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Abstract: In recent years, many advanced techniques have been applied to financial problems;
however, very few scholars have used the Lie theory. The purpose of this study was to examine the
options for a trade account through Lie symmetry analysis. According to our results, it is effective
for determining analytical solutions for pricing issues and solving other partial differential equations.
The proposed solution can be used by further researchers or practitioners in option pricing problems
for better performance compared with the classical Black–Scholes model.

Keywords: Lie theory; symmetry analysis; options for a trade account; Hamilton–Jacobi–Bellman equa-
tion

1. Introduction

Both researchers and practitioners have studied option pricing for over a century [1–3].
Many theoretical models have been proposed to help investors decide how to buy and sell
an asset within a specified period [1,2,4–7], such as option pricing, which is affected by
financial aspects including stock prices, interest rates and exchange rates [8]. In particular,
Black and Scholes [4] presented a general equilibrium of option pricing utilizing stochastic
differential equations. Their model assumes that a price dynamic follows a continuous
timeline, the short-term interest rate is known and constant and the stock returns are log-
normal. Merton [1] extended the Black–Scholes model to analyze rational option pricing
and Cox, Ross and Rubinstein [5] examined this process utilizing arbitrage methods in a
simple discrete timeline. Later, Hyer, Lipton-Lifschitz and Pugachevsky [6] introduced the
passport option based on the partial differential equation (PDE) method and solved it by
using the Hamilton–Jacobi–Bellman (HJB) equation. Their model was later extended by [9],
who utilized both continuous and discrete switching. In addition, Shreve and Večeř [2]
developed a model, which can be used for both discrete and continuous partial differential
equations to ascertain general analytic solutions and determine the most effective options
for a trade account (OTA).

In general, the most effective strategy regarding option pricing can be found by solving
a PDE using the Lie symmetry theory. Although it has been widely adopted in physics
and engineering, Gazizov and Ibragimov [10] were one of the first to apply it to the field
of finance and transform the Black–Scholes equation into a classical heat equation. Later,
Guillaume [11] extended this transformation into an n-dimensional equation ideal for
analyzing multi-asset options. First, Taylor and Glasgow [12] established a general Lie
symmetry analysis of a simple Asian option with arbitrary constants. Caister et al. [13]
expanded this work by determining a more systematic and analytic version of the Asian
option, which they demonstrated to be much easier than the Laplace transformation
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approach [14]. In a recent paper, Sinkala [15] applied Lie symmetry analysis to invariant
solutions of arbitrage-free stock prices. Furthermore, Jagannathan [16] applied the diffusion
process model to investigate the option pricing with three factors of the exchange rate as
stochastic volatility, domestic interest rate, and return process. In addition, Paliathanasis
et al. [17] investigated the stochastic volatility of European options. They argued that if
the volatility function and option pricing are based on the second Brownian motion, the
evolution PDEs will not be reduced to the Black–Scholes–Merton equation.

To the best of our knowledge, there is a lack of research on the Lie theory approach
with regard to pricing options for trade accounts. Similarly, Vecer, Kampen and Navratil [3]
derived the passport options for options on a traded account with symmetry analysis
under two underlying assets. Their optimal solution is effective for option pricing of
the portfolios with largest volatility, but the passport options have not been popular like
European options. In this study, the European options for a traded account are examined
with the Lie theory approach. Thus, the purpose of this study was to utilize this technique
to achieve this goal. This paper is organized as follows: Section 2 describes the symmetry
reduction method and how to group invariant solution intuitively. Section 3 presents the
best options for a trade account. Section 4 illustrates how to utilize symmetry analysis to
determine the most effective options in this context. The conclusion and recommendations
for future studies are found in Section 5.

2. Symmetry Analysis

Symmetry analysis is one of the most powerful analytical techniques for systematically
solving PDEs through transformation. According to Lie [18], differential equations can
be integrated or reduced to lower-order terms based on synthesis symmetry. Specifically,
Baumann [19] found that two independent variables x, t, and one dependent variable v can
be solved using the equation below:

∆
(

v, x, t,
∂v
∂x

,
∂v
∂t

,
∂2v
∂x2 ,

∂2v
∂t2 ,

∂2v
∂x∂t

)
= 0 (1)

which illustrates one parameter of the Lie group of transformations.

x̃ = Tx(x, t, v; ε)
t̃ = Tt(x, t, v; ε)

ṽ = Tv(x, t, v; ε)
(2)

