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Abstract: We consider a generalization of Awad–Shannon entropy, namely Awad–Varma entropy,
introduce a stochastic order on Awad–Varma residual entropy and study some properties of this
order, like closure, reversed closure and preservation in some stochastic models (the proportional
hazard rate model, the proportional reversed hazard rate model, the proportional odds model and
the record values model).
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1. Introduction

The concept of entropy has its roots in Communication Theory and was introduced
by Shannon. More exactly, a data communication system, in this theory, consists of three
elements: a receiver, a communication channel and a source of data. Shannon considered
the following problem: based on the signal received through the channel, the receiver
should be able to understand what data was generated by the source. Shannon taked
into account many methods to compress, encode and transmit messages from a data
source and showed that the entropy is an absolute mathematical limit on how well data
from the source can be losslessly compressed onto a perfectly noiseless channel. He
generalized and strengthened this result considerably for noisy channels in his noisy
channel coding theorem.

Another domain in which the entropy is very useful is Information Theory. Here the
concept is directly analogous to the entropy in Statistical Thermodynamics.

Entropy has also relevance in other areas of Mathematics such as Combinatorics.
The definition can be derived from a set of axioms which establish that entropy should be a
measure of how surprising the average outcome of a variable is. For a continuous random
variable, differential entropy is analogous to entropy.

The notion of Shannon entropy has multiple generalizations (Tsallis entropy, Rényi en-
tropy, Varma entropy, Kaniadakis entropy, cumulative entropy, relative entropy, weighted
entropy etc.), which are useful in many technological areas like Physics, Communication
Theory, Probability, Statistics, Economics etc. More exactly, there are specific areas where
the entropies are used: optimal reactive power dispatch (see [1]), reinforcement learning
(see [2]), income distribution (see [3,4]), non-coding human DNA (see [5]), earthquakes
(see [6]), stock exchanges (see [7]), Markov chains (see [8–10]), biostatistics (see [11,12]),
model selection (see [13,14]), statistical mechanics (see [15,16]), internet (see [17]). These
concepts can be also linked with bayesian control (see [18]).
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The idea of Tsallis was to consider another formula instead of classical logarithm
used in Shannon entropy. Moreover, using Tsallis entropy, many physically meaningful
generalizations have been introduced. From these generalizations we mention the fol-
lowing: superstatistics, introduced by Beck and Cohen (see [19]) and spectral statistics,
introduced by Tsekouras and Tsallis (see [20]). At the basis of these both entropic forms are
Tsallis and Boltzmann–Gibbs statistics. It has been showed that spectral statistics generalize
superstatistics and it has been conjectured that cover some additional cases.

Awad (see [21]) generalized Shannon entropy obtaining Awad–Shannon entropy. Us-
ing his ideas some of the overmentioned entropies can be generalized. We apply this
method for Varma entropy, defining Awad–Varma entropy and study some properties con-
cerning ordering of this entropy. Awad–Shannon entropy is intensively studied, especially
because of its applications in microchannels (see [22–26]). At the same time, Varma entropy,
introduced in [27], is now very actual (see [28–31]).

Awad–Shannon entropy has some advantages over other entropies. For example,
working with other entropies, we can have completely different systems with the same
entropy, the entropy is not necessarily nonnegative, the entropy of a continuous random
variable is not a natural extension of the entropy of a discrete random variable, despite
they have analogous form etc. None of these situations occur in the case of Awad–Shannon
entropy. For other properties of Awad–Shannon entropy see [21].

Speaking about the divergence measure derived from this new entropy we can say
that it coincides with the Kullback-Leibler divergence measure derived from the Shan-
non entropy.

In this paper we work with a generalization of Awad–Shannon entropy, namely Awad–
Varma entropy (the difference is that we work with Varma entropy instead of Shannon
entropy). We define a stochastic order on this entropy (more precisely on Awad–Varma
residual entropy) and study closure and reversed closure properties of this order. Moreover,
we show that this order is preserved in some stochastic models as the proportional hazard
rate model, the proportional reversed hazard rate model, the proportional odds model and
the record values model.

The rest of the paper is organized as follows. In Section 2, we present the main
notions and notations used throughout the paper. In Section 3, we prove the main results
concerning the stochastic order introduced on Awad–Varma residual entropy. We lay
stress upon the fact that Theorem 1 is crucial for the whole paper. In Section 4, we prove
the closure and reversed closure properties for the aforementioned order under some
reliability transforms, mainly including linear transformations and parallel and series
operations. In Section 5, we deal with applications of the preceding results in some
stochastic models, namely the preservation of this order in the proportional hazard rate
model, the proportional reversed hazard rate model, the proportional odds model and the
record values model. Finally, we give a concrete example and draw conclusions.

