
mathematics

Article

Nonlinear Spectrum and Fixed Point Index for a Class of
Decomposable Operators

Shugui Kang 1, Yanlei Zhang 2 and Wenying Feng 3,*

����������
�������

Citation: Kang, S.; Zhang, Y.;

Feng, W. Nonlinear Spectrum and

Fixed Point Index for a Class of

Decomposable Operators.

Mathematics 2021, 9, 278. https://

doi.org/10.3390/math9030278

Academic Editor: Martin Bohner and

Mohamed Amine Khamsi

Received: 28 December 2020

Accepted: 28 January 2021

Published: 31 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Institute of Applied Mathematics, Shanxi Datong University, Datong 037009, China;
dtkangshugui@126.com

2 Department of Mathematics and Statistics, Queen’s University, Kingston, ON K7L 3N6, Canada;
14yz119@queensu.ca

3 Departments of Mathematics and Computer Science, Trent University, Peterborough, ON K9L 0G2, Canada
* Correspondence: wfeng@trentu.ca

Abstract: We study a class of nonlinear operators that can be written as the composition of a linear

operator and a nonlinear map. We obtain results on fixed point index based on parameters that are

related to the definitions of nonlinear spectra. As a particular case, existence of positive solutions for

a second-order differential equation with separated boundary conditions is proved. The result also

provides a spectral interval for the corresponding Hammerstein integral operator.
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1. Introduction

Nonlinear spectral theory has been shown to have applications in the study of exis-
tence of solutions for operator equations, particularly in integral equations [1,2]. On the
other hand, fixed point index is well known as a popular technique to prove existence
and multiplicity of positive solutions for Boundary Value Problems (BVPs). For example,
a common method in studying differential equations with various boundary conditions
is to convert the problem to an integral equation using the Green’s function, then apply
a fixed point theorem. Usually, the integral equation can be written as composition of a
bounded linear operator and a nonlinear map.

In this paper, we are interested in operators in the form LF : P → P ⊂ E, where L
is a linear operator, F is a nonlinear map, and P is an order cone of the Banach space E.
We obtain results on fixed point index of the nonlinear operator LF based on parameters
that are related to the nonlinear spectra. We also extend the continuation principle for
stably-solvable maps to the operator LF on a cone. The stably-solvable property is a key
concept in the definition of nonlinear spectra [3,4]. As a particular case, we prove existence
of positive solutions for a second-order differential equation with separated boundary
conditions [5] and thus obtain a spectral interval for the Hammerstein integral operator.

Let E, F be Banach spaces and f : E → F be a continuous nonlinear map. The Furi–
Martelli–Vignoli-spectrum (fmv-spectrum) [3,4] is defined by two parameters d( f ), ω( f )
and the stably-solvable property. Later, the Feng-spectrum [1,6] was introduced with the
parameters ω( f ), ν( f ) and m( f ). It is shown that the Feng-spectrum (σF( f )) contains all
eigenvalues of the operator f .
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We briefly review definitions of the related parameters. Let α(Ω) denote the Measure
of Noncompactness of Ω ⊂ E [1]. Then,

α( f ) = inf{k ≥ 0 : α( f (Ω)) ≤ kα(Ω) for every bounded Ω ⊂ E},

ω( f ) = sup{k ≥ 0; α( f (Ω)) ≥ kα(Ω) for every bounded Ω ⊂ E},

m( f ) = sup{k ≥ 0 : ‖ f (x)‖ ≥ k‖x‖ for all x ∈ E},

d( f ) = lim inf
‖x‖→∞

‖ f (x)‖
‖x‖ , | f | = lim sup

‖x‖→∞

‖ f (x)‖
‖x‖ ,

where | f | is called the quasinorm of f .

Definition 1. The nonlinear map f : E → F is stably-solvable if and only if given any compact
map h : E→ F with |h| = 0, the equation

f (x) = h(x)

has a solution in E.

Next, an order cone of Banach space introduces a partial order for the space so that
positive solutions can be studied.

Definition 2. Let E be a Banach space, P is a subset of E. P is called an order cone iff:

(i) P is closed, nonempty, and P 6= {0};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P⇒ ax + by ∈ P;
(iii) x ∈ P and −x ∈ P⇒ x = 0.

Let P be an order cone of the Banach space E. For r > 0, denote Pr = {u ∈ P, ‖u‖ < r},
and ∂Pr = {u ∈ P, ‖u‖ = r}.

