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Abstract: Currently, much research attention has focused on generalizations of known mathematical
objects in order to obtain adequate models describing real phenomena. An important role in the
applied theory of probability and mathematical statistics is the gamma class of distributions, which
has proven to be a convenient and effective tool for modeling many real processes. The gamma
class is quite wide and includes distributions that have useful properties such as, for example,
infinite divisibility and stability, which makes it possible to use distributions from this class as
asymptotic approximations in various limit theorems. One of the most important tasks of applied
statistics is to obtain estimates of the parameters of the model distribution from the available real
data. In this paper, we consider the gamma-exponential distribution, which is a generalization of
the distributions from the gamma class. Estimators for some parameters of this distribution are
given, and the asymptotic normality of these estimators is proven. When obtaining the estimates,
a modified method of moments was used, based on logarithmic moments calculated on the basis of
the Mellin transform for the generalized gamma distribution. On the basis of the results obtained,
asymptotic confidence intervals for the estimated parameters are constructed. The results of this
work can be used in the study of probabilistic models based on continuous distributions with an
unbounded non-negative support.

Keywords: parameter estimation; gamma-exponential distribution; mixed distributions; generalized
gamma distribution; method of moments; asymptotic normality

1. Introduction

Estimating unknown parameters is an important problem in applied mathematical
statistics. At the same time, in order to improve the consistency of mathematical models
and analyzed real processes, researchers consider increasingly complex mathematical
abstractions. Many models are traditionally described using continuous distributions with
unbounded non-negative supports. For these purposes, special cases of the generalized
gamma distribution and beta prime distributions are usually used. The paper considers the
problem of estimating the parameters of the distribution proposed in [1], which is closely
related to the listed popular distributions.

Definition 1. We say that the random variable ζ has the gamma-exponential distribution
GE(r, ν, s, t, δ) with the parameters of bent 0 ≤ r < 1, shape ν 6= 0, concentration s, t > 0,
and scale δ > 0 if its density at x > 0 is

gE(x) =
|ν|xtν−1

δtνΓ(s)Γ(t)
Ger, tr+s(−(x/δ)ν), (1)
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where E = (r, ν, s, t, δ), and Geα, β(x) is the gamma-exponential function [2]:

Geα, β(x) =
∞

∑
k=0

xk

k!
Γ(αk + β), x ∈ R, 0 ≤ α < 1, β > 0. (2)

Function (2) generalizes to the case β 6= 1, the transformation introduced by Le Roy [3]
to study generating functions of a special form. In addition, Function (2) can be considered
(under some assumptions) as a special case of the Srivastava–Tomovski function [4], that
generalizes the Mittag–Leffler function [5].

In [1] it was shown that the distribution (1) adequately describes Bayesian bal-
ance models [6]. This is primarily due to the fact that the distribution with the den-
sity (1) can be represented as a scaled mixture of two random variables with generalized
gamma distributions.

In turn, the generalized gamma distribution GG(v, q, θ) with the density

f (x) =
|v|xvq−1e−(x/θ)v

θvqΓ(q)
, v 6= 0, q > 0, θ > 0, x > 0, (3)

proposed in 1925 by the Italian economist L. Amoroso [7] and often associated with
E. W. Stacy [8], who considered in 1962 a particular case of the Amoroso distribution,
has proven its validity in many applied problems that use continuous distributions with
unbounded non-negative support for modeling. The class of distributions (3) is wide
enough and includes exponential distribution; χ2–distribution; Erlang distribution; gamma
distribution; semi-normal distribution, or distribution of the maximum of the Brownian
motion process; Rayleigh distribution; Maxwell–Boltzmann distribution; χ–distribution;
Nakagami m-distribution; Wilson–Hilferty distribution; Weibull–Gnedenko distribution
and many others, including scaled and inverse analogs of the above.

The problem of estimating parameters of the distribution (3), its special types, and
mixtures has a rich history and is still relevant [9–12].

In [1], it was shown that the gamma-exponential distribution has the following properties.

Lemma 1. 1. Let the independent random variables λ and µ have the distributions GG(v, q, θ)
and GG(u, p, α), uv > 0, respectively. Then the distribution of λ coincides with GE(0, v, ·, q, θ);
the distribution of λ/µ for |u| > |v| coincides with GE(v/u, v, p, q, θ/α); the distribution of λ/µ
for |v| > |u| coincides with GE(u/v,−u, q, p, θ/α).