2. Preliminaries

Let X be a nonnegative random variable with absolutely continuous cumulative

distribution function FX , survival function FX
de f
= 1− FX and probability density function

fX (X represents a living thing or the lifetime of a device). We define Shannon entropy of
X by

HX = −EZ(log fX(Z)), (1)

where “log” is the natural logarithm function and Z is a nonnegative random variable
identically distributed like X.
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In [21] (see also [32]) was introduced the so-called Awad–Shannon entropy. Let

δX
de f
= sup

x
fX(x). We assume in the whole paper that this supremum is in (0, ∞) for any

density function fX . Awad–Shannon entropy is given by

HA
X = −EZ

(
log
(

fX(Z)
δX

))
. (2)

One of the generalizations of Shannon entropy is Varma entropy, introduced in [27].
In this paper we consider Awad–Varma entropy. Let α, β ∈ R such that β ≥ 1 and

β− 1 < α < β. Awad–Varma entropy is given by

HX
α,β =

1
β− α

log

(
EZ

((
fX(Z)

δX

)α+β−2
))

. (3)

In [33,34], the notion of Shannon residual entropy was introduced as a dynamic
measure of uncertainty. More precisely, for an absolutely continuous nonnegative random
variable X, the residual life of X is Xt = [X − t | X > t] and the residual entropy of X at
time t is

HX(t) = HXt = −EZ

(
log
(

fX(Z)
FX(t)

)∣∣∣∣[Z > t]
)

f oranyt ≥ 0. (4)

Practically, the residual entropy of X measures the uncertainty of the residual life of
Xt. The reader can find some interesting results concerning the residual entropy in [35–42]
and in many other papers.

We can define Awad–Varma residual entropy by

HX
α,β(t) =

1
β− α

log

(
EZ

((
fX(Z)

δX FX(t)

)α+β−2∣∣∣∣[Z > t]

))
f oranyt ≥ 0. (5)

Clearly HX
α,β(0) = HX

α,β.
We recall the definition of the quantile function

QX(u)
de f
= F−1

X (u) = inf{x ∈ [0, ∞)|FX(x) ≥ u} f oranyu ∈ [0, 1]. (6)

Many times the quantile function F−1
X is called the right-continuous inverse function

of FX (or, in short, of X).
Differentiating with respect to u both sides of the equality FX(QX(u)) = u, we

have F′X(QX(u))Q′X(u) = 1. We denote qX(u) = Q′X(u) for any u ∈ [0, 1] and we get
qX(u) fX(QX(u)) = 1 for any u ∈ [0, 1].

A quantile version of Shannon residual entropy was introduced in [40] and this
idea was generalized for Rényi residual entropy in [41,42]. We continue this work for
Awad–Varma residual entropy, dealing with HX

α,β(QX(u)) for any u ∈ [0, 1].
In the whole paper U is a random variable uniformly distributed on [0, 1].
We have

HX
α,β(QX(u)) =

1
β− α

log

(
EZ

((
fX(Z)

δX(1− u)

)α+β−2∣∣∣∣[Z > QX(u)]

))
=

1
β− α

log

EU


 1

qX(U)

δX(1− u)

α+β−2∣∣∣∣[u < U < 1]


 =

1
β− α

log

(
EU

(
(qX(U))2−(α+β)

(δX(1− u))α+β−2

∣∣∣∣[u < U < 1]

))
=

1
β− α

log

(
EU

((
fX(QX(U))

δX(1− u)

)α+β−2∣∣∣∣[u < U < 1]

))
.

(7)
The following lemma is very useful in this paper.

Lemma 1 (see [41]). Let h : [0, 1]× [0, ∞)→ R be a function with the property that

EU

(
h(u, U)

∣∣∣∣[u < U < 1]
)
≥ 0 f oranyu ∈ [0, 1] (8)
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and g : [0, ∞)→ [0, ∞) an increasing function. Then

EU

(
h(u, U)g(U)

∣∣∣∣[u < U < 1]
)
≥ 0, (9)

provided the conditional expectations exist.

Throughout the paper, if X and Y are absolutely continuous nonnegative random vari-
ables, we denote the distribution functions by FX , respectively, FY, the survival functions
by FX , respectively, FY and the density functions by fX , respectively, fY.

