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Abstract: The mathematical modeling of unsteady flow of micropolar Cu–Al2O3/water nanofluid
driven by a deformable sheet in stagnation region with thermal radiation effect has been explored
numerically. To achieve the system of nonlinear ordinary differential equations (ODEs), we have
employed some appropriate transformations and solved it numerically using MATLAB software
(built-in solver called bvp4c). Influences of relevant parameters on fluid flow and heat transfer
characteristic are discussed and presented in graphs. The findings expose that double solutions
appear in shrinking sheet case in which eventually contributes to the analysis of stability. The
stability analysis therefore confirms that merely the first solution is a stable solution. Addition of
nanometer-sized particle (Cu) has been found to significantly strengthen the heat transfer rate of
micropolar nanofluid. When the copper nanoparticle volume fraction increased from 0 to 0.01 (1%)
in micropolar nanofluid, the heat transfer rate increased roughly to an average of 17.725%. The result
also revealed that an upsurge in the unsteady and radiation parameters have been noticed to enhance
the local Nusselt number of micropolar hybrid nanofluid. Meanwhile, the occurrence of material
parameter conclusively decreases it.

Keywords: micropolar hybrid nanofluid; dual solution; stretching/shrinking sheet; stability analysis;
thermal radiation

1. Introduction

For a number of years, the studies of micropolar fluid flow have captivated the
attention of numerous scientists in understanding the fluid behavior especially in the study
of rheological complex fluids, as, for example, the colloidal fluids, polymeric suspension,
liquid crystals, animal blood, etc. [1]. In sight of these important applications, Eringen [2,3]
was the first who originated the microfluid theory in his papers of simple microfluids and
theory of micropolar fluids. This kind of fluids demonstrate the micro-rotational effect
and micro-rotational inertia. Afterwards, this theory was then extended by Eringen [4] by
taking into account the thermal effect and thus established the thermomicropolar fluids
theory. Implementing the idea of Eringen, the micropolar fluid flow using a boundary
layer approximation has been derived by many researchers in various problems such as
in stagnation region [5], semi-infinite plate [6], cylinder [7], and rotating surface [8]. After
some years, Nazar et al. [9] initiated the theoretical study of micropolar fluid flow when
the sheet is stretch in the stagnation region, and soon after, Ishak et al. [10] and Yacob and
Ishak [11] analyzed the same fluid induced by a shrinking sheet and observed the existence
of nonunique solutions. Afterwards, Sandeep and Sulochana [12] undertook a numerical
research of unsteady magnetohydrodynamic (MHD) micropolar fluid in both permeable
shrinking and stretching sheet. The heat transfer characteristic of micropolar fluid flow
driven by a shrinking sheet was discussed by Mishra et al. [13]. Soon after, Lund et al. [14]
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noticed the existence of triple solutions at specific values of suction parameter in micropolar
fluid when the sheet is shrunk exponentially and conducted the stability analysis. Further,
a number of attempts toward this path have been made in the investigations of [15–17].

The inclusion of nanoparticles in a conventional fluid can literally change the flow and
heat transfer capabilities, thereby can boost the thermal conductivity of the conventional
fluid. It seems that Choi and Eastman [18] was the earlier person who conceived the idea
of nanofluid, i.e., nanoparticle suspended in base fluid. Since then, nanofluids have been
widely used in industrial cooling application [19], biomedical technology [20], solar ther-
mal application [21], and many more. Numerous researchers, such as Gangadhar et al. [22],
Chaudhary and Kanika [23], Naqvi et al. [24] and Anuar et al. [25,26], have scrutinized
the concept of nanofluid flow and its heat transfer in their work. However, less stud-
ies are observed in micropolar nanofluid. The investigation of micropolar nanofluid
driven by a stretching sheet was explored numerically by Hussain et al. [27]. Afterwards,
Bourantas and Loukopoulos [28] and Noor et al. [29] scrutinized the micropolar nanofluid
flow in an inclined square and vertical plate, respectively. The numerical investigation
of micropolar nanofluid driven by a shrinking and stretching sheet have been made by
Gangadhar et al. [30] and they pointed out that double solutions exist in certain range of
parameters. Meanwhile, Dero et al. [31] point out the existence of triple solutions in their
research involving micropolar nanofluid when the sheet is stretch/shrunk exponentially.
The studies of micropolar nanofluid in an inclined stretching/shrinking have been scruti-
nized by Lund et al. [32] with consideration of convective boundary conditions. They also
observed the occurrence of nonunique solutions in their work and performed the stability
analysis. Recently, Abdal et al. [33], Amjad et al. [34], Rafique et al. [35] and many others
have explored the micropolar nanofluid flow problem in different surfaces and aspects.