2. For 0 < r < 1, the density gE(x), E = (r, ν, s, t, δ), coincides with the density of
the ratio of independent random variables with generalized gamma distributions GG(ν, t, δ) and
GG(ν/r, s, 1).

The possibility of representing the gamma-exponential distribution as a ratio of ran-
dom variables having the generalized gamma distribution allows it to be used in a wide
range of applied problems.

Thus, in demography, the infant mortality rate is defined as the ratio of the number
of deaths under the one year age to the number of births over a certain period of time,
and the divorce index is defined as the ratio of the total divorce rate to the total marriage
rate [13]. In physics, the transformation ratio is the ratio of the output voltage to the
input voltage [14], and the universal Kirchhoff function is the ratio of the emissivity to the
absorptivity of the body. In queuing theory, the ratio of the intensity of the incoming flow
to the intensity of the service determines the system load factor [15]. When simulating
emergency situations, the fire hazard of an object is determined by the ratio of the fire threat
to the fire protection factor [16]. In reliability theory, the expected uptime is represented as
the ratio of the average uptime to the average recovery time [17]. A number of examples
can be continued. Each of these characteristics can be considered as the system balance
index [6]. The application of a randomized Bayesian approach to the described models
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makes it possible to study the characteristics of the balance index as a scale mixture of
probabilistic laws.

In addition, the five-parameter gamma-exponential distribution can be used to model
a wide range of real phenomena, due to the wide variety of its possible densities (see
Figure 1).

Figure 1. Gamma-exponential distribution densities for different values of parameters.

In practice, the researcher deals with observable quantities that reflect the evolution of
the analyzed real process. In relation to these quantities, some model assumptions are made
about the form of their distribution. The problem of estimating unknown parameters from
real data also arises in the case of modeling a real process using the gamma-exponential
distribution. Due to the representation of the density gE(x) in terms of a special gamma-
exponential function (2), the maximum likelihood method seems to be too complicated.
The same can be said about the direct method of moments. For this reason, in [18] it
was proposed to estimate the parameters of the gamma-exponential distribution using a
modified method based on logarithmic moments.

2. Estimators for the Parameters of the Gamma-Exponential Distribution

Let us introduce the estimators for the parameters of the gamma-exponential distribu-
tion. To do this, we define the di-gamma function ψ(z) = Γ′(z)/Γ(z) and the functions

R(x) =

√
ν2x− ψ′(t)

ψ′(s)
; (4)

Dr(x, y) = exp

{
x− ψ(t)

ν
+ ψ(s)

√
ν2y− ψ′(t)

ν2ψ′(s)

}
; (5)

V(x) = 3

√
ψ′′(t)− r3ψ′′(s)

x
; (6)

Dν(x, y) = exp
{

x− (ψ(t)− rψ(s)) 3

√
y

ψ′′(t)− r3ψ′′(s)

}
. (7)
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Let us introduce a notation for the sample logarithmic moments of the random vari-
able ζ:

Lk(X) =
1
n

n

∑
i=1

lnk Xi,

where X = (X1, . . . , Xn) is a sample from the distribution of ζ.
In [18], the following statements were proved.

Lemma 2. For fixed parameters ν, t and s of the distribution GE(r, ν, s, t, δ) the estimators

r̂(X) = R(L2(X)− L2
1(X)) (8)

and
δ̂r(X) = Dr(L1(X), L2(X)− L2

1(X)) (9)

for the parameters r and δ are strongly consistent.

Lemma 3. For fixed parameters r, t and s of the distribution GE(r, ν, s, t, δ) the estimators

ν̂(X) = V(L3(X)− 3L1(X)L2(X) + 2L3
1(X)) (10)

and
δ̂ν(X) = Dν(L1(X), L3(X)− 3L1(X)L2(X) + 2L3

1(X)) (11)

for the parameters ν and δ are strongly consistent.