3. Main Results

Definition 1. We say that X is smaller than Y in the Awad–Varma quantile entropy order (and
denote X ≤A−VQE Y) if and only if HX

α,β(QX(u)) ≤ HY
α,β(QY(u)) for any u ∈ [0, 1].

Theorem 1. (i) The following assertions are equivalent:
1. X ≤A−VQE Y.

2. EZ

( fX(Z))α+β−2

( fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δX
δY

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0

for any t ≥ 0.
(ii) The following assertions are equivalent:
1. Y ≤A−VQE X.

2. EZ

( fX(Z))α+β−2

( fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δX
δY

)2−(α+β)
∣∣∣∣[Z > t]

 ≤ 0

for any t ≥ 0.

Proof. It is sufficient to prove (i), the proof of (ii) being analogous.
We have X ≤A−VQE Y if and only if(

1
δX

)α+β−2
EU

(
( fX(QX(U)))α+β−2

∣∣∣∣[u < U < 1]
)
≤
(

1
δY

)α+β−2
EU

(
( fY(QY(U)))α+β−2

∣∣∣∣[u < U < 1]
)

f oranyu ∈ [0, 1](seeDe f inition1).

(10)
Considering U = FX(Z) in the preceding inequality we have the equivalences (for

any u ∈ [0, 1]):

X ≤A−VQE Y ⇔
(

1
δX

)α+β−2
EZ

(
( fX(Z))α+β−2

∣∣∣∣[Z > F−1
X (u)]

)
≤
(

1
δY

)α+β−2
EZ

(
( fY(QY(FX(Z))))α+β−2

∣∣∣∣[Z > F−1
X (u)]

)
⇔
(

δY
δX

)α+β−2
EZ

(
( fX(Z))α+β−2

∣∣∣∣[Z > F−1
X (u)]

)
≤ EZ

((
fY(F−1

Y (FX(Z)))
)α+β−2

∣∣∣∣[Z > F−1
X (u)]

)
⇔ EZ

( fX(Z))α+β−2

( fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δX
δY

)2−(α+β)
∣∣∣∣[Z > F−1

X (u)]

 ≥ 0.

(11)
Putting F−1

X (u) = t in these equivalences we get the conclusion.

Definition 2 (see [43]). We say that:
1. X is smaller than Y in the dispersive order (and write X ≤disp Y) if

F−1
X (δ)− F−1

X (γ) ≤ F−1
Y (δ)− F−1

Y (γ) f orany0 < γ < δ < 1, (12)

which is equivalent to
fX(x) ≥ fY(F−1

Y (FX(x))) f oranyx ≥ 0. (13)

2. X is smaller than Y in the convex transform order (and write X ≤c Y) if the function

[0, ∞) 3 x −→ F−1
Y (FX(x))isconvex, (14)
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which is equivalent to the fact that the function

[0, ∞) 3 x −→ fX(x)
fY(F−1

Y (FX(x)))
isnonnegativeincreasing. (15)

Theorem 2. We suppose that X ≤disp Y and δX ≤ δY.
(i) If α + β ≤ 2, then X ≤A−VQE Y.
(ii) If α + β ≥ 2, then Y ≤A−VQE X.

Proof. It is sufficient to prove (i), the proof of (ii) being analogous.
If X ≤disp Y, then fX(x) ≥ fY(F−1

Y (FX(x))) for any x ≥ 0. We use the inequality
δX ≤ δY and the conclusion follows by Theorem 1.

Theorem 3. We suppose that X ≤c Y and δX fY(0) ≤ δY fX(0).
(i) If α + β ≤ 2, then X ≤A−VQE Y.
(ii) If α + β ≥ 2, then Y ≤A−VQE X.

Proof. It is sufficient to prove (i), the proof of (ii) being analogous.

If X ≤c Y, then the function [0, ∞) 3 x −→ fX(x)
fY(F−1

Y (FX(x)))
is nonnegative increas-

ing, hence
fX(x)

fY(F−1
Y (FX(x)))

≥ fX(0)
fY(0)

. (16)

The conclusion follows from Theorem 1, using the inequality δX fY(0) ≤ δY fX(0).

4. Closure Properties

In the sequel, we study the closure and reversed closure properties of the Awad–
Varma quantile entropy order under some reliability transforms, mainly including linear
transformations and parallel and series operations.