Nevertheless, a new modern kind of nanofluid which can efficiently improve the heat
transfer are later being introduced in the industry are recognized as hybrid nanofluid,
i.e., mixture of two types of nanoparticle dispersed into a base fluid. This new kind of
fluid, however, shows a great advance in heat conductivity and it proved by the work of
Madhesh and Kalaiselvam [36], Tahat and Benim [37], Devi and Devi [38], etc. Following
this, mathematical investigation specifically in boundary layer flow in hybrid nanofluid has
attracted a few researchers to explore it in various surfaces such as in stretching/shrinking
sheet [39], curved surface [40], thin needle [41], Riga plate [42], etc. By opting the novel idea
of hybrid nanofluid, Subhani and Nadeem [43] scrutinized the behavior of hybrid nanofluid
(Cu-TiO2/water) in micropolar fluid in a porous medium past an exponentially stretching
sheet and point out that the heat transfer rate for micropolar hybrid nanofluid is greater
than micropolar nanofluid. Afterwards, by taking into attention the simultaneous effects
of MHD and slip, Nadeem and Abbas [44] examined the micropolar hybrid nanofluid
flow past a circular cylinder. In another study of Abbas et al. [45] and Al-Hanaya [46], a
theoretical investigation of micropolar hybrid nanofluid using carbon nanotubes (SWCNT
and MWCNT) as a nanoparticle over an exponentially stretching Riga plate and curved
stretching sheet have been investigated. Apparently, the research related to micropolar
hybrid nanofluids are limited in number. Hence, the principal goal of this investigation is to
address the behavior of micropolar hybrid nanofluid in a deformable sheet, i.e., stretching
and shrinking. It is important to note that deformable sheet is not a new crucial topic
among the researchers in the fluid field since their applications are well recognized in
processing industries especially in polymer processing, glass fiber production, cooling, and
drying of paper and many others [47].

The impact of thermal radiation is also discussed in this paper, where this effect is
crucial in solar power technology, electrical power generation, astrophysical flows, and
other industrial fields. In the scenario of high-temperature flow processes, thermal radia-
tion effects are also extremely important [48]. There is a lot of comprehensive literature
now available that concerns with the thermal radiation effect on the flow of the bound-
ary layer. For instance, Sajid and Hayat [49] have been analyzing the thermal radiation
effect on the viscous flow as the sheet is stretch exponentially and realized that the ther-
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mal boundary layer thickness thickens as the radiation parameter increase. Afterwards,
Nadeem et al. [50] extend the investigations of [49] by considering it in Jeffrey fluid. The
numerical investigation of micropolar nanofluid over the stretching sheet with the effect of
thermal radiation, MHD, and heat source/sink have been examined by Pal and Mandal [51].
Again, Gireesha et al. [52] addresses the Jeffrey nanofluids problem driven by a nonlinearly
permeable stretching sheet under the effect of radiation and magnetohydrodynamic. In
a recent study, Yashkun et al. [53] noticed the occurrence of dual solutions in their work
of MHD hybrid nanofluid past a deformable sheet with thermal radiation effect. Hence,
motivated by the aforementioned work, our aim here is to scrutinize the influence of
thermal radiation towards the heat transfer of micropolar hybrid nanofluid.

In brief, this research paper is an extended work of Nazar et al. [9] to the case of
unsteady two-dimensional hybrid nanofluid in shrinking sheet and take into attention the
effect of thermal radiation. Given the above-mentioned study, the utilization of hybrid
nanofluid (Cu and Al2O3) as the new heat transfer fluid for the micropolar flow problem
with the thermal radiation effect, has not been performed up to now. In addition, this
analysis also comprises a novel era for scientists to discover the shrinking features of
micropolar hybrid nanofluids. Furthermore, the novelty of this study can also be seen
in the discovery of non-unique solutions and the execution of stability analysis. To the
best of authors’ knowledge, the results of the present work is new and still not considered
and published by any researchers. Therefore, current studies are expected to bring good
benefits to researchers who are experimentally working on micropolar hybrid nanofluids,
and these results are also expected to reduce the cost of experimental work in the future.