3. Auxiliary Relations and Statements

In what follows, we need the derivatives of Functions (4)–(7):

R1(x) ≡ dR
dx

(x) =
ν2

2ψ′(s)

√
ψ′(s)

ν2x− ψ′(t)
; (12)

Dr,1(x, y) ≡ ∂Dr

∂x
(x, y) = exp

{
x− ψ(t)

ν
+ ψ(s)

√
ν2y− ψ′(t)

ν2ψ′(s)

}
; (13)

Dr,2(x, y) ≡ ∂Dr

∂y
(x, y) =

ψ(s)
2ψ′(s)

√
ν2ψ′(s)

ν2y− ψ′(t)
exp

{
x− ψ(t)

ν
+ ψ(s)

√
ν2y− ψ′(t)

ν2ψ′(s)

}
; (14)

V1(x) ≡ dV
dx

(x) = −ψ′′(t)− r3ψ′′(s)
3x2

3

√
x2

(ψ′′(t)− r3ψ′′(s))2 ; (15)

Dν,1(x, y) ≡ ∂Dν

∂x
(x, y) = exp

{
x− (ψ(t)− rψ(s)) 3

√
y

ψ′′(t)− r3ψ′′(s)

}
; (16)

Dν,2(x, y) ≡ ∂Dν

∂y
(x, y) = − ψ(t)− rψ(s)

3(ψ′′(t)− r3ψ′′(s))
3

√
(ψ′′(t)− r3ψ′′(s))2

y2 ×

× exp
{

x− (ψ(t)− rψ(s)) 3

√
y

ψ′′(t)− r3ψ′′(s)

}
. (17)

We also need some moment characteristics of the gamma-exponential distribution (1).
Consider the Mellin transform

Mζ(z) =
∞∫

0

xz dFζ(x), z ∈ C.
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We use Lemma 1 and the representation ζ
d
= λ/µ, where the independent random

variables λ and µ have distributions GG(ν, t, δ) and GG(ν/r, s, 1), respectively. Since for
λ ∼ GG(ν, t, δ) the Mellin transform has the form

Mλ(z) =
δz

Γ(t)
Γ
(

t +
z
ν

)
, t +

Re(z)
ν

> 0,

for the ratio of λ ∼ GG(ν, t, δ) to µ ∼ GG(ν/r, s, 1)

Mλ/µ(z) =
δz

Γ(t)Γ(s)
Γ
(

t +
z
ν

)
Γ
(

s− rz
ν

)
, t +

Re(z)
ν

> 0, s− rRe(z)
ν

> 0,

from where we get the form of the characteristic function of the logarithm of ζ:

Eeiy ln ζ =
δiy

Γ(t)Γ(s)
Γ
(

t +
iy
ν

)
Γ
(

s− iry
ν

)
, y ∈ R. (18)

Differentiating the relation (18) four times, we obtain (the parameters t and s are
assumed to be fixed)

µ1(r, ν, δ) ≡ E ln ζ =
ν ln δ + ψ(t)− rψ(s)

ν
; (19)

µ2(r, ν, δ) ≡ E ln2 ζ =
[ν ln δ + ψ(t)− rψ(s)]2

ν2 +
ψ′(t) + r2ψ′(s)

ν2 ; (20)

µ3(r, ν, δ) ≡ E ln3 ζ =
[ν ln δ + ψ(t)− rψ(s)]3

ν3 +

+
3(ψ′(t) + r2ψ′(s))[ν ln δ + ψ(t)− rψ(s)]

ν3 +
ψ′′(t)− r3ψ′′(s)

ν3 ; (21)

µ4(r, ν, δ) ≡ E ln4 ζ =
[ν ln δ + ψ(t)− rψ(s)]4

ν4 +

+
6(ψ′(t) + r2ψ′(s))[ν ln δ + ψ(t)− rψ(s)]2

ν4 +

+
4(ψ′′(t)− r3ψ′′(s))[ν ln δ + ψ(t)− rψ(s)]

ν4 +

+
3(ψ′(t) + r2ψ′(s))2

ν4 +
ψ′′′(t) + r4ψ′′′(s)

ν4 ; (22)

σ2
1 (r, ν) ≡ D ln ζ =

ψ′(t) + r2ψ′(s)
ν2 ; (23)

σ2
2 (r, ν, δ) ≡ D ln2 ζ =

4(ψ′(t) + r2ψ′(s))[ν ln δ + ψ(t)− rψ(s)]2

ν4 +

+
4(ψ′′(t)− r3ψ′′(s))[ν ln δ + ψ(t)− rψ(s)]

ν4 +
2(ψ′(t) + r2ψ′(s))2

ν4 +
ψ′′′(t) + r4ψ′′′(s)

ν4 . (24)

Further arguments are based on the following statements [19].