The following two lemmas on fixed point index [7] have been applied to prove
existence of solutions for boundary value problems [8] and many other applications [7,9].

Lemma 1. Let N : P→ P be a completely continuous mapping. If

Nu 6= µu, for all u ∈ ∂Pr, and all µ ≥ 1,

then the fixed point index i(N, Pr, P) = 1.

Lemma 2. let N : P→ P be a completely continuous mapping and satisfy Nu 6= u for u ∈ ∂Pr.
If ‖Nu‖ ≥ ‖u‖, for u ∈ ∂Pr, then the fixed point index i(N, Pr, P) = 0.

2. Stably-Solvable Maps and Fixed Point Index

Let E be a Banach space and P ⊂ E be an order cone. We consider the linear homeo-
morphism L : E→ E. It is known that [4,6]

m(L) ≥ 1
‖L−1‖ , ω(L) ≥ 1

‖L−1‖ , d(L) =
1

‖L−1‖ .
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Let F : P→ P be a nonlinear map. We use the following notations,

d(F)P = lim inf
x∈P,x→∞

‖F(x)‖
‖x‖ , |F|P = lim sup

x∈P,x→∞

‖F(x)‖
‖x‖ ,

d(F)0 = lim inf
x∈P,x→0

‖F(x)‖
‖x‖ , |F|0 = lim sup

x∈P,x→0

‖F(x)‖
‖x‖ .

The stably-solvable maps on a cone P ⊂ E are defined below.

Definition 3. The nonlinear map F : P→ P is stably-solvable on the cone P if and only if given
any compact map h : P→ P with |h|P = 0, the equation

f (x) = h(x)

has a solution x ∈ P.

The following theorem is an extension of the continuation principle for stably-solvable
maps to the class of decomposable operators LF : P→ P.

Theorem 1. If F : P→ P is stably-solvable on the cone P and L : P→ P is bijective.

(1) LF is also stably-solvable on P.
(2) Assume that h : P× [0, 1]→ P is compact such that h(x, 0) = 0 for all x ∈ P. Let

S = {x ∈ P : LF(x) = h(x, t) for some t ∈ [0, 1]}.

If F(S) is bounded, then the equation

LF(x) = h(x, 1)

has a solution x ∈ P.

Proof. (1) If h : P→ P is a compact operator with |h|P = 0. Then, L−1h : P→ P is compact
and |L−1h|P ≤ ‖L‖|h|P = 0. Therefore, the equation

F(x) = L−1h(x)

has a solution x ∈ P. Thus LF(x) = h(x) has a solution. By definition, LF is stably-solvable
on P.

(2) Consider the operator L−1h : P× [0, 1]→ P. L−1h is compact and L−1h(x, 0) = 0. Let

S = {x ∈ P : F(x) = L−1h(x, t) for some t ∈ [0, 1]}.

As F is stably-solvable on P, S = {x ∈ P : LF(x) = h(x, t) for some t ∈ [0, 1]}, and
F(S) is bounded by assumption (2), the equation F(x) = L−1h(x, 1) has a solution x ∈ P.
Thus LF(x) = h(x, 1) has a solution.

Our next result is on the fixed point index of the nonlinear operator LF based on the
parameters such as |F|P and d(F)P that are related to the definition of the fmv-spectrum [4].

Theorem 2. Assume that L : E → E is a linear homeomorphism and F : P → P is a nonlinear
map such that the composition LF : P→ P is completely continuous.
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(1) If |F|P < d(L−1), then there exists R1 > 0 such that for all R > R1, i(LF, PR, P) = 1.
(2) If |F|0 < d(L−1), then there exists r1 > 0 such that for all r < r1, i(LF, Pr, P) = 1.
(3) If d(F)Pd(L) > 1, then there exists R2 > 0 such that for all R > R2, i(LF, PR, P) = 0.
(4) If d(F)0d(L) > 1, then there exists r2 > 0 such that for all r < r2, i(LF, Pr, P) = 0.

Proof. Define
O1 = {x ∈ P : LF(x) = µx, µ ≥ 1},

and
O2 = {x ∈ P : ‖F(x)‖ ≤ ‖L−1‖‖x‖}.

We prove that under condition (1), O1 is bounded. Condition (2) ensures that O1

is bounded below. Thus, there exists δ > 0 such that for u ∈ E, ‖u‖ < δ, then u /∈ O1.
Similarly, under condition (3), O2 is bounded. Condition (4) implies O2 is bounded below.