We take X1, ..., Xn and Y1, ..., Yn independent and identically distributed (i.i.d.) copies
of X, respectively, of Y and

X1:n = min{X1, ..., Xn}, Xn:n = max{X1, ..., Xn}, (17)

Y1:n = min{Y1, ..., Yn}, Yn:n = max{Y1, ..., Yn}. (18)

The same notations as above are used for distribution functions, survival functions
and density functions, i.e., FX1:n , FX1:n , fX1:n etc.

Theorem 4. We suppose that X ≤A−VQE Y and (δXn:n δY)
2−(α+β) ≤ (δXδYn:n)

2−(α+β). Then
Xn:n ≤A−VQE Yn:n.

Proof. If X ≤A−VQE Y, according to Theorem 1, we have

EZ

( fX(Z))α+β−2

( fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δX
δY

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 (19)

for any t ≥ 0.
One can see that fXn:n(x) = n(FX(x))n−1 fX(x).
Hence

fXn:n(x)
fYn:n(F−1

Yn:n
(FXn:n(x)))

=
fX(x)

fY(F−1
Y (FX(x)))

. (20)
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Because the function

[0, ∞) 3 x −→
(

n(FX(x))n−1
)α+β−1

isnonnegativeincreasing, (21)

it follows, by inequality (δXn:n δY)
2−(α+β) ≤ (δXδYn:n)

2−(α+β), inequality (19) and
Lemma 1, that

EZ

( fXn:n(Z))α+β−2

( fXn:n(Z)
fYn:n(F−1

Yn:n
(FXn:n(Z)))

)2−(α+β)

−
(

δXn:n

δYn:n

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 f oranyt ≥ 0.

(22)
We use Theorem 1 and conclude that Xn:n ≤A−VQE Yn:n.

In a similar manner like in Theorem 4 we get

Theorem 5. We suppose that X1:n ≤A−VQE Y1:n and
(
δXδY1:n

)2−(α+β) ≤
(
δX1:n δY

)2−(α+β).
Then X ≤A−VQE Y.

We take X1, X2, ... and Y1, Y2, ... sequences of independent and identically distributed
copies of X, respectively, of Y. Let N be a positive integer random variable having the prob-
ability mass function pN(n) = P(N = n), n = 1, 2, ... . We assume that N is independent of
X′i s and Y′i s. We take

X1:N = min{X1, ..., XN}, XN:N = max{X1, ..., XN} (23)

and
Y1:N = min{Y1, ..., YN}, YN:N = max{Y1, ..., YN}. (24)

The following two theorems are extensions of Theorems 4 and 5 from a finite number
n to a random variable N. We will prove only Theorem 7.

Theorem 6. We suppose that X ≤A−VQE Y and
(
δXN:N δY

)2−(α+β) ≤
(
δXδYN:N

)2−(α+β). Then
XN:N ≤A−VQE YN:N .

Theorem 7. We suppose that X1:N ≤A−VQE Y1:N and
(
δXδY1:N

)2−(α+β) ≤
(
δX1:N δY

)2−(α+β).
Then X ≤A−VQE Y.

Proof. If X1:N ≤A−VQE Y1:N , then

EZ

((
fX1:N (Z)

)α+β−2
[(

fX1:N (Z)

fY1:N (F−1
Y1:N

(FX1:N (Z)))

)2−(α+β)

−

(
δX1:N

δY1:N

)2−(α+β)]∣∣∣∣[Z > t]
)
≥ 0

(25)

for any t ≥ 0.
We can see that

fX1:N (x) = fX(x) ·
[

∞

∑
n=1

n
(

FX(x)
)n−1 pN(n)

]
(26)

and

fY1:N (x) = fY(x) ·
[

∞

∑
n=1

n
(

FY(x)
)n−1 pN(n)

]
, (27)

where pN(n) = P(N = n), n = 1, 2, ... is the probability mass function of N.
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It was proved in [43] that

F−1
Y1:N

(
FX1:N (x)

)
= F−1

Y (FX(x)). (28)

Hence
fX1:N (x)

fY1:N (F−1
Y1:N

(FX1:N (x)))
=

fX(x)
fY(F−1

Y (FX(x)))
. (29)

Because the function

[0, ∞) 3 x −→
(

∞

∑
n=1

n(FX(x))n−1 pN(n)

)1−(α+β)

isnonnegativeincreasing, (30)

it follows, by inequality
(
δXδY1:N

)2−(α+β) ≤
(
δX1:N δY

)2−(α+β), inequality (25) and
Lemma 1, that

EZ

( fX(Z))α+β−2

( fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δX
δY

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 f oranyt ≥ 0.

(31)
We use Theorem 1 and conclude that X ≤A−VQE Y.