Lemma 4. In Rn, the random vector Xn converges in distribution to the random vector X if and
only if each linear combination of the components of Xn converges in distribution to the same linear
combination of the components of X.

Lemma 5. Suppose that in Rk

√
n(Tn1, . . . , Tnk) =⇒ N(µ, Σ), n→ ∞,
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with Σ a covariance matrix. Let g(t) = g(t1, . . . , tk) be a real-valued function with a nonzero
differential at t = µ. Put

d =

(
∂g
∂t1

∣∣∣
t=µ

, . . . ,
∂g
∂tk

∣∣∣
t=µ

)
.

Then
√

ng(Tn1, . . . , Tnk) =⇒ N(g(µ), dΣdT).

4. Asymptotic Normality of the Estimators for the Parameters of the
Gamma-Exponential Distribution

Let us formulate the statements about the asymptotic normality of the estimators
(8)–(11). Let us fix the parameters of shape ν and concentration t and s. The following
statements hold.

Theorem 1. The estimator (8) for the unknown parameter r is asymptotically normal:

√
n

r̂(X)− r√
ν4σ2

2 (r,ν,δ)
4r2(ψ′(s))2

=⇒ N(0, 1), n→ ∞,

where σ2
2 (r, ν, δ) is given by (24).

Proof of Theorem 1. The statistic L2(X)− L2
1(X) is a sample logarithmic variance that is

representable as a sum of independent identically distributed random variables and has
the mean σ2

1 (r, ν) and the variance σ2
2 (r, ν, δ)/n. Thus, when n→ ∞

√
n

L2(X)− L2
1(X)− σ2

1 (r, ν)√
σ2

2 (r, ν, δ)
=⇒ N(0, 1), (25)

where σ2
1 (r, ν) is defined in (23). In addition, at the point x = σ2

1 (r, ν) the function R(x),
defined in (4), has a nonzero derivative R1(x), defined in (12).

Next, we use Lemma 5. Since in this case we consider a one-dimensional space (k = 1),
in terms of the notation of Lemma 5

dΣdT =
(

R1

(
σ2

1 (r, ν)
))2

σ2
2 (r, ν, δ),

and it follows that

√
n

R(L2(X)− L2
1(X))− R(σ2

1 (r, ν))√(
R1
(
σ2

1 (r, ν)
))2

σ2
2 (r, ν, δ)

=⇒ N(0, 1),

which concludes the proof.

Repeating the reasoning from [19], it can be shown that Lemma 2 and the continuity
of the function (24) in r and δ and the function (12) at x = σ2

1 (r, ν) imply the follow-
ing statement.

Corollary 1. When n→ ∞

√
n

r̂(X)− r√(
R1(L2(X)− L2

1(X))
)2

σ2
2 (r̂(X), ν, δ̂r(X))

=⇒ N(0, 1),

where the functions R1 and σ2
2 are given by the relations (12) and (24), and the statistics r̂(X) and

δ̂r(X) are defined in (8) and (9).
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Consider the estimator for the parameter δ with fixed parameters ν, t and s. Let us
introduce the notation

σ12(r, ν) =
ψ′′(t)− r3ψ′′(s)

ν3 ; (26)

s2
1(r, ν, δ) = δ2σ2

1 (r, ν) +
νδ2ψ(s)σ12(r, ν)

rψ′(s)
+

ν2δ2ψ2(s)σ2
2 (r, ν, δ)

4r2(ψ′(s))2 , (27)

where σ2
1 (r, ν), σ2

2 (r, ν, δ) and σ12(r, ν) are given by the relations (23), (24) and (26), respectively.

Theorem 2. The estimator (9) for the unknown parameter δ is asymptotically normal:

√
n

δ̂r(X)− δ√
s2

1(r, ν, δ)
=⇒ N(0, 1), n→ ∞,

where s2
1(r, ν, δ) is given by (27).