We only prove (1) and (4). (2) and (3) can be proved following the similar ideas.
Under condition (1), assume O1 is unbounded. Then, there exist xn ∈ O1 such that

‖xn‖ → ∞ as n→ ∞.

‖L‖‖F(xn)‖ ≥ ‖LF(xn)‖ = ‖µnxn‖ ≥ ‖xn‖. (1)

‖F(xn)‖
‖xn‖

≥ 1
‖L‖ . (2)

Therefore, |F|P = lim supx∈P,‖x‖→∞
‖F(x)‖
‖x‖ ≥ 1

‖L‖ . This contradicts the condition

|F|P < d(L−1) = 1
‖L‖ .

On the other hand, if condition (4) holds, assume there exists xn ∈ O2 such that
‖xn‖ → 0 as n→ ∞. We have

‖F(xn)‖
‖xn‖

≤ ‖L−1‖.

Thus,

d(F)0 = lim inf
x∈P,‖x‖→0

‖F(x)‖
‖x‖ ≤ ‖L−1‖ = 1

d(L)
.

This contradicts the assumption d(F)0d(L) > 1.
Next, if O1 is bounded, we can select R large enough such that

LFx 6= µx, for all x ∈ ∂PR, and all µ ≥ 1.

By Lemma 1, we have i(LF, PR, P) = 1.
On the other hand, if O1 is bounded below, we can select r small enough such that

LFx 6= µx, for all x ∈ ∂Pr, and all µ ≥ 1.

Again by Lemma 1, we have i(LF, Pr, P) = 1.
If O2 is bounded, we can select R large enough such that ‖F(x)‖ > ‖L−1‖‖x‖ for

x ∈ ∂PR. Then, LF(x) 6= x for all x ∈ ∂PR. Otherwise, if there exists x0 ∈ ∂PR such that
LF(x0) = x0, we would get the contradiction F(x0) = L−1(x0) and ‖F(x0)‖ = ‖L−1(x0)‖
≤ ‖L−1‖‖x0‖. Next,

‖LFx‖ ≥ 1
‖L−1‖‖F(x)‖ ≥ ‖x‖, for all x ∈ ∂PR.

By Lemma 2, we have i(LF, PR, P) = 0
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Similarly, if O2 is bounded below, we can select r small enough such that

‖LFx‖ ≥ ‖x‖, for all x ∈ ∂Pr.

By Lemma 2, we have i(LF, Pr, P) = 0
The proof is complete.

Theorem 2 can be used to prove existence of positive solutions for nonlinear operator
equations involving a parameter.

Theorem 3. Let L and F be defined as Theorem 2. Assume that

d(F)0 > ‖L−1‖ and |F|P <
1
‖L‖ .

Then, the operator equation λLF(x) = x has a positive solution x ∈ P for 1 ≤ λ < d(L−1)
|F|P

.

Proof. The condition d(F)0 > ‖L−1‖ implies d(F)0d(L) > 1 and |F|P < 1
‖L‖ ensures

d(L−1)
|F|P

> 1. For λ ≥ 1, we have d(F)0d(λL) = λd(F)0d(L) ≥ d(F)0d(L) > 1. By Theorem 2
(4), there exists r > 0 small enough such that i(λLF, Pr, P) = 0. On the other side, if λ <
d(L−1)
|F|P

, then |F|P < d(L−1)
λ = d((λL)−1). By Theorem 2 (1), there exists R > 0 large enough

such that i(λLF, PR, P) = 1. Therefore, there exists a fixed point λLF(x) = x, x ∈ ΩR \Ωr,
where ΩR = {x : x ∈ P, ‖x‖ < R}.

As the Feng-spectrum contains all eigenvalues and it is closed [6], the following result
on spectral interval follows from Theorem 3.

Corollary 1. Under the conditions of Theorem 3, the nonlinear operator LF has the spectral interval

[‖L‖|F|P, 1] ⊂ σF(LF).

