicontinuous, convex, 6≡ +∞;
(iii) there exist u0 ∈ Ω and an r > 0 such that

〈F (v), v− u0〉+ ξ(v)− ξ(u0) > 0, ∀v ∈ Ω, ‖ v ‖X1> r

and satisfies

lim inf
v∈Ω; ‖v‖X1

→∞

〈F (v), v− u0〉+ ξ(v)− ξ(u0)

‖ v ‖X1

= +∞

if the set Ω is unbounded in X1.
Then, for each element w ∈ X ∗1 , there exists u ∈ Ω such that

〈w +F (u), v− u〉+ ξ(v)− ξ(u) ≥ 0, ∀v ∈ Ω, (3)

if and only if, for each element w ∈ X ∗1 , there exists u ∈ Ω such that

〈w +F (v), v− u〉+ ξ(v)− ξ(u) ≥ 0, ∀v ∈ Ω. (4)

In addition, the solution set associated with (3) is nonempty, convex and closed in X1.

Proof. If u ∈ Ω is a solution associated with (3), by using the monotonicity of F , it follows
that u ∈ Ω is also a solution of (4). Conversely, assume that u ∈ Ω is a solution of (4).
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Taking into account the convexity of the set Ω, for all λ ∈ (0, 1) and all v ∈ Ω, it results
that uλ := (1− λ)u + λv ∈ Ω. In consequence, we have

〈w +F (uλ), uλ − u〉+ ξ(uλ)− ξ(u) ≥ 0,

and, by assumption (ii), we get

〈w +F (uλ), v− u〉+ ξ(v)− ξ(u) ≥ 0.

Considering λ → 0+ in the above inequality (see the second part of hypothesis (i)),
we obtain that u ∈ Ω is also a solution of (3).

Further, in order to prove the other assertions of our theorem, we consider the follow-
ing two cases:

Case 1. Ω is bounded in X1. Consider the set-valued mapping G : Ω→ 2Ω defined as

G(v) := {u ∈ Ω : 〈w +F (v), v− u〉+ ξ(v)− ξ(u) ≥ 0, ∀v ∈ Ω}.

It is of course immediate (from the above equivalent conclusion) that v ∈ G(v), whenever
v ∈ Ω, and G(v) is a convex set.

Now, let us show that G(v) is weakly closed in X1, for all v ∈ Ω. Let un ⊂ G(v) be a
sequence with un ⇀ u in X1. Therefore, we have

〈w +F (v), v− un〉+ ξ(v)− ξ(un) ≥ 0, ∀v ∈ Ω.

Passing to the limit as n→ +∞ in the above inequality, by hypothesis (ii), we get

〈w +F (v), v− u〉+ ξ(v)− ξ(u) ≥ 0, ∀v ∈ Ω,

that is u ∈ G(v).
Further, we prove that the set-valued mapping G is a KKM mapping (see Lemma 1).

Suppose, by contradiction, that there exists {v1, · · · , vn} ⊂ Ω and u0 = ∑n
i=1 λivi,

with λi ∈ [0, 1] and ∑n
i=1 λi = 1, satisfying u0 6∈

⋃n
i=1 G(vi), that is

〈w +F (vi), vi − u0〉+ ξ(vi)− ξ(u0) < 0, ∀i ∈ {1, 2, · · · , n}.

By using the monotonicity of F , it follows

〈w +F (u0), vi − u0〉+ ξ(vi)− ξ(u0) < 0, ∀i ∈ {1, 2, · · · , n},

from which the contradiction arises

0 = 〈w +F (u0), u0 − u0〉+ ξ(u0)− ξ(u0)

≤
n

∑
i=1

λi[〈w +F (u0), vi − u0〉+ ξ(vi)− ξ(u0)] < 0.

By using the hypothesis, it follows that Ω is weakly compact in X1. Thus, for each
v ∈ Ω, G(v) is weakly compact inX1. Now, by applying Lemma 1, we obtain

⋂
v∈Ω G(v) 6= ∅,

that is the solution set associated with (4) is nonempty, so the same is true for the solution
set associated with (3).