If we assume the solution to Equation (1) is v = θ(x, t), the transformations can be
expressed as follows:

x̃ = Tx(x, t, θ(x, t); ε)
t̃ = Tt(x, t, θ(x, t); ε)
ṽ = Tv(x, t, θ(x, t); ε)

(3)

Therefore, ṽ is the solution to the transformations. This unique problem can be solved
by using the functional equation:

θ = (Tx(x, t, θ(x, t); ε), Tt(x, t, θ(x, t); ε)) = ṽ (4)

By replacing the transformations in Equation (3) with infinitesimal representations,
we obtain the following new equations:

x̃ = x + εξ1(x, t, v; ε)
t̃ = t + εξ2(x, t, v; ε)

ṽ = v + ε∅1(x, t, v; ε)
(5)
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Then, Equation (4) can be simplified with the infinitesimal representations with ε as
the group parameter shown below:

θ + ε∅1(x, t, θ; ε) = θ(x + εξ1(x, t, θ; ε), t + εξ2(x, t, θ; ε)) (6)

According to the Taylor expansion, we can subtract the left-hand side from the right-
hand side of Equation (6) to yield ε = 0 as shown:

ξ1
∂θ

∂x
+ ξ2

∂θ

∂t
−∅1 = 0 (7)

Thus, the invariant surface condition of the first-order PDE can be determined as follows:

→
v ·F(x, t, v) = ξ1

∂F
∂x

+ ξ2
∂F
∂t
−∅1

∂F
∂v

= 0 (8)

where the tangent vector
→
v is calculated in the equation as shown:

→
v = ξ1

∂

∂x
+ ξ2

∂

∂t
+∅1

∂

∂v
(9)

We can solve the invariant condition of first-order PDEs with the unit vectors ξ1, ξ2,
and ∅1 by using the following characteristics of differential equations:

dx̃
dε = ξ1

(
x̃, t̃, ṽ

)
dt̃
dε = ξ2

(
x̃, t̃, ṽ

)
dṽ
dε = ∅1

(
x̃, t̃, ṽ

) (10)

where the initial conditions are as follows:

dx̃
dε

∣∣∣∣∈=0 = x ,
dt̃
dε

∣∣∣∣∈=0 = t ,
dṽ
dε

∣∣∣∣∈=0 = v (11)

After reducing Equation (1), the PDEs can be solved analytically via the characteristic
curves. Further analysis of the characteristic differential equations can be found in [20].

3. Options for a Trade Account

This allows the holder to switch among their trade portfolios, such as stocks [2,3],
when the equity accumulation is equal to profit/loss values during the entire trading
period. In the early studies of options for trade accounts, Shreve and Večeř [2] explored
vacation call and put options with regard to the boundaries of the strategy holder. They
argued that these elements provide more possibilities than traditional call and put in the
American stock market. In this study, we employed the risk-neutral measure of stock price
St in the stochastic differential equation below:

dSt

St
= rdt + σdWt (12)

where r, σ, and Wt are the interest rate, the volatility of the stock and a one-dimensional
standard Brownian motion. According to [2], the option holder strategy can be expressed
in the following equation:

dXq
t = qtdSt + µ

(
Xq

t − qtSt

)
dt (13)

The option holder’s trading strategy with the number of shares held at time t is qt,
while he or she might hold either αt or βt shares at any given time for qt ∈ [αt, βt] and
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αt ≤ βt. The goal of the option holder, to a maximum of the expected value of all possible
strategies qu, can be achieved using the equation shown below:

V[α,β](t, St, Xt) = max
qu∈[α,β]

e−r(T−t)E[
(

Xq
T)

+
∣∣∣Ft,

]
for t ∈ [0, T] (14)

where Xq
T is the payoff to the holder at time T. The objective function V[α,β](t, St, Xt) can

be displayed in the Hamilton–Jacobi–Bellman (HJB) equation to determine the boundary
condition V(T, s, x) = x+ as:

Vt + rsVs − rV + max
q∈[α,β]

[
(µx + q(r− µ))Vx +

1
2

σ2s2
(

Vss + 2qVsx + q2Vxx

)]
= 0 (15)

By changing the variable Zq
t =

Xq
t

St
, we can reduce the dimensionality of Equation (13)

and correspondingly reduce the HJB equation with the boundary condition u(T, z) = z+

as follows:
ut + max

q∈[α,β]
[(r− µ)(q− z)uz +

1
2

σ2
(

q− z)2uzz

]
= 0 (16)

The relationship between V and u is shown as:

V(t, s, x) = s·u
(

t,
x
s

)
(17)

The option holder can prioritize in the case of European options when αt = βt. If
both shares are equal to 1, the problem is reduced to the European call. However, it can be
reduced to the European put when αt = βt = −1. In the passport option, when αt = 0 and
βt = 1, the problem can be expressed as a vacation call and a put if αt = −1 and βt = 0.