2. Mathematical Framework
2.1. Basic Equations

The unsteady two-dimensional flow of micropolar Cu–Al2O3/water nanofluid past a
deformable sheet in the stagnation region with the influence of thermal radiation impact
are investigated in this work as exemplified in Figure 1. The Cartesian coordinates used
are x and y, given that x−axis is considered along the sheet while y−axis normal to it,
respectively, the sheet is located in the plane y = 0 and the fluid fill the half space at y ≥ 0.
The temperature far from the surface (inviscid flow) and at the surface are represented by
T∞ and Tw(x, t). The sheet is stretch and shrunk along the x−axis with velocity uw(x, t)
and the free stream velocity is denoted by ue(x, t).
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From all of the above circumstance, the partial differential equations which govern
the flow are stated as (see Nazar et al. [9], Bhattacharyya et al. [54], Roy et al. [55]):

∂u
∂x

+
∂v
∂y

= 0 (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
∂ue

∂t
+ ue

∂ue

∂x
+

µhn f + κ

ρhn f

∂2u
∂y2 +

κ

ρhn f

∂N
∂y

(2)

∂N
∂t

+ u
∂N
∂x

+ v
∂N
∂y

=
ς

ρhn f j
∂2N
∂y2 −

κ

ρhn f j

(
2N +

∂u
∂y

)
(3)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 −

1(
ρCp

)
hn f

∂qr

∂y
(4)

Here, the velocity component in the x direction is denoted as u whereas v is the
velocity component along y axis, t and T are time and temperature, N refers to the angular
velocity (microrotation) in the xy−plane, qr signifies the radiative heat flux, κ is the vortex
viscosity and j is the micro inertial density. In addition, ς is the spin gradient viscosity
given by (Ahmadi [6])

ς =
(

µ f +
κ

2

)
j (5)

where j = ν f /ue is specified as the reference length. Further, khn f , ρhn f , µhn f and
(
ρCp

)
hn f

are the thermal conductivity, density, dynamic viscosity, and heat capacity of Cu–Al2O3/
water.

The accompanying conditions are

u = uw(x, t), v = 0, N = −n ∂u
∂y , T = Tw(x, t) as y = 0

u→ ue(x, t), N → 0, T → T∞ as y→ ∞
(6)

where n is the constant in the range of [0, 1]. It is worthwhile to note that for n = 0 which
implies that N = 0 near the wall, exemplifies the microelements near the wall surface
are incapable to rotate, i.e., concentrated particle flows (Jena and Mathur [56]) or also
denoted as strong concentration of microelements (Guram and Smith [57]). However, for
the case n = 0.5 which refer to a weak concentration of microelements, the disappearing of
anti-symmetric part of the stress tensor is noted (Ahmadi [6]). Further, the case n = 1 is
utilized for the modelling of turbulent boundary layer flows (Peddieson [58]). While the
velocity of deformable sheet, free stream and temperature at the surface are referred from
the work of Zainal et al. [59] which given as

uw(x, t) =
cx

1− bt
, ue(x, t) =

ax
1− bt

, Tw(x, t) = T∞ +
T0ax2

2ν f (1− bt)3/2 (7)

here, a(> 0) and c(> 0) are constants, b measures the unsteadiness of the problem and
T0 > 0 is the reference temperature.

Using the Rosseland’s approximation (Brewster [60]), the qr term can be expressed
clearly as below

qr = −
4 σ∗

3 k∗
∂T4

∂y
(8)

where σ∗ and k∗ signify the constant of Stefan–Boltzmann and mean absorption’s coefficient.
Implementing the Taylor series and ignored the higher-order terms, T4 is expanded about
T∞; hence, we have T4 ≈ 4T3

∞T − 3T4
∞. Subsequently, Equation (4) become

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 +

16 σ∗T3
∞

3 k∗
(
ρCp

)
hn f

∂2T
∂y2 (9)
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2.2. Thermophysical Traits of Hybrid Nanofluid

The physical traits of hybrid nanofluids are prescribed in Table 1. In Table 1, the
subscript hn f , n f , f and s signify the hybrid nanofluid, nanofluid, fluid and nanoparticle,
whereas s1 and s2 symbolize the first nanoparticle and second nanoparticle, respectively.
Furthermore, ϕ1 represents the first nanoparticle volume fraction while ϕ2 denotes the
second nanoparticle volume fraction. In this investigation, copper (Cu) is picked as the
second nanoparticle volume fraction, alumina (Al2O3) is picked as the first nanoparticle
volume fraction and water act as a base fluid. Table 2 displays the thermophysical traits of
nanoparticles and base fluid. It is important to note that Al2O3 is originally disseminated
into the water to achieve the appropriated hybrid nanofluid, i.e., Cu-Al2O3/water, and
then Cu is disseminated into the Al2O3/water nanofluid. Additionally, the volume fraction
of Al2O3 nanoparticle is set to 1% and Cu is fluctuated from 0 to 2%.

Table 1. Physical traits of hybrid nanofluids (Devi and Devi [38]).