Case 2. Ω is unbounded in X1. For every integer n ≥ 1, consider the bounded,
closed and convex subset of X1

Ωn :=
{

x ∈ Ω :‖ x− u0 ‖X1≤ n
}

,
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where u0 ∈ Ω is given in assumption (iii). In accordance with the previous case, we can
find un ∈ Ωn such that

〈w +F (un), v− un〉+ ξ(v)− ξ(un) ≥ 0, ∀v ∈ Ωn. (5)

In the following, let us show that there exists an integer k ≥ 1 such that

‖ uk − u0 ‖X1< k. (6)

By contradiction, assume that ‖ un − u0 ‖X1= n, for every integer n ≥ 1. Putting v = u0
in (5), we get

〈w +F (un), un − u0〉+ ξ(un)− ξ(u0) ≤ 0,

which is a contradiction (see assumption (iii)), if n is sufficiently large. Therefore, the claim
in (6) is fulfilled. By (6), for y ∈ Ω and sufficiently small τ > 0, we have

‖ uk + τ(y− uk)− u0 ‖X1< k.

Next, set v = uk + τ(y− uk) and n = k in (5). By hypothesis (ii), it follows

〈w +F (uk), y− uk〉+ ξ(y)− ξ(uk) ≥ 0,

that is, u = uk is a solution of variational problem (3).
Further, by using the equivalence between variational problems (3) and (4) and

assumption (ii), we conclude that the solution set for (3) is closed and convex in X1.
The proof is now complete.

Remark 1. Theorem 1 extends some results derived in Liu and Zeng [21], Liu et al. [3] and it is
based on the Browder’s theorem (see [22]). An extension of Minty’s technique is given by assertion
(4), and a generalized coercivity condition is provided by assumption (iii).

Corollary 1. Let X1 be a real reflexive Banach space and Ω ⊂ X1 a nonempty compact and convex
subset of X1. Then, the conclusion of Theorem 1 is fulfilled if F : Ω → X ∗1 and ξ : X1 →
(−∞,+∞] verify conditions (i), (ii) in Theorem 1.

In the following, denote by S(Ω, w +F (·), ξ) the set of solutions associated with the
variational inequality (3). Closely related to the evolutionary problem (DVI), by using of
Theorem 1, we also establish the following two results.

Lemma 3. For each integer n > 0, under the same hypotheses of Theorem 1, there exists a constant
Mn > 0 satisfying

‖ u ‖X1≤ Mn, u ∈ S(Ω, w +F (·), ξ), ∀w ∈ B(n,X ∗1 ) := {w ∈ X ∗1 :‖ w ‖X ∗1 ≤ n}.

Proof. By reductio ad absurdum, we assume that there exists N0 > 0 satisfying

sup
w∈B(N0,X ∗1 )

{‖ u ‖X1 : u ∈ S(Ω, w +F (·), ξ)} = +∞.

In consequence, there exist wk ∈ B(N0,X ∗1 ) and uk ∈ S(Ω, wk + F (·), ξ) satisfying
‖ uk ‖X1> k, for k = 1, 2, .... By assumption (iii) of Theorem 1, it follows that there is
a function p : R+ → R+, with p(k)→ +∞ as k→ +∞, and a constant M > 0 such that for
each ‖ u ‖X1> M, we have

〈F (u), u− v0〉+ ξ(u)− ξ(v0) ≥ p(‖ u ‖X1) ‖ u ‖X1 , v0 ∈ Ω.
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Therefore, for k > M, one has ‖ uk ‖X1> M and, as k large enough,

〈wk +F (uk), v0 − uk〉+ ξ(v0)− ξ(uk) ≤ [‖ wk ‖X ∗1 −p(‖ uk ‖X1)] ‖ uk ‖X1

+ ‖ wk ‖X ∗1 ‖ v0 ‖X1≤ [N0 − p(‖ uk ‖X1)] ‖ uk ‖X1 +N0 ‖ v0 ‖X1< 0.

This is a contradiction, and the proof is complete.

Further, for g : [0, T]×X → X ∗1 , we consider a set-valued mapping Z : [0, T]×X → 2X1

given by

Z(τ, x) := {u ∈ Ω : 〈g(τ, x) +F (u), v− u〉+ ξ(v)− ξ(u) ≥ 0, ∀v ∈ Ω}.

Theorem 2. Under the same hypotheses of Theorem 1, if g : [0, T]×X → X ∗1 is a continuous
and uniformly bounded function, then

(i) the set-valued mapping Z is strongly-weakly upper semicontinuous;
(ii) there exists ψ > 0 satisfying

‖ Z(τ, x(τ)) ‖:= sup
u∈Z(τ,x(τ))

‖ u ‖X1≤ ψ, ∀τ ∈ [0, T],

for all x ∈ C([0, T];X );
(iii) the set-valued mapping Z is superpositionally measurable.