5. Applications to Some Stochastic Models

For the remainder of the paper we present the preservation of the Awad–Varma
quantile entropy order in the proportional hazard rate model, the proportional reversed
hazard rate model, the proportional odds model and the record values model.

5.1. Proportional Hazard Rate Model and Proportional Reversed Hazard Rate Model

We work with the following proportional hazard rate model (see [43]). Let θ > 0.
We take X(θ) and Y(θ) two absolutely continuous nonnegative random variables with
survival functions (FX)

θ , respectively, (FY)
θ .

Theorem 8. 1. If θ ≥ 1, X ≤A−VQE Y and
(

δX(θ)δY

)2−(α+β)
≤
(

δXδY(θ)

)2−(α+β)
, then

X(θ) ≤A−VQE Y(θ).

2. If 0 < θ ≤ 1, X(θ) ≤A−VQE Y(θ) and
(

δXδY(θ)

)2−(α+β)
≤
(

δX(θ)δY

)2−(α+β)
, then

X ≤A−VQE Y.

Proof. We use the same notations as above, namely, for X(θ) and Y(θ), we denote the
distribution functions by FX(θ), respectively, FY(θ), the right continuous inverse functions
by F−1

X(θ)
, respectively, F−1

Y(θ) and the density functions by fX(θ), respectively, fY(θ).
For any x ≥ 0 we have

fX(θ)(x) = θ
(

FX(x)
)θ−1 fX(x), (32)

F−1
Y(θ)

(
FX(θ)(x)

)
= F−1

Y (FX(x)), (33)

fY(θ)

(
F−1

Y(θ)

(
FX(θ)(x)

))
= θ

(
FX(x)

)θ−1 fY

(
F−1

Y (FX(x))
)

. (34)

Hence
fX(θ)(x)

fY(θ)

(
F−1

Y(θ)

(
FX(θ)(x)

)) =
fX(x)

fY

(
F−1

Y (FX(x))
) . (35)
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Then, we have

EZ

((
fX(θ)(Z)

)α+β−2
[ fX(θ)(Z)

fY(θ)(F−1
Y(θ)(FX(θ)(Z)))

2−(α+β)

−
(

δX(θ)

δY(θ)

)2−(α+β)]∣∣∣∣[Z > t]
)
= EZ

((
θ
(

FX(Z)
)θ−1

)α+β−1
( fX(Z))α+β−2

[(
fX(Z)

fY(F−1
Y (FX(Z)))

)2−(α+β)

−
(

δX(θ)

δY(θ)

)2−(α+β)]∣∣∣∣[Z > t]
)

f oranyt ≥ 0.

(36)
By Theorem 1 we have X(θ) ≤A−VQE Y(θ) if and only if

EZ

((
fX(θ)(Z)

)α+β−2
[ fX(θ)(Z)

fY(θ)(F−1
Y(θ)(FX(θ)(Z)))

2−(α+β)

−
(

δX(θ)

δY(θ)

)2−(α+β)]∣∣∣∣[Z > t]
)
≥ 0

(37)
for any t ≥ 0 and X ≤A−VQE Y if and only if

EZ

( fX(Z))α+β−2

( fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δX
δY

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 f oranyt ≥ 0.

(38)
1. We suppose that 0 < θ ≤ 1 and X ≤A−VQE Y. Hence the function

[0, ∞) 3 x −→
(

θ
(

FX(x)
)θ−1

)α+β−1
isnonnegativeincreasing (39)

and

EZ

( fX(Z))α+β−2

( fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δX
δY

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 (40)

for any t ≥ 0.

Using the inequality
(

δX(θ)δY

)2−(α+β)
≤
(

δXδY(θ)

)2−(α+β)
, inequality (40) and Lemma 1,

we conclude that X(θ) ≤A−VQE Y(θ).
2. We suppose that θ ≥ 1 and X(θ) ≤A−VQE Y(θ). Hence the function

[0, ∞) 3 x −→
(

θ
(

FX(x)
)θ−1

)1−(α+β)
isnonnegativeincreasing (41)

and

EZ

((
fX(θ)(Z)

)α+β−2
[ fX(θ)(Z)

fY(θ)(F−1
Y(θ)(FX(θ)(Z)))

2−(α+β)

−

(
δX(θ)

δY(θ)

)2−(α+β)]∣∣∣∣[Z > t]
)
≥ 0

(42)

for any t ≥ 0.

Using the inequality
(

δXδY(θ)

)2−(α+β)
≤
(

δX(θ)δY

)2−(α+β)
, inequality (42) and

Lemma 1, we obtain the conclusion.