4. Utilizing Symmetry Analysis for the Pricing Problem

In this section, we apply symmetry analysis to determine the optimal strategy with
regard to the pricing problem. We utilize the HJB Equation (16) to obtain the European
option equation shown below:

ut + (r− µ)(q− z)uz +
1
2

σ2(q− z)2uzz = 0 (18)

Following the prolongation formula discussed by Olver [21], we can obtain the char-
acteristic differentials associated with Equation (18), which is written as follows:

4ξ1 − (q− z)(−4(ξ1)z + 2(ξ2)t + (q− z)(2(r− µ)(ξ2)z

+(q− z)σ2(ξ2)zz)) = 0
(19)

(q− z)(−2(r− µ)(ξ1)z + 2(r− µ)(ξ2)t + (q− z)(2(r− µ)2(ξ2)z)

− σ2((ξ1)zz − (q− z)(r− µ)(ξ2)zz)− 2(∅1)zu)))

−2((r− µ)ξ1 + (ξ1)t) = 0

(20)

2(∅1)t + (q− z)(2(r− µ)(∅1)z + (q− z)2σ2(∅1)zz) = 0 (21)

2(ξ1)u − (q− z)2σ2(ξ2)zu = 0 (22)

2(ξ1)zu − 2(r− µ)(q− z)(ξ2)zu − (∅1)uu = 0 (23)

(ξ1)uu − (r− µ)(q− z)(ξ2)uu = 0 (24)

(ξ2)z = (ξ2)uu = (ξ2)u = 0 (25)
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The solutions are illustrated in the equations below:

ξ1 = 1
4 ((q− z)

(
−4a4 + 2a2t(r− µ) + (a2 − 4a5)tσ2)
+2(z− q)

(
a2 +

16a3tσ2

(2r−2µ+ σ2)
2 ln(z− q)

)
(26)

ξ2 = a1 + t

(
a2 +

8a3tσ2

(2r− 2µ + σ2)2

)
(27)

∅1

= u(a6 + a3t2 + a5 ln(z− q) + 4a3(ln(z−q))2

(2r−2µ+ σ2)
2

+t
−8a3σ2+(2r−2µ+ σ2)(a5(2r−2µ+ σ2)2+8a3 ln(z−q))

2(2r−2µ+ σ2)
2 )

(28)

where ai for i from 1–6 become the arbitrary constants. They also provide the infinite-
dimensional vector space for the infinitesimal symmetries of Equation (18), including the
following operators:

V1 = ∂t (29)

V2 = t∂t + k2∂z + k3z∂z + k4 ln(z− q)∂z + k5 ln(z− q)z∂z (30)

V3 =
1
k1

(
k6t2∂t + k7u∂u + k8 ln(z− q)∂z + k9 ln(z− q)z∂z

)
(31)

V4 = k10∂z (32)

V5 = k11u∂u + k12∂z + k13z∂z (33)

V6 = u∂u (34)

where ki for i from 1–6 are defined by r, µ, σ, q, t. Also, the symmetry algebra is calculated
using Equations (29)–(34) to establish an invariant solution for Equation (18). If v = F(η, t),
in this scenario, we have:

v = ∅1(x, t, v; ε)|ε→0 (35)

By assuming the value of a1–a6 and c1 and c2 (a2 = a3 = a5 = 0, a1 = c1, a4 = c2
and a6 = 1), Equations (26)–(28) can be determined.

ξ1 = c2(q− z), ξ2 = c1, ∅1 = u (36)

After finding the relationship between variables z and t, the invariant under the
symmetry group of Equations (29)–(34) can be calculated using the following equation:

inv =
c2t

c1 ln(q− z)
for c1, c2 6= 0 (37)

Because of ζ = t − c1
c2

ln(q− z) and the group invariant solution of the PDE (18),
we have:

σ2 − c2
(
2(r− µ) + σ2))F(ζ) + (2c2(c2 + c1(r− µ)) + (2c2(c2+
c1(r− u))+ c1(c2 − 2)σ2)F′(ζ) + c2

1σ2F′′(ζ) = 0
(38)

where
F(ζ) = (q− z)−

1
c2 u(z, t) (39)

The F(ζ) is the function with the arbitrary constants w1 and w2:

F(ζ) = w1eg1ζ + w2eg2ζ (40)

where
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g1 =
−2c2(c2 + c1(r− µ)) + c1(c2 − 2)σ2

2c2
1σ2

+

√
c2

2(4
(
c2 + c1(r− µ))2 + 4c1

(
c2 − 2 + c1(r− µ)σ2 + c2

1σ4
))

2c2
1σ2

(41)

g2

= −2c2(c2+c1(r−µ))+ c1(c2−2)σ2

2c2
1σ2

−

√
c2

2

(
4(c2+c1(r−µ))2+4c1(c2−2+c1(r−µ)σ2+ c2

1σ4)
)

2c2
1σ2

(42)

The invariant solution is shown in the following equation:

u(z, t) = w1(q− z)
1−c1g1

c2 eg1t + w2(q− z)
1−c1g2

c2 eg2t (43)

The relationship between V and u can be determined by utilizing Equation (17),

V(s, x, t) = w1s
c1g1+c2−1

c2 (qs− x)
1−c1g1

c2 eg1t + w2s
c1g2+c2−1

c2 (qs− x)
1−c1g2

c2 eg2t (44)

5. Numerical Example

In this section, the numerical example below is used to quantify the observed changes
in option pricing due to the effect of time t and underlying asset s. Figure 1 illustrates the
plotting of option pricing v(s, x, t) under time t and the underlying asset s. The following
equation can be used to obtain the value of the claim parameter:

1− c1g1

c2
=

1− c1g2

c2
= 2 (45)

where r = 0.01, µ = 0.005, σ = 0.3, T = 1, x = 60, q = 1, w1 = 1, w2 = 0.005, and the
values of c1 and c2 are determined.
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Figure 1. The value of v(s, x, t) under s and t (a) and under s and x when t = 1 (b).

According to Figure 1a, if the underlying asset is at 60, the option pricing is convex
at the lowest point. The value of option pricing is linearly decreased when the time is
increased from 0 to 1. Also, the two highest points of option pricing are approximately over
400 if the time and underlying asset are near 0. Figure 1b shows that the optimal solution
seems to slightly decrease when we increase the value of x and s. Comparing the two plots
in Figure 1, we can easily recognize that the sensitivity of strike price x is larger than time t
with the underlying assets, especially when s is below 60.
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In Figure 2, the dataset of the Apple stock price from 3 January 2020 to 31 March 2020
is used for comparing the performance of the proposed model with the Black–Scholes
model with log returns. The proposed model line (orange color) more closely resembles the
actual dataset (gray color) than the classical Black–Scholes model (blue color). Especially,
when the stock price was hardly fluctuating during March 2020, the proposed model was
decreasing to near zero points rather than still keeping the stable line from the Black–
Scholes model, which indicates that our proposed model outperforms the Black–Scholes
model of option pricing problem. Also, the sensitivity of the option price is conducted
for testing the effect of stock price when t = 0 and t = 1 with underlying assets in Figure 3.
Moreover, the sensitivity of the option of theta is shown in Figure 4. The difference of
option sensitivity between two underlying assets s = 30 (red line) and s = 100 for (blue line)
is linearly increasing t in the range of 0–100.
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Figure 4. The option sensitivities of the proposed model to time t for s = 30 (red line) and s = 100 for
(blue line) under derivation of theta.

6. Conclusions

In this study, we utilized Lie symmetry analysis to determine pricing options for a
trade account problem. Although the Lie theory requires a massive number of algebraic
calculations, we have demonstrated that symmetry analysis is a powerful technique for
analyzing systemic problems in the field of finance. The proposed model also shows that it
outperforms the classical Black–Scholes model in the actual dataset. In the future, other
techniques can be studied to find the solution of options for a trade account such as Monte
Carlo simulation [22] or the jump-diffusion model [23,24]. The probabilistic approach is
another effective way to find the optimal solution to the option pricing problem [25]. The
real option of R&D expenditure did not garner enough attention by researchers, but the
impact of R&D financial information has significant influence on the optimal solution of
financial markets [26,27]. To evaluate the pricing through perceived value [28] of current
stock price rather than to consider cost-related price traditionally only can reduce the
gap of cost–value. Besides, sustainability, corporate governance and Corporate Social
Responsibility (CSR) are among the emerging research topics, not only in marketing and
industrial management, but also in finance, such as real options [29–31]. For sustainable
finance, real CSR options and corporate governance factors should be considered for
options for a trade account in further studies. Also, the sentiment factor cannot be ignored
in the performance of the financial research [32].
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