Proof. (i) In accordance with Kamemsloo et al. [19], for each weakly closed subset C of
X1, we prove that Z−(C) := {(τ, x) ∈ [0, T]× X : Z(τ, x) ∩ C 6= ∅} is strongly closed
in [0, T] × X . Let prove that, if the sequence (tn, xn) ∈ Z−(C) and (tn, xn) → (τ, x),
then (τ, x) ∈ Z−(C). By (tn, xn) ∈ Z−(C), for n ∈ N, we obtain that there exists un ∈
S(Ω, g(tn, xn) +F (·), ξ). We can assume that ‖ g(tn, xn) ‖X ∗1 ≤ k0 (by using of the uniform
boundedness of g), where k0 is a positive constant. According to Lemma 3, there exists a
constant Mk0 > 0 such that ‖ un ‖X1≤ Mk0 , for n ∈ N. Consequently, the sequence {un} is
relatively weakly compact in X1, and we may assume un ⇀ u, without loss of generality.
Since un ∈ S(Ω, g(tn, xn) +F (·), ξ), for n ∈ N, we get

〈g(tn, xn) +F (un), v− un〉+ ξ(v)− ξ(un) ≥ 0, ∀v ∈ Ω.

In virtue of the monotonicity of F , it follows

〈g(tn, xn) +F (v), v− un〉+ ξ(v)− ξ(un) ≥ 0, ∀v ∈ Ω.

Applying assumption (ii) of Theorem 1, the continuity of g and n→ ∞, we have

〈g(τ, x) +F (v), v− u〉+ ξ(v)− ξ(u) ≥ 0, ∀v ∈ Ω,

that is, u ∈ S(Ω, g(τ, x) +F (·), ξ) (since the problem (4) is equivalent with the problem
(3)). By using the weak closedness of C, we obtain u ∈ Z(τ, x) ∩ C. Therefore, Z is
strongly-weakly upper semicontinuous.

(ii) By hypothesis, g : [0, T] × X → X ∗1 is a continuous and uniformly bounded
function. Therefore, for any x ∈ C([0, T];X ) and for all τ ∈ [0, T], ‖ g(τ, x(τ)) ‖X ∗1 is
uniformly bounded. By Lemma 3, there exists ψ satisfying

‖ Z(τ, x(τ)) ‖:= sup
u∈Z(τ,x(τ))

‖ u ‖X1≤ ψ, ∀τ ∈ [0, T].

(iii) Since Z is strongly-weakly upper semicontinuous with weakly compact convex
values, then assertion (iii) holds true (see Lemma 2). The proof is complete.

In the following, consider the set-valued mapping H : [0, T]×X → Ων(X ) such that



Mathematics 2021, 9, 266 7 of 10

(a) for each x ∈ X , the set-valued mapping H(·, x) : [0, T]→ Ων(X ) is measurable;
(b) for a.e. τ ∈ [0, T], the set-valued mapping H(τ, ·) : X → Ων(X ) is upper semicontinuous;
(c) for a.e. τ ∈ [0, T] and for all x ∈ X , there exists ρ ∈ L2([0, T]) satisfying

‖ h(τ) ‖X≤ ρ(τ)(1+ ‖ x(τ) ‖X ), ∀h(τ) ∈ H(τ, x(τ)).

Taking into account the above assumptions for H, in accordance with
Kamemsloo et al. [19], the superposition set-valued mapping PH : C([0, T];X )→ 2L2([0,T];X ),
given by

PH(x) := {h ∈ L2([0, T];X ) : h(τ) ∈ H(τ, x(τ)), a.e. τ ∈ [0, T]}

is well-defined.
The next theorem represents the central result of this paper. It investigates the existence

of solutions for DVI.

Theorem 3. Let eAt be a compact C0-semigroup, L : X1 → X a bounded linear operator and the
assumptions (a)–(c) for H be fulfilled. Under the hypotheses of Theorem 2, DVI has at least one
mild solution (x, u).

Proof. According to Pazy [2], for u ∈ L2([0, T];X1), the mild solutions of

x
′
(τ) ∈ Ax(τ) + Lu(τ) + H(τ, x(τ)), τ ∈ [0, T], (7)

x(0) = x0

may denoted by

x(τ) = eAtx0 +
∫ τ

0
eA(τ−s)[Lu(s) + h(s)]ds, τ ∈ [0, T], h ∈ PH(x). (8)

By hypothesis and Rykaczewski [23] it follows that (7) is solvable, that is, there exists x
satisfying (8).