Properties Hybrid Nanofluid

Density ρhn f = (1− ϕ2)
[
(1− ϕ1)ρ f + ϕ1ρs1

]
+ ϕ2ρs2

Heat capacity
(
ρCp

)
hn f = ϕ2

(
ρCp

)
s2 + (1− ϕ2)

[
(1− ϕ1)

(
ρCp

)
f + ϕ1

(
ρCp

)
s1

]
Dynamic viscosity µhn f =

µ f

(1−ϕ1)
2.5(1−ϕ2)

2.5

Thermal conductivity khn f
kb f

=
ks2+2kb f−2ϕ2(kb f−ks2)
ks2+2kb f +ϕ2(kb f−ks2)

where kb f
k f

=
ks1+2k f−2ϕ1(k f−ks1)
ks1+2k f +ϕ1(k f−ks1)

Table 2. Thermo physical properties (Oztop and Abu-Nada [61]).

Physical Properties

Cp

(
J kg−1K−1

)
ρ
(
kg m−3) k

(
W m−1K−1)

water 4179 997.1 0.613
Cu 385 8933 400

Al2O3 765 3970 40

2.3. Similarity Solutions

In this work, the subsequent similarity transformation is introduced (Roy et al. [55])

η =

(
a

ν f (1− bt)

)1/2

y, ψ =

( aν f

1− bt

)1/2
x f (η), N =

(
a

ν f (1− bt)

)1/2
a

(1− bt)
x h(η), θ(η) =

T − T∞

Tw − T∞
(10)

where ν f and η are the fluid kinematic viscosity and similarity variable, while f , h and θ
are the dimensionless function. Further, primes signify the differentiation with respect to η,
while the stream function ψ is specified as v = −∂ψ/∂x and u = ∂ψ/∂y.

Invoking the similarity variables (10), Equation (1) is identically fulfilled and Equations (2),
(3) and (9) are reduced into the following similarity equations

µhn f /µ f

ρhn f /ρ f
(1 + K) f ′′′ − f ′2 + f f ′′ + 1− A

(
f ′ − 1 +

1
2

η f ′′
)
+

K
ρhn f /ρ f

h′ = 0 (11)

1
ρhn f /ρ f

(
µhn f

µ f
+

K
2

)
h′′ + f h′ − f ′h− A

2
(
3h + ηh′

)
− K

ρhn f /ρ f

(
2h + f ′′

)
= 0 (12)

1
Pr
(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

Rd

)
θ′′ + f θ′ − 2 f ′θ − A

2
(
3θ + ηθ′

)
= 0 (13)
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Here, the material parameter, unsteady parameter, Prandtl number and radiation
parameter which denoted by K, A, Pr and Rd are defined by

K =
κ

µ f
, A =

b
a

, Pr =
ν f

α f
, Rd =

4σ∗T3
∞

k f k∗
, (14)

The conditions (6) become

f ′(0) = c/a =λ, f (0) = 0, h(0) = −n f ′′(0), θ(0) = 1,
f ′(η)→ 1, h(η)→ 0, θ(η)→ 0 as η → ∞

(15)

where the stretching/shrinking parameter is denoted by λ with λ > 0 signifies the sheet is
stretch, λ = 0 refers to static plate and λ < 0 denotes the sheet is shrunk.

In this investigation, the physical quantities of interest are specified as

C f =
1

ρ f u2
e

[(
µhn f + κ

)(∂u
∂y

)
+ κN

]
y=0

, Nux =
x

k f (Tw − T∞)

[
−khn f

(
∂T
∂y

)
y=0

+ qr|y=0

]
(16)

here, C f is the skin friction coefficient and Nux is the Nusselt number. Using variables
(10) and (16), the following local skin friction coefficient and local Nusselt number (heat
transfer rate) are achieved

C f Re1/2
x =

(
µhn f

µ f
+ K

)
f ′′ (0) + Kh(0), NuxRe−1/2

x = −
(

khn f

k f
+

4
3

Rd

)
θ′(0) (17)

where Rex = uex/ν f is the local Reynolds number.

3. Stability of the Solutions

Due to the occurrence of non-uniqueness in the present research, the stability analysis
is executed by referring to the work of Merkin [62], Weidman et al. [63], and Harris et al. [64].
These analyses have been implemented by other researchers too (see for example the work
of [14–16,25,26,32,39,59]). Some important steps are implemented to identify the stability of
solutions, i.e., (i) introducing a new dimensionless time variables and similarity variables,
(ii) implement the linear eigenvalue equations, and (iii) relax the boundary conditions.