Proof of Theorem 2. Note that L1(x) is the sum of independent identically distributed
random variables, therefore

√
n

L1(X)− µ1(r, ν, δ)√
σ2

1 (r, ν)
=⇒ N(0, 1), n→ ∞, (28)

where µ1(r, ν, δ) and σ2
1 (r, ν) are given by (19) and (23). The statisitcs L2(X)− L2

1(X) is also
asymptotically normal, and (25) holds. Consider the covariance matrix

Σ =

(
σ2

1 (r, ν) σ12(r, ν)
σ12(r, ν) σ2

2 (r, ν, δ)

)
.

Note that

cov(L1(X), L2(X)− L2
1(X)) =

n− 1
n2 σ12(r, ν) =

1
n

σ12(r, ν) + o(n−1), n→ ∞.

The statistics L1(X) and L2(X)− L2
1(X) together with any of their linear combinations

have the property of asymptotic normality with corresponding limit means depending on
(µ1(r, ν, δ), σ2

1 (r, ν)), and variances defined by the matrix Σ. Therefore, Lemma 4 implies
the convergence of vectors

√
n(L1(X), L2(X)− L2

1(X)) =⇒ N
(
(µ1(r, ν, δ), σ2

1 (r, ν)), Σ
)

.

In addition, the partial derivatives Dr,1(x, y) and Dr,2(x, y), defined in (13) and (14),
of the function Dr(x, y), defined in (5), are nonzero at (x, y) = (µ1(r, ν, δ), σ2

1 (r, ν)). Hence,
Lemma 5 implies the convergence

√
nDr(L1(X), L2(X)− L2

1(X)) =⇒ N(Dr(µ1(r, ν, δ), σ2
1 (r, ν)), dΣdT),

where
d =

(
Dr,1(µ1(r, ν, δ), σ2

1 (r, ν)), Dr,2(µ1(r, ν, δ), σ2
1 (r, ν))

)
.

The relation

dΣdT = δ2σ2
1 (r, ν) +

νδ2ψ(s)
rψ′(s)

σ12(r, ν) +
ν2δ2ψ2(s)

4r2(ψ′(s))2 σ2
2 (r, ν, δ)

concludes the proof.
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Lemma 2 and the continuity of the function (27) in r and δ and functions (13) and (14)
at (x, y) = (µ1(r, ν, δ), σ2

1 (r, ν)) imply the following statement.

Corollary 2. When n→ ∞

√
n

δ̂r(X)− δ√
s2

1(r̂(X), ν, δ̂r(X))
=⇒ N(0, 1),

where the function s2
1 is given by (27), and the statistics r̂(X) and δ̂r(X) are defined in (8) and (9).

Let us fix the parameters r, t and s, and introduce the notation

σ2
3 (r, ν, δ) ≡ D ln3 ζ. (29)

Remark 1. The analytical form of the variance in (29) is obtained similarly to (23) and (24) by
differentiating the characteristic function of the random variable ln ζ. The explicit form of this
expression is not given due to its cumbersomeness.

Theorem 3. The estimator (10) for the unknown parameter ν is asymptotically normal:

√
n

ν̂(X)− ν√
ν8σ2

3 (r,ν,δ)
9(ψ′′(t)−r3ψ′′(s))2

=⇒ N(0, 1), n→ ∞, (30)

where σ2
3 (r, ν, δ) is given by (29).

Proof of Theorem 3. Based on the form of statistics Lk(X) as sums of random variables,
we obtain

√
n

L3(X)− 3L1(X)L2(X) + 2L3
1(X)− σ12(r, ν)√

σ2
3 (r, ν, δ)

=⇒ N(0, 1), n→ ∞, (31)

since

E(L3(X)− 3L1(X)L2(X) + 2L3
1(X)) =

n2 − 3n + 2
n2 · ψ′′(t)− r3ψ′′(s)

ν3 = σ12(r, ν) + o(1)

and
D
(

ln3 X1 − 3 ln X1L2(X) + 2 ln X1L2
1(X)

)
= σ2

3 (r, ν, δ) + o(1),

which obviously follows from the inequality

(
√

Dξ −
√

Dη)2 ≤ D(ξ + η) ≤ (
√

Dξ +
√

Dη)2,

valid for any random variables ξ and η with finite variances. In addition, at the point
x = σ12(r, ν) the function V(x), defined in (6), has a nonzero derivative V1(x), defined
in (15).