For every τ ∈ [0, T] and MA := maxτ∈[0,T] ‖ eAt ‖, from (8), we have the follow-
ing estimates

‖ x(τ) ‖X≤‖ eAtx0 ‖X +
∫ τ

0
‖ eA(τ−s)[Lu(s) + h(s)] ‖X ds

≤ MA
(
‖ x0 ‖X + ‖ L ‖‖ u ‖L2([0,T];X1)

T
1
2

)
+ MA

∫ τ

0
ρ(s)(1+ ‖ x(s) ‖X )ds,

or, equivalently, by the Gronwall’s inequality,

‖ x(τ) ‖X≤ MA
(
‖ x0 ‖X + ‖ L ‖‖ u ‖L2([0,T];X1)

T
1
2 + ‖ ρ ‖L2([0,T])

)
eMA‖ρ‖L2([0,T]) .

Next, we prove the existence of solutions for DVI. Set

uk(τ) =
k−1

∑
i=0

u(i)χ
[ iT

k , (i+1)T
k )

(τ) ∈ Z(
iT
k

, xk(
iT
k
)), τ ∈ [

iT
k

,
(i + 1)T

k
), 0 ≤ i ≤ k− 1,

where [0, T] = ∪k−1
i=1 [τi, τi+1) ∪ {T}, with τi := iT

k , and χ
[ iT

k , (i+1)T
k )

is the character function

of interval [ iT
k , (i+1)T

k ). Now, there exists xk(·) satisfying

xk(τ) = eAtx0 +
∫ τ

0
eA(τ−s)[Luk(s) + hk(s)]ds, τ ∈ [0, T], hk ∈ PH(xk).
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For the sequences {uk} (see Theorem 2) there is r1 > 0 satisfying ‖ uk ‖L2([0,T];X1)
≤ r1.

By the above computations, we get ‖ xk ‖C([0,T];X )≤ r0, where r0 > 0 is a constant. Thus,
by assumption (c) of H, it follows that there is r2 > 0 satisfying ‖ hk ‖L2([0,T];X )≤ r2.
Further, we may assume that uk ⇀ u∗ in L2([0, T];X1), without loss of generality, and
hk ⇀ h∗ in L2([0, T];X ). By using that eAt is a compact C0-semigroup and according to
Li et al. [24], it results that xk ⇀ x∗ in C([0, T];X ), with

x∗(τ) := eAtx0 +
∫ τ

0
eA(τ−s)[Lu∗(s) + h∗(s)]ds.

Further, by applying Mazur theorem (see Li et al. [14]), we obtain that there are
ail ≥ 0, bil ≥ 0 with ∑i≥1 ail = ∑i≥1 bil = 1 such that

ul(τ) := ∑
i≥1

ailui+l(τ)→ u∗(τ) in L2([0, T];X1), a.e. τ ∈ [0, T],

hl(τ) := ∑
i≥1

bilhi+l(τ)→ h∗(τ) in L2([0, T];X ), a.e. τ ∈ [0, T].

Since H(τ, ·) is upper semicontinuous, xk ⇀ x∗ in C([0, T];X ), then for ε > 0 and k > 0
large enough, we get

H(τ, xk(τ)) ⊂ H(τ, x∗(τ)) + Bε,

where Bε is a ball inX centered in origin and radius ε. Due to the convexity of H(τ, x∗(τ))+
Bε, it follows that hl(τ) ∈ H(τ, x∗(τ)) + Bε, a.e. τ ∈ [0, T]. Since hl(τ)→ h∗(τ) as l → ∞,
we get h∗(τ) ∈ H(τ, x∗(τ)) + Bε. For ε > 0 arbitrarly, it results h∗(τ) ∈ H(τ, x∗(τ)) =
H(τ, x∗(τ)), a.e. τ ∈ [0, T]. By the same arguments, we get u∗(τ) ∈ Z(τ, x∗(τ)), a.e. τ ∈
[0, T]. Consequently, there are x∗ ∈ C([0, T];X ) and u∗ ∈ L2([0, T];X1) such that

x∗(τ) := eAtx0 +
∫ τ

0
eA(τ−s)[Lu∗(s) + h∗(s)]ds, τ ∈ [0, T],

where u∗(τ) ∈ Z(τ, x∗(τ)), a.e. τ ∈ [0, T] and h∗ ∈ PH(x∗). The proof is complete.