3.1. New Similarity Transformation

A new dimensionless time variable τ need to be introduced as follows (Zainal et al. [59])

τ =
a

1− bt
t (18)

while the similarity variables (10) are replaced by

η =

(
a

ν f (1− bt)

)1/2

y, ψ =

( aν f

1− bt

)1/2
x f (η, τ), N =

(
a

ν f (1− bt)

)1/2
a

(1− bt)
x h(η, τ), θ(η, τ) =

T − T∞

Tw − T∞
(19)

By applying Equations (18) and (19) in Equations (1)–(3) and (9), the new transformed
differential equations are attained

µhn f /µ f

ρhn f /ρ f
(1 + K)

∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
+ 1− A

(
∂ f
∂η

+
1
2

η
∂2 f
∂η2 − 1

)
+

K
ρhn f /ρ f

∂h
∂η
− (Aτ + 1)

∂2 f
∂η∂τ

= 0 (20)

1
ρhn f /ρ f

(
µhn f

µ f
+

K
2

)
∂2h
∂η2 + f

∂h
∂η
− ∂ f

∂η
h− A

2

(
3h + η

∂h
∂η

)
− K

ρhn f /ρ f

(
2h +

∂2 f
∂η2

)
− (Aτ + 1)

∂h
∂τ

= 0 (21)
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1
Pr
(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

Rd

)
∂2θ

∂η2 + f
∂θ

∂η
− 2

∂ f
∂η

θ − A
2

(
3θ + η

∂θ

∂η

)
− (Aτ + 1)

∂θ

∂τ
= 0 (22)

and the conditions become

f (0, τ) = 0, ∂ f
∂η (0, τ) = λ, h(0, τ) = −n ∂2 f

∂η2 (0, τ), θ(0, τ) = 1,
∂ f
∂η (η, τ)→ 1, h(η, τ)→ 0, θ(η, τ)→ 0 as η → ∞

(23)

3.2. Introducing Linear Eigenvalue Equations

The stability of the steady flow solutions can be explored by setting f (η) = f0(η),
h(η) = h0(η) and θ(η) = θ0(η), where it satisfied the boundary value problems (11)–(13)
and (15). Thus, the following equations are introduced (Weidman et al. [63]):

f (η, τ) = f0(η) + e−γτ F(η, τ), h(η, τ) = h0(η) + e−γτ H(η, τ), θ(η, τ) = θ0(η) + e−γτG(η, τ), (24)

where F(η, τ), H(η, τ), G(η, τ) and their derivatives are small then f0(η), h0(η) and θ0(η).
In addition, γ is the unknown eigenvalue which will be used to specify the stability of the
solutions. Substitute Equation (24) into (20)–(22) and let τ → 0 , in which F(η) = F0(η),
H(η) = H0(η) and G(η) = G0(η), thereby the linearized eigenvalue equations relevant to
the problem are

µhn f /µ f

ρhn f /ρ f
(1 + K)F0

′′′ +

(
f0 +

A
2

η

)
F0
′′ + F0 f0

′′ −
(
2 f0
′ + A− γ

)
F0
′ +

K
ρhn f /ρ f

H0
′ = 0 (25)

1
ρhn f /ρ f

(
µhn f

µ f
+

K
2

)
H0
′′ +

(
f0 −

A
2

η

)
H0
′ + F0h0

′ − F0
′h0 −

(
f0
′ +

3
2

A− γ

)
H0 −

K
ρhn f /ρ f

(
2H0 + F0

′′) = 0 (26)

1
Pr
(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

Rd

)
G0
′′ +

(
f0 −

A
2

η

)
G0
′ + F0θ0

′ − 2F0
′θ0 −

(
2 f0
′ +

3
2

A− γ

)
G0 = 0 (27)

The conditions now take the following form

F0
′(0) = 0, F0(0) = 0, H0(0) = −n F0

′′(0), G0(0) = 0,
F0
′(η)→ 0, H0(η)→ 0, G0(η)→ 0, as η → ∞

(28)

3.3. Relaxation of Boundary Conditions

To solve the stability model, we need to relax the boundary conditions as proposed
by Harris et al. [64]. For that reason, the conditions F0

′(η)→ 0 as η → ∞ can be replaced
by new conditions F0

′′(0) = 1. It must be pointed out that the linearized boundary value
problem (25)–(28) together with new conditions F0

′′(0) = 1 will yield the unlimited set of
unknown eigenvalues (γ1 < γ2 < γ3 < . . .). If the smallest eigenvalues γ show a positive
sign, the solutions observed an initial decay of perturbation and accordingly indicates a
stable solution. On the other hand, as the smallest eigenvalues γ show a negative sign, an
early growth of disruption is noticed which consequently signifies unstable solution.