In terms of Lemma 5 for the one-dimensional case we obtain the relation

dΣdT = (V1(σ12(r, ν)))2σ2
3 (r, ν, δ),

from which it follows that

√
n

V(L3(X)− 3L1(X)L2(X) + 2L3
1(X))−V(σ12(r, ν))√

(V1(σ12(r, ν)))2σ2
3 (r, ν, δ)

=⇒ N(0, 1).
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This concludes the proof.

Lemma 3 and the continuity of the function (29) in ν and δ and the function (15) at
x = σ12(r, ν) imply the following statement.

Corollary 3. When n→ ∞

√
n

ν̂(X)− ν√(
V1(L3(X)− 3L1(X)L2(X) + 2L3

1(X))
)2

σ2
3 (r, ν̂(X), δ̂ν(X))

=⇒ N(0, 1),

where the functions V1 and σ2
3 are given by (15) and (29), and the statistics ν̂(X) and δ̂ν(X) are

defined in (10) and (11).

Consider the estimator for the parameter δ with fixed parameters r, t and s. Let us
introduce the notation

s12(r, ν, δ) =
ψ′′′(t)− 6ψ′(t)[ν ln δ + ψ(t)− rψ(s)]2

ν4 +

+
r4ψ′′′(s)− 6r2ψ′(s)[ν ln δ + ψ(t)− rψ(s)]2

ν4 ; (32)

s2
2(r, ν, δ) = δ2σ2

1 (r, ν)− 2ν2δ2(ψ(t)− rψ(s))s12(r, ν, δ)

3(ψ′′(t)− r3ψ′′(s))
+

ν4δ2(ψ(t)− rψ(s))2σ2
3 (r, ν, δ)

9(ψ′′(t)− r3ψ′′(s))2 , (33)

where σ2
1 (r, ν), σ2

3 (r, ν, δ) and s12(r, ν) are given by (23), (29) and (32), respectively.

Theorem 4. The estimator (11) for the unknown parameter δ is asymptotically normal:

√
n

δ̂ν(X)− δ√
s2

2(r, ν, δ)
=⇒ N(0, 1), n→ ∞,

where s2
2(r, ν, δ) is given by (33).

Proof of Theorem 4. Note that when n→ ∞ the relations (28) and (31) hold. Consider the
covariance matrix

Σ =

(
σ2

1 (r, ν) s12(r, ν, δ)
s12(r, ν, δ) σ2

3 (r, ν, δ)

)
.

Since
cov(L1(X), L3(X)− 3L1(X)L2(X) + 2L3

1(X)) =

=
µ4(r, ν, δ)

n
− 4µ3(r, ν, δ)µ1(r, ν, δ)

n
−

3µ2
2(r, ν, δ)

n
+

+
4µ2(r, ν, δ)µ2

1(r, ν, δ)

n
+

2µ4
1(r, ν, δ)

n
+ 2DL2

1(X) + o
(

n−1
)

, n→ ∞,

and
n4EL4

1(X) = nµ4(r, ν, δ) + 4n(n− 1)µ3(r, ν, δ)µ1(r, ν, δ)+

+3n(n− 1)µ2
2(r, ν, δ) + 3n(n− 1)(n− 2)µ2(r, ν, δ)µ2

1(r, ν, δ)+

+(n4 − 3n(n− 1)(n− 2)− 7n(n− 1)− n)µ4
1(r, ν, δ),

where the moments µk(r, ν, δ), k = 1, . . . , 4, are given by (19)–(22),

cov(L1(X), L3(X)− 3L1(X)L2(X) + 2L3
1(X)) =

1
n

s12(r, ν, δ) + o
(

n−1
)

.
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The statistics L1(X) and L3(X)− 3L1(X)L2(X) + 2L3
1(X) together with any of their

linear combinations have the property of asymptotic normality with corresponding limit
means depending on (µ1(r, ν, δ), σ12(r, ν)), and variances defined by the matrix Σ. There-
fore, Lemma 4 implies the convergence of vectors

√
n(L1(X), L3(X)− 3L1(X)L2(X) + 2L3

1(X)) =⇒ N((µ1(r, ν, δ), σ12(r, ν)), Σ),

where µ1(r, ν, δ) and σ12(r, ν) are defined in (19) and (26). In addition, the partial derivatives
Dν,1(x, y) and Dν,2(x, y), defined in (16) and (17) of the function Dν(x, y), defined in (7),
are nonzero at (x, y) = (µ1(r, ν, δ), σ12(r, ν)). Hence, by Lemma 5
√

nDν(L1(X), L3(X)− 3L1(X)L2(X) + 2L3
1(X)) =⇒ N(Dν(µ1(r, ν, δ), σ12(r, ν)), dΣdT),

where
d = (Dν,1(µ1(r, ν, δ), σ12(r, ν)), Dν,2(µ1(r, ν, δ), σ12(r, ν))).