3. Positive Solutions and Spectral Interval for BVPs

In this section, we study the following second-order differential equation with sepa-
rated boundary conditions:

u′′(t) + λ f (t, u(t)) = 0, t ∈ [0, 1], (3)

θu(0)− αu′(0) = 0, (4)

γu(1) + βu′(1) = 0, (5)

where θ, α, β > 0, γ ≥ 0, λ > 0, and f : [0, 1]× (0, ∞)→ R+ is continuous and non-negative.
When λ = 1, problem (3)–(5) was studied in [9] under the conditions that α > 0, β > 0
and θγ + θβ + αγ > 0. Conditions (4) and (5) are an extension of the boundary conditions
αu(0)− βu′(0) = 0, u′(1) = 0 studied in [10], and a special case of the non-local boundary
value problem involving linear functionals au(0)− bu′(0) = α[u], u′(1) = β[u] [5,11,12].
Equation (5) can also been seen as the limiting case of the basic three-point boundary
value problem [13], σu′(1) + u(η) = 0, as η → 1−. It is known that the three-point
boundary value problem can be explained as a model of a thermostat with a temperature
controller [13–15].

In the following, we prove existence of positive solutions of BVP (3)–(5) using Lemmas 1 and 2
and obtain a spectral interval for the corresponding Hammerstein integral operator that
can be written as the composition of a linear operator L and a nonlinear map F.
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Notice that existence of a solution for (3)–(5) is equivalent to the existence of a fixed
point for the following Hammerstein operator [5]:

N(λ, u)(t) = λ
∫ 1

0
G(t, s) f (s, u(s))ds, (6)

where the Green’s function

G(t, s) =


(α + θs)(γ + β− γt)

θ(γ + β) + αγ
0 ≤ s ≤ t ≤ 1,

(α + θt)(γ + β− γs)
θ(γ + β) + αγ

0 ≤ t ≤ s ≤ 1.
(7)

Let C[0, 1] denote a Banach space of continuous functions with the norm

‖u‖ = max{|u(t)| : t ∈ [0, 1]}.

We use the cone P with parameter 0 < c0 < 1:

P = {u ∈ C[0, 1] : u(t) ≥ c0‖u‖, for t ∈ [0, 1]},

c0 =



α

α + θ
, i f γ = 0,

α

α + θ
, i f γ 6= 0,

β

γ
− α

θ
≥ 1,

β

β + γ
, i f γ 6= 0,

β

γ
− α

θ
≤ −1,

αβ

(α + θ)(γ + β)
, i f γ 6= 0, −1 <

β

γ
− α

θ
< 1.

(8)

Define the operators L and F: C[0, 1]→ C[0, 1]:

(Lu)(t) =
∫ 1

0
G(t, s)u(s)ds, (Fu)(t) = f (t, u(t)), u ∈ C[0, 1]. (9)

Then, N(λ, u) = λ(LF)(u). Note that the linear operator L is not a homeomorphism
on the space C[0, 1]. However, we will show that L : P→ P and is injective on P. Following
Lemma 2.1 of [5], we know that the Green’s function G satisfies the strong positivity
condition [9]:

c0G(s, s) ≤ G(t, s) ≤ G(s, s), for 0 ≤ t, s ≤ 1. (10)

For ∀u ∈ P, (10) ensures that

c0‖N(λ, u)‖ ≤ c0

∫ 1

0
λG(s, s) f (s, u(s))ds

≤
∫ 1

0
λG(t, s) f (s, u(s))ds = N(λ, u). (11)

Therefore, N(λ, P) ⊂ P.
We first prove a property of the linear operator L that is related to the so-called u0-

positive linear operator on a cone [16], that later was generalized to u0-positive linear
operator relative to a pair of cones [9,17]. The following lemma shows that L actually
satisfies stronger conditions than the requirements of u0-positive linear operators.
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Lemma 3. Let L be defined by (9). Then L : P→ P is completely continuous and satisfies

k1u(1) ≤ Lu ≤ k2u(1), for any u ∈ P, (12)

for some k1, k2 > 0.

Proof. For ∀u ∈ P, by property (10), we have

c0‖Lu‖ ≤ c0

∫ 1

0
G(s, s)u(s)ds ≤

∫ 1

0
G(t, s)u(s)ds = Lu,

So L(P) ⊂ P. Moreover,

c0u(1) ≤ c0‖u‖ ≤ u(t) ≤ ‖u‖ ≤ u(1)
c0

, t ∈ [0, 1].

Thus (
c2

0

∫ 1

0
G(s, s)ds

)
u(1) =

∫ 1

0
c0G(s, s)c0u(1)ds

≤
∫ 1

0
G(t, s)c0‖u‖ds ≤

∫ 1

0
G(t, s)u(s)ds

and ∫ 1

0
G(t, s)u(s)ds ≤

∫ 1

0
G(t, s)‖u‖ds

≤
∫ 1

0
G(t, s)

u(1)
c0

ds ≤
(

1
c0

∫ 1

0
G(s, s)ds

)
u(1).