Illustrative application. Consider a noncooperative differential Nash game with N
players. Let (xµ, uµ) ∈ X µ ×X µ

1 be the pair of state and control variables associated with
player µ, and Ωµ ⊂ X µ

1 be the nonempty, closed and convex set of admissible controls for
player µ. In addition, consider x = (xµ)N

µ=1 ∈ X and u = (uµ)N
µ=1 ∈ X1 be the collection

of all players’ variables, where

X =
N

∏
µ=1
X µ, X1 =

N

∏
µ=1
X µ

1 .

For µ = 1, N, consider Ψµ : X → R, φµ : [0, T]×X ×X1 → R are continuously differen-
tiable functions, and introduce the following cost functional associated with player µ,

Θµ(x, u) = Ψµ(x(T)) +
∫ T

0
φµ(τ, x(τ), u(τ))dτ.

The corresponding optimization problem for player µ is to find an optimal trajetory
(xµ, uµ) ∈ X µ × X µ

1 , for each fixed but arbitrary rival players’ strategies (x−µ, u−µ) ∈
X µ ×X µ

1 , such that
Minimize Θµ(x, u)

subject to
ẋµ(τ) = qµ(τ, xµ(τ), uµ(τ)),

xµ(0) = xµ
0 , uµ(τ) ∈ Ωµ ⊂ X µ

1 ,
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for almost all τ ∈ [0, T], where qµ are continuously differentiable.
A differential Nash solution for the above optimization problem is a pair (x∗, u∗) ∈

X ×X1 such that for every µ = 1, · · · , N, the pair (x∗,µ, u∗,µ) ∈ X µ ×X µ
1 solves player µ’s

problem, given that µ’s rivals all play their Nash strategies (x∗,−µ, u∗,−µ) ∈ X µ ×X µ
1 .

Further, by using the Hamiltonian function associated with player µ, with λµ the
adjoint variable of player µ,

Hµ(τ, x, u, λµ) = φµ(τ, x, u) + (λµ)tqµ(τ, xµ, uµ),

we are able to formulate the necessary optimality conditions of first-order, as follows

λ̇µ(τ) = −
∂Hµ

∂xµ (τ, x(τ), u(τ), λµ(τ)),

ẋµ(τ) = qµ(τ, xµ(τ), uµ(τ)),

uµ(τ) ∈ S(Ωµ,
∂Hµ

∂uµ (τ, x(τ), x−µ(τ), ·, λµ(τ)),

xµ(0) = xµ
0 , λµ(T) =

∂Ψµ

∂xµ (x(T)).

In consequence, the study of a noncooperative differential Nash game with N players
is reduced to the study of the previous problem, which belongs to the class of problems
investigated in the present paper.

3. Conclusions

In the current paper, based on Browder’s result, optimal control theory, measurability
of set-valued mappings and the theory of semigroups, we have investigated a new class of
differential variational inequalities. More precisely, we have proved that the solution set
associated with the considered evolutionary problem is nonempty and compact. In addi-
tion, the theoretical developments have been accompanied by an application to differential
Nash games.

Funding: The APC was funded by University Politehnica of Bucharest, “PubArt” program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author would like to thank anonymous referees for their careful reading
and constructive suggestions that substantially improved the revision of the manuscript.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Pang, J.S.; Stewart, D.E. Differential variational inequalities. Math. Program. 2008, 113, 345–424. [CrossRef]
2. Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA, 1983.
3. Liu, Z.H.; Zeng, S.D.; Motreanu, D. Evolutionary problems driven by variational inequalities. J. Differ. Equ. 2016, 260, 6787–6799.

[CrossRef]
4. Chen, X.J.; Wang, Z.Y. Differential variational inequality approach to dynamic games with shared constraints. Math. Program.

2014, 146, 379–408. [CrossRef]
5. Fan, K. Some properties of convex sets related to fixed point theorems. Math. Ann. 1984, 266, 519–537. [CrossRef]
6. Gwinner, J. On the p-version approximation in the boundary element method for a variational inequality of the second kind

modelling unilateral contact and given friction. Appl. Numer. Math. 2009, 59, 2774–2784. [CrossRef]
7. Gwinner, J. On a new class of differential variational inequalities and a stability result. Math. Program. Ser. B 2013, 139, 205–221.