4. Numerical Solutions

To solve the boundary value problems (11)–(13) with boundary conditions given by
(15), we have adopted a built-in function called bvp4c from Matlab package. Further, to
access the precision of current algorithm, the current results of skin friction coefficient f ′′(0)
are compared with previously reported solutions of Ishak et al. [10], who used Keller-box
method in their work, Mahapatra and Nandy [65], who pursued the shooting method
for their computation and Zainal et al. [59] which employed the bvp4c solver. These
comparative solutions are revealed in Table 3 for selected values of shrinking parameter
(λ < 0). It can be point out from these tables that there is good agreement with these
methods (error is relatively small), thereby confirming the consistency of the approach used.
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Furthermore, this validates the present model and proves the accuracy of the bvp4c solver
in solving a boundary layer problem as the present results able to withstand the Keller-box
method and shooting method which have been employed by Ishak et al. [10] and Mahapatra
and Nandy [65]. In this part, the results of local skin friction C f Re1/2

x , Nusselt number
NuxRe−1/2

x , velocity profile f ′(η), microrotation profile h(η) as well as temperature profile
θ(η) are illustrated graphically to explore the influence of some governing parameters such
as Cu nanoparticle volume fraction (ϕ2), unsteady parameter (A), material parameter (K)
and radiation parameter (Rd).

Table 3. Comparison values of f ′′(0) when A = K = n = 0 and ϕ1 = ϕ2 = 0 for different λ values.

λ
Refs. [10]

(Keller-Box Method)
Refs. [65]

(Shooting Method)
Refs. [59]

(bvp4c Solution)
Present Result

(bvp4c Solution)

−0.25 1.402241 1.402242 1.402241 1.402241
−0.5 1.495670 1.495672 1.495670 1.495670
−0.75 1.489298 1.489296 1.489298 1.489298
−1 1.328817 [0] 1.328819 [0] 1.328817 [0] 1.328817 [0]
−1.1 1.186681 [0.049229] 1.186680 [0.049229] 1.186680 [0.049229] 1.186680 [0.049229]
−1.15 1.082231 [0.116702] 1.082232 [0.116702] 1.082231 [0.116702] 1.082231 [0.116702]
−1.2 0.932474 [0.233650] 0.932470 [0.233648] 0.932473 [0.233650] 0.932473 [0.233650]
−1.246 - 0.584374 [0.554215] 0.609826 [0.529035] 0.609826 [0.529035]
−1.2465 0.584295 [0.554283] - - 0.584282 [0.554296]

‘[ ]’ Second solution.

The effect of Cu nanoparticle volume fraction ϕ2 against stretching or shrinking
parameter λ on the local skin friction C f Re1/2

x and Nusselt number NuxRe−1/2
x as given in

Equation (17) are shown in Figure 2a,b. It is apparent from these figures that for shrinking
parameter (λ < 0), the occurrence of dual solutions is noted. However, it is remarked that
no solution exists when λ < λc, which indicates that the boundary layer is detach from the
surface and the principle of boundary layer theory are no longer valid. Moreover, λc is the
critical point that connected the first and second solutions. In addition, a unique solution
is noticed when the sheet is stretched (λ > 0). It is clear that for ϕ2 = 0, the problem
reduces to the micropolar nanofluid. From these figures, it is discovered that upsurge
in Cu nanoparticle volume fraction ϕ2 enhances the local skin friction C f Re1/2

x and local
Nusselt number NuxRe−1/2

x for all domains of stretching and shrinking parameter λ in first
solution but a small change is noted for the second solution. This finding proves that the
increment of Cu nanoparticle volume fraction ϕ2 can improve the heat transfer efficiency.
This also implies that hybrid nanofluid provides a better heat performance than nanofluid.
Furthermore, the enhancement of Cu nanoparticle volume fraction ϕ2 on local skin friction
C f Re1/2

x and Nusselt number NuxRe−1/2
x fasten the detachment of boundary layer flow.

Figure 3a–c exemplify the impact of Cu nanoparticle volume fraction parameter ϕ2 on the
velocity profile f ′(η), microrotation profile h(η) and temperature profile θ(η) for shrinking
sheet (λ = −1.25). It reveals that augmentation of Cu nanoparticle volume fraction ϕ2
depreciates the momentum and microrotation boundary layer thickness in first and second
solutions. Meanwhile, the thermal boundary layer thickness increases as Cu nanoparticle
volume fraction ϕ2 increases for the first solution, however a contrary observation is noted
for the second solution. Furthermore, one can see that the boundary layer thickness of
the first solution was slimmer than second solution. In addition, all the profiles published
are asymptotically satisfied the boundary conditions (15) and eventually supported the
findings obtained in Figure 2a,b.
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Figure 4a,b show the impact of unsteady parameter A = 0, 0.1, 0.2 on the local skin
friction C f Re1/2