Let k1 = c2
0
∫ 1

0 G(s, s)ds, k2 = 1
c0

∫ 1
0 G(s, s)ds, then

k1u(1) ≤ Lu ≤ k2u(1).

Applying the Ascoli-Arzela theorem, we can prove that L is completely continuous.

Remark 1. The constants k1 and k2 (12) can be calculated using (7) and (8).

∫ 1

0
G(s, s)ds =

1
6 θγ + 1

2 θβ + 1
2 αγ + αβ

(θγ + θβ + αγ)

=
1
2
+

3αβ− θγ

3(θγ + θβ + αγ)
= 1

2 if θγ = 3αβ,
< 1

2 if θγ > 3αβ,
> 1

2 if θγ < 3αβ.

As

k1 = c2
0

∫ 1

0
G(s, s)ds, k2 =

1
c0

∫ 1

0
G(s, s)ds,

k1 > c0
2

2 if θγ < 3αβ and k2 < 1
2c0

if θγ > 3αβ. If θγ = 3αβ, then k1 = c0
2

2 and k2 = 1
2c0

.
In the special case, α = θ and γ = β, we can calculate that k1 = 13

288 and k2 = 26
9 for the boundary

conditions u(0)− u′(0) = 0, u(1) + u′(1) = 0.
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Next, property (12) ensures that

c0k1‖u‖ ≤ Lu ≤ k2‖u‖, for any u ∈ P. (13)

For u ∈ P, if L(u) = 0, then u = 0. Therefore, L is injective on P. The spectral radius
of L, r(L) > 0 [9]. We now prove existence of a positive solution for problem (3)–(5) which
implies a spectral interval for the operator LF. The proof follows similar ideas as that of [8].

Theorem 4. Assume that f (t, x) > 0 for x > 0. Denote

d( f ) = lim inf
x→∞

min
t∈[0,1]

f (t, x)
x

, | f |0 = lim sup
x→0

max
t∈[0,1]

f (t, x)
x

.

If d( f ) = ∞, 0 < | f |0 < ∞, then BVP (3) has at least one positive solution for λ ∈
(

0, 1
| f |0r(L)

)
.

Proof. Let λ < 1
| f |0r(L) . Select ε > 0 small enough such that λ(| f |0 + ε)r(L) < 1. Assume

δ > 0 such that f (t,x)
x < | f |0 + ε for x ∈ (0, 2δ). Therefore, we have N(λ, u) 6= µu for

u ∈ ∂Pδ, and µ ≥ 1. Otherwise, there exist u0 ∈ ∂Pδ and µ0 ≥ 1 such that N(λ, u0) = µ0u0.
Then

µ0u0(t) = N(λ, u0)(t) ≤ λ(| f |0 + ε)
∫ 1

0
G(t, s)u0(s)ds = λ(| f |0 + ε)Lu0(t).

Thus Lu0(t) ≥ µ0
λ(| f |0+ε)

u0(t), this implies r(L) ≥ µ0
λ(| f |0+ε)

. As λ(| f |0 + ε)r(L) < 1,
we have a contradiction. By Lemma 1, i(N, Pδ, P) = 1.

On the other hand, select M large enough such that

λMc0

∫ 1

0
G(1, s)ds > 1.

As d( f ) = ∞, there exists M1 > 0, such that f (t,x)
x > M for x > M1. We take

M1 > max{c0, 2δ} and let R = M1
c0

. For u ∈ ∂PR, we have

u(t) ≥ c0‖u‖ = M1 for t ∈ [0, 1].

Therefore,

‖N(λ, u)‖ ≥ λ
∫ 1

0
G(1, s) f (s, u(s))ds ≥ λMc0‖u‖

∫ 1

0
G(1, s)ds > ‖u‖.

By Lemma 2, i(N, PR, P) = 0. From the property of fixed point index,

i(N, PR \ P̄δ, P) = i(N, PR, P)− i(N, Pδ, P) = −1

Therefore, N has a fixed point in PR \ Pδ.

Remark 2. Theorem 4 implies that the decomposable nonlinear operator LF has a spectral interval
[| f |0r(L), ∞) ⊂ σF(LF) and the spectral radius r(LF) = ∞ [6].
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