[CrossRef]
8. Han, L.; Pang, J.S. Non-Zenoness of a class of differential quasi-variational inequalities. Math. Program. 2010, 121, 171–199.

[CrossRef]

http://doi.org/10.1007/s10107-006-0052-x
http://dx.doi.org/10.1016/j.jde.2016.01.012
http://dx.doi.org/10.1007/s10107-013-0689-1
http://dx.doi.org/10.1007/BF01458545
http://dx.doi.org/10.1016/j.apnum.2008.12.027
http://dx.doi.org/10.1007/s10107-013-0669-5
http://dx.doi.org/10.1007/s10107-008-0230-0


Mathematics 2021, 9, 266 10 of 10

9. Ke, T.D.; Loi, N.V.; Obukhovskii, V. Decay solutions for a class of fractional differential variational inequalities. Fract. Calc. Appl.
Anal. 2015, 18, 531–553.

10. Liu, Z.H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational
inequalities. Int. J. Bifurc. Chaos 2013, 23, 1350125. [CrossRef]

11. Loi, N.V. On two-parameter global bifurcation of periodic solutions to a class of differential variational inequalities. Nonlinear
Anal. 2015, 22, 83–99. [CrossRef]

12. Pang, J.S.; Stewart, D.E. Solution dependence on initial conditions in differential variational variational inequalities. Math.
Program. 2009, 116, 429–460. [CrossRef]

13. Wang, X.; Huang, N.J. A class of differential vector variational inequalities in finite dimensional spaces. J. Optim. Theory Appl.
2014, 162 633–648. [CrossRef]

14. Li, X.S.; Huang, N.J.; O’Regan, D. Differential mixed variational inequalities in finite dimensional spaces. Nonlinear Anal. 2010, 72,
3875–3886. [CrossRef]

15. Liu, Z.H.; Motreanu, D.; Zeng, S.D. On the well-posedness of differential mixed quasi-variational inequalities. Topol. Method
Nonlinear Anal. 2018, 51, 135–150. [CrossRef]

16. Cen, J.; Min, C.; Nguyen, V.T.; Tang, G. On the well-posedness of differential quasi-variational-hemivariational inequalities.
Open Math. 2020, 18, 540–551. [CrossRef]

17. Migórski S.; Bai, Y. Well-posedness of history-dependent evolution inclusions with applications. Z. Angew. Math. Phys. 2019,
70, 114. [CrossRef]

18. Liu, Z.H.; Zeng, S.D. Differential variational inequalities in infinite Banach spaces. Acta Math. Sci. 2017, 37, 26–32. [CrossRef]
19. Kamemsloo, M.; Obukhovskii, V.; Zecca, P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space;

Water de Gruyter: Berlin, Germany, 2001.
20. Zeidler, E. Nonlinear Functional Analysis and Its Applications. II/B. Nonlinear Monotone Operators; Springer: New York, NY, USA, 1990.
21. Liu, Z.H.; Zeng, B. Existence results for a class of hemivariational inequalities involving the stable (g, f , α)-quasimonotonicity.

Topol. Methods Nonlinear Anal. 2016, 47, 195–217.
22. Browder, F.E. Nonlinear monotone operators and convex sets in Banach spaces. Bull. Am. Math. Soc. 1965, 71, 780–785.
23. Rykaczewski, K. Approximate controllability of differential inclusions in Hilbert spaces. Nonlinear Anal. 2012, 75, 2701–2712.

[CrossRef]
24. Li, X.J.; Yong, J.M. Optimal Control Theory for infinite Dimensional Systems; Birkhäuser: Boster, CA, USA, 1995.

http://dx.doi.org/10.1142/S0218127413501253
http://dx.doi.org/10.1016/j.na.2015.03.019
http://dx.doi.org/10.1007/s10107-007-0117-5
http://dx.doi.org/10.1007/s10957-013-0311-y
http://dx.doi.org/10.1016/j.na.2010.01.025
http://dx.doi.org/10.12775/TMNA.2017.041
http://dx.doi.org/10.1515/math-2020-0028
http://dx.doi.org/10.1007/s00033-019-1158-3
http://dx.doi.org/10.1016/S0252-9602(16)30112-6
http://dx.doi.org/10.1016/j.na.2011.10.049

	Introduction
	Main Results 
	Conclusions
	References