x and Nusselt number NuxRe−1/2
x towards stretching/shrinking parameter

λ. The occurrence of unsteady parameter A consequently elevates the local skin friction
C f Re1/2

x and Nusselt number NuxRe−1/2
x . It must be noted that the flow corresponds to

the steady micropolar flow when A = 0 and it is numerically observed that dual solution
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exists as −1.24641 < λ < −1 and a unique solution exists when λ ≥ −1. However, the
physical character of flow changes when the flow becomes unsteady. For instance, as the
unsteadiness parameter increase, i.e., A = 0.1 and A = 0.2, the range of similarity solutions
to exist also increases where dual solutions is observed in the range of −1.31162 < λ < −1
and −1.38029 < λ < −1, respectively. The unique solution however only exists as λ ≥ −1
for both case of A and concurrently no solution is noticed when λ < λc. In short, a raise in
unsteady parameter A act in postponing the boundary layer detachment. On the other side,
Figure 5a–c portray the discrepancy of velocity f ′(η), microrotation h(η) and temperature
θ(η) profiles when unsteady parameter A fluctuates from 0 to 0.15. For the first solution,
the diminished of momentum boundary layer thickness is observed when the unsteady
parameter A increases as shown in Figure 5a, but a reverse observation is remarked for
the second solution. Furthermore, the microrotation boundary layer thickness diminishes
with an increment of unsteady parameter A values in the first solution except near the
sheet, while an opposing trend is remarked for the second solution. It is also interesting to
observe from these figures that for both solutions, the thermal boundary layer thickness
increase with an upsurge of unsteady parameter A.
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Figure 6a,b and Figure 7a–c are portray to discuss the effect of material parameter
K on the local skin friction C f Re1/2

x , local Nusselt number NuxRe−1/2
x , velocity profile

f ′(η), microrotation profile h(η) and temperature profile θ(η) for Cu-Al2O3/water. It
is obvious that existence of material parameter (K = 1, 2) give rises to the local skin
friction C f Re1/2

x if compared to the absence of material parameter (K = 0), i.e., no vortex
viscosity. However, different results are observed for the local Nusselt number NuxRe−1/2

x
where the nonexistence of micropolar fluid (K = 0) cause an enhancement in comparison
with the existence of material parameter (K = 1, 2). This phenomenon reveals the fact
that upsurge value of material parameter gives rise on the vortex viscosity in the fluid
flow which consequently enhance the skin friction at the wall and decrease the rate of
heat transfer at the wall. Additionally, we observed that an upsurge values of material
parameter prompt the domain of similarity solutions to exist become narrow. For instance,
the similarity solutions in the nonexistence of material parameter are noted in the range of
−1.31178 ≤ λ ≤ 1, while in the existence of material parameter (K = 1, 2), the range of
solutions are observed to be −1.31164 ≤ λ ≤ −1 and −1.31162 ≤ λ ≤ −1. Furthermore,
an upsurge values of material parameter K causing the thickness of the momentum and
thermal boundary layer to increase in first and second solutions. We can see from Figure 7b
that the microrotation boundary layer thickness for first and second solutions near the
sheet decreases when this parameter rises while the contrary trend is observed for the
large η.
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The influence of radiation parameter Rd on the local Nusselt number NuxRe−1/2
x and

temperature profile θ(η) are portrayed in Figure 8a,b, respectively. We have noticed that the
radiation parameter Rd has no control on the flow field, which is evident from Equations
(11)–(13). The local Nusselt number is discovered to increase with an upsurge values
in radiation parameter Rd. Furthermore, the thermal boundary layer thickness become
thicker when this parameter raises in the first solution and it became slimmer in the second
solution. As can be seen from Figure 8b, this parameter however does not give effect on
the range of similarity solutions to occur, i.e., the critical value for stretching/shrinking
parameter λc is the same for all values of radiation parameter Rd. It is noteworthy that the
distribution of temperature in the fluid is significantly affected by the radiation parameter
Rd. Physically, this is due to the fact that the heat is produced due to the radiation process
and therefore, enhances the fluid temperature.