The realtion

dΣdT = δ2σ2
1 (r, ν)− 2ν2δ2(ψ(t)− rψ(s))s12(r, ν, δ)

3(ψ′′(t)− r3ψ′′(s))
+

ν4δ2(ψ(t)− rψ(s))2σ2
3 (r, ν, δ)

9(ψ′′(t)− r3ψ′′(s))2

concludes the proof.

Lemma 3 and the continuity of the function (33) in ν and δ and the functions (16)
and (17) at (x, y) = (µ1(r, ν, δ), σ12(r, ν)) imply the following statement.

Corollary 4. When n→ ∞

√
n

δ̂ν(X)− δ√
s2

2(r, ν̂(X), δ̂ν(X))
=⇒ N(0, 1),

where the function s2
2 is given by (33), and the statistics ν̂(X) and δ̂ν(X) are defined in (10)

and (11).

5. Confidence Intervals

On the basis of Corollaries 1–4, asymptotic confidence intervals for unknown parame-
ters of the gamma-exponential distribution can be constructed.

By uγ we denote the (1 + γ)/2-quantile of the standard normal distribution.

Corollary 5. The asymptotic confidence interval with the confidence level γ based on the estimator (8)
for the unknown parameter r has the form

(Sr(X), Tr(X)) =

(
r̂(X)−

uγ√
n

Ar(X), r̂(X) +
uγ√

n
Ar(X)

)
,

where
Ar(X) =

√(
R1(L2(X)− L2

1(X))
)2

σ2
2 (r̂(X), ν, δ̂r(X)),

the functions R1 and σ2
2 are given by (12) and (24), and the statistics r̂(X) and δ̂r(X) are defined in

(8) and (9).

Corollary 6. The asymptotic confidence interval with the confidence level γ based on the estimator (9)
for the unknown parameter δ has the form

(Sδr (X), Tδr (X)) =

(
δ̂r(X)−

uγ√
n

Aδr (X), δ̂r(X) +
uγ√

n
Aδr (X)

)
,
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where
Aδr (X) =

√
s2

1(r̂(X), ν, δ̂r(X)),

the function s2
1 is given by (27), and the statistics r̂(X) and δ̂r(X) are defined in (8) and (9).

Corollary 7. The asymptotic confidence interval with the confidence level γ based on the estimator
(10) for the unknown parameter ν has the form

(Sν(X), Tν(X)) =

(
ν̂(X)−

uγ√
n

Aν(X), ν̂(X) +
uγ√

n
Aν(X)

)
,

where

Aν(X) =

√(
V1(L3(X)− 3L1(X)L2(X) + 2L3

1(X))
)2

σ2
3 (r, ν̂(X), δ̂ν(X)),

the functions V1 and σ2
3 are given by (15) and (29), and the statistics ν̂(X) and δ̂ν(X) are defined

in (10) and (11).

Corollary 8. The asymptotic confidence interval with the confidence level γ based on the estimator (11)
for the unknown parameter δ has the form

(Sδν
(X), Tδν

(X)) =

(
δ̂ν(X)−

uγ√
n

Aδν
(X), δ̂ν(X) +

uγ√
n

Aδν
(X)

)
,

where
Aδν

(X) =
√

s2
2(r, ν̂(X), δ̂ν(X)),

the function s2
2 is given by (33), and the statistics ν̂(X) and δ̂ν(X) are defined in (10) and (11).

Let us illustrate the results of Corollaries 5–8, using an example of a model sample
from a gamma-exponential distribution with the given parameters r, ν, s, t and δ. The
confidence level is γ = 0.95.

Tables 1–4 show the values of the estimates (8) and (9) for the parameters r and δ and
the estimates (10) and (11) of the parameters ν and δ with the corresponding asymptotic
confidence intervals obtained from the sample size n.