The boundary value problems (11)–(13) together with boundary conditions (15) ob-
serve the occurrence of non–unique solutions for some governing parameters. The phe-
nomenon of non-unique solutions namely first and second solutions are proved and
portrayed as in Figures 2–8. Accordingly, an investigation on the stability analysis has been
executed in this present work so that we can identified the most stable solutions. Therefore,
the linearized Equations (25)–(27) along with conditions (28) have been solved with the aid
of the bvp4 function in MATLAB numerically. The smallest eigenvalues γ on the selected
parameter A and λ from Figure 4a,b are listed in Table 4. This table shown that the second
solution displays the negative values of γ, whereas the first solution demonstrates the
positive values of γ. The smallest eigenvalues γ against λ have been plotted in Figure 9.
This figure eventually supported the findings obtained from Table 4 except when the
values of stretching/shrinking parameter λ approach its critical value where we observed
unstable solutions for both solutions. In reference from the previous literature, we can
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deduce that the first solution is stable, on the contrary, the second solution is unstable. It
worth noting that this analysis is important in identifying the stable solution when there is
exist non-unique solutions so that the flow behavior can be predict accurately.
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Table 4. Smallest eigenvalues γ for selected A and λ when ϕ1 = ϕ2 = 0.01, Rd = 0.1, K = 1 and
n = 0.5.

A λ 1st Solution 2nd Solution

0 −1.2462 0.0174 −0.0583
−1.246 0.0323 −0.0728
−1.24 0.1893 −0.2253

0.1 −1.3112 0.0036 −0.1086
−1.311 0.0156 −0.1204
−1.31 0.0577 −0.1616

0.2 −1.3785 0.0224 −0.2193
−1.378 0.0385 −0.2348
−1.37 0.1950 −0.3832
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5. Conclusions

Theoretical studies of unsteady micropolar Cu–Al2O3/water flow over a deformable
sheet with thermal radiation effect has been examined numerically. The similarity solutions
were produced by utilizing the bvp4c function from MATLAB software. The impact of
emerging parameters has been examined and illustrated graphically. Thus, the conclusions
can be outlined as follows:

• The presence of double solutions is noticeable for shrinking sheet whereas a unique
solution is observed for stretching sheet.

• The stability analysis was carried out and the first solution has proven to be a stable
solution, whereas the other solution is not a stable solution.

• A raise in Cu nanoparticle volume fraction ϕ2 in micropolar nanofluid has tendency
to improve the local Nusselt number and local skin friction for all domain of stretch-
ing/shrinking parameter λ.

• The heat transfer rate increased roughly to an average of 17.725% when the copper
nanoparticle volume fraction increased from 0 to 0.01 (1%) in a micropolar nanofluid.

• The rising of unsteady parameter A and radiation parameter Rd in micropolar hybrid
nanofluid increase the local Nusselt number while the reverse trend is observed with
an increase of material parameter K.

• The local skin friction enhances as the value of unsteady parameter A and material
parameter K increase.

• The domains of the similarity solutions decrease with a raise in Cu nanoparticle
volume fraction ϕ2 and material parameter K, therefore fastens the boundary layer
separation. However, upsurge value of unsteady parameter A delays the boundary
layer separation.
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Nomenclature

a, b, c positive constants [s−1]

A unsteady parameter [-]

C f skin friction coefficient [-]

Cp specific heat at constant pressure [Jkg−1K−1]

f dimensionless stream function [-]

h dimensionless angular velocity [-]

j microinertia density [m2]

k thermal conductivity [Wm−1K−1]

k∗ mean absorption coefficient [m−1]
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K dimensionless material parameter [-]

n positive constant [s−1]

N angular velocity [ms−1]

Nux local Nusselt number [-]

Pr Prandtl number [-]

qr radiative heat flux [Wm−2]

Rd radiation parameter [-]

Rex local Reynolds number [-]

t time [s]

T temperature [K]

u, v velocities component in the x− and y− directions, respectively [ms−1]

ue velocity of inviscid flow [ms−1]

uw stretching/shrinking velocity [ms−1]

x, y cartesian coordinates along the surface and normal to it, respectively [m]

Greek Symbols

ϕ1 nanoparticle volume fractions for Al2O3 (alumina) [-]

ϕ2 nanoparticle volume fractions for Cu (copper) [-]

θ dimensionless temperature [-]

γ unknown eigenvalues [-]

λ stretching/shrinking parameter [-]

η similarity variable [-]

µ dynamic viscosity [N s m−2]

ν kinematic viscosity [m2s−1]

ρ density [kgm−3]

τ dimensionless time variable [-]

σ∗ Stefan–Boltzmann constant [Wm−2K−4]

ψ stream function [-]

ρCp heat capacity [JK−1m−3]

ς spin gradient viscosity [kg m s−1]

κ vortex viscosity [kg m−1s−1]

Subscripts

f base fluid

hn f hybrid nanofluid

s1 solid component for Al2O3 (alumina)

s2 solid component for Cu (copper)

w condition at the surface

∞ ambient condition

Superscript
′ differentiation with respect to η
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