Tables 5 and 6 show the proportions of the true values of parameters that fall into the
asymptotic confidence intervals for 1000 runs for the sample size n.

Table 1. Values of the estimates of the parameters r and δ with the corresponding asymptotic
confidence intervals for the true values of the parameters r = 0.4, ν = 1.7, s = 0.7, t = 1.5, δ = 1.

r̂(X) Sr(X) Tr(X) δ̂r(X) Sδr (X) Tδr (X)

n = 100 0.517 0.344 0.690 0.782 0.645 0.919
n = 1000 0.391 0.332 0.449 0.982 0.924 1.041

n = 10,000 0.399 0.381 0.418 0.994 0.975 1.012

Table 2. Values of the estimates of the parameters ν and δ with the corresponding asymptotic
confidence intervals for the true values of the parameters r = 0.4, ν = 1.7, s = 0.7, t = 1.5, δ = 1.

ν̂(X) Sν(X) Tν(X) δ̂ν(X) Sδν
(X) Tδν

(X)

n = 100 1.048 −0.313 2.409 0.702 0.207 1.197
n = 1000 1.725 0.977 2.474 0.981 0.847 1.115

n = 10,000 1.718 1.480 1.956 0.997 0.953 1.040
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Table 3. Values of the estimates of the parameters r and δ with the corresponding asymptotic
confidence intervals for the true values of the parameters r = 0.5, ν = 0.7, s = 1.5, t = 0.6, δ = 1.

r̂(X) Sr(X) Tr(X) δ̂r(X) Sδr (X) Tδr (X)

n = 100 0.840 −0.637 2.318 0.827 0.440 1.214
n = 1000 0.445 −0.373 1.264 1.057 0.914 1.199

n = 10,000 0.507 0.279 0.735 1.064 1.018 1.110

Table 4. Values of the estimates of the parameters ν and δ with the corresponding asymptotic
confidence intervals for the true values of the parameters r = 0.5, ν = 0.7, s = 1.5, t = 0.6, δ = 1.

ν̂(X) Sν(X) Tν(X) δ̂ν(X) Sδν
(X) Tδν

(X)

n = 100 0.668 0.190 1.147 0.902 −0.688 2.493
n = 1000 0.713 0.555 0.871 1.016 0.499 1.533

n = 10,000 0.700 0.652 0.749 1.062 0.889 1.234

Table 5. Proportions of true parameter values falling into asymptotic confidence intervals for
1000 runs for the sample size n with true parameter values r = 0.4, ν = 1.7, s = 0.7, t = 1.5, δ = 1.

r δr ν δν

n = 100 0.954 0.926 0.849 0.878
n = 1000 0.926 0.918 0.969 0.897

n = 10,000 0.920 0.905 0.977 0.946

Table 6. Proportions of true parameter values falling into asymptotic confidence intervals for
1000 runs for the sample size n with true parameter values r = 0.5, ν = 0.7, s = 1.5, t = 0.6, δ = 1.

r δr ν δν

n = 100 0.510 0.480 0.993 0.976
n = 1000 0.772 0.738 0.990 0.996

n = 10,000 0.973 0.916 0.993 0.999

6. Discussion

The paper considers estimates and asymptotic confidence intervals for the parameters
of the gamma-exponential distribution, represented as a scale mixture of generalized
gamma distributions. Distributions from the gamma class have a rich history of modeling
applications in many areas of knowledge. Back in the second half of the 19th century,
the Rayleigh distribution was used to describe the resulting amplitude in the problem of
summation of oscillations with random phases, and the Maxwell–Boltzmann distribution
was used to statistically describe the behavior of the parameters of ideal gas particles.
In the 1920s, the Italian economist L. Amoroso in the study of dynamical equilibrium
theory proposed a type of distribution, which is now known as the generalized gamma
distribution. The use of the generalized gamma distribution and its special cases for
describing various models is still relevant. For example, in [9–12], it is proposed to use
distributions from the gamma class in problems of processing radar signals and images, for
studying the strength of materials and reliability of equipment, as well as for estimating
the concentration of NO2 in industrial areas and studying the remission period of cancer
patients. A number of other examples can be cited. The gamma-exponential distribution
considered in the paper generalizes the Amoroso distribution. Therefore, it can be argued
that the results of the article will be in demand when studying various models that describe
real processes using distributions with a non-negative unbounded support.
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