We consider the following proportional reversed hazard rate model (see [43]). For any
θ > 0 let X(θ) and Y(θ) be two absolutely continuous nonnegative random variables with
distribution functions (FX)

θ and (FY)
θ .

Theorem 9. 1. If θ ≥ 1, X ≤A−VQE Y and
(

δX(θ)δY

)2−(α+β)
≤
(

δXδY(θ)

)2−(α+β)
, then

X(θ) ≤A−VQE Y(θ).
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2. If 0 < θ ≤ 1, X(θ) ≤A−VQE Y(θ) and
(

δXδY(θ)

)2−(α+β)
≤
(

δX(θ)δY

)2−(α+β)
, then

X ≤A−VQE Y.

Proof. The proof is analogous with the proof of Theorem 8.

5.2. Proportional Odds Model

We deal with the following proportional odds model (see [44]). Let θ > 0 and X and Y
be two absolutely continuous nonnegative random variables having the survival functions
FX , respectively, FY and the density functions fX , respectively, fY. The proportional odds
random variables Xp and Yp are defined by the survival functions

FXp(x) =
θFX(x)

1− (1− θ)FX(x)
, (43)

respectively,

FYp(x) =
θFY(x)

1− (1− θ)FY(x)
. (44)

Theorem 10. 1. If θ ≥ 1, X ≤A−VQE Y and
(

δXp δY

)2−(α+β)
≤
(

δXδYp

)2−(α+β)
, then

Xp ≤A−VQE Yp.

2. If 0 < θ ≤ 1, Xp ≤A−VQE Yp and
(

δXδYp

)2−(α+β)
≤
(

δXp δY

)2−(α+β)
, then X ≤A−VQE

Y.

Proof. For any θ > 0, let h : [0, 1]→ R, h(u) =
θu

1− (1− θ)u
.

We have:
1. If θ ≥ 1, then h is an increasing concave function on [0, 1].
2. If 0 < θ ≤ 1, then h is an increasing convex function on [0, 1].
We can see that

FXp(x) = h
(

FX(x)
)

(45)

and
FYp(x) = h

(
FY(x)

)
. (46)

Hence
fXp(x) = h′

(
FX(x)

)
fX(x) (47)

and
fYp(x) = h′

(
FY(x)

)
fY(x) (48)

for any x ≥ 0.
One can prove that F−1

Yp

(
FXp(x)

)
= F−1

Y (FX(x)).
We obtain that

fXp(x)

fYp

(
F−1

Yp

(
FXp(x)

)) =
fX(x)

fY

(
F−1

Y (FX(x))
) . (49)

Hence

EZ

( fXp(Z)
)α+β−2


 fXp(Z)

fYp(F−1
Yp

(FXp(Z)))

2−(α+β)

−
(

δXp

δYp

)2−(α+β)
∣∣∣∣[Z > t]

 = EZ

((
h′
(

FX(Z)
))α+β−1

( fX(Z))α+β−2
[(

fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δXp

δYp

)2−(α+β)]∣∣∣∣[Z > t]
)

f oranyt ≥ 0.

(50)
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We have (see Theorem 1): X ≤A−VQE Y if and only if

EZ

( fX(Z))α+β−2

( fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δX
δY

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 f oranyt ≥ 0

(51)
and Xp ≤A−VQE Yp if and only if

EZ

( fXp(Z)
)α+β−2


 fXp(Z)

fYp(F−1
Yp

(FXp(Z)))

2−(α+β)

−
(

δXp

δYp

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 f oranyt ≥ 0.

(52)
1. If X ≤A−VQE Y and θ ≥ 1, then

EZ

( fX(Z))α+β−2

( fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δX
δY

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 (53)

for any t ≥ 0 and the function

[0, ∞) 3 x −→
(
h′
(

FX(x)
))α+β−1isnonnegativeincreasing, (54)

hence, by inequality
(

δXp δY

)2−(α+β)
≤
(

δXδYp

)2−(α+β)
, inequality (53) and Lemma 1,

we get
Xp ≤A−VQE Yp. (55)

2. If Xp ≤A−VQE Yp and 0 < θ ≤ 1, then

EZ

( fXp (Z)
)α+β−2


 fXp (Z)

fYp (F−1
Yp

(FXp (Z)))

2−(α+β)

−
(

δXp

δYp

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 (56)

for any t ≥ 0 and the function

[0, ∞) 3 x −→ 1(
h′
(

FX(x)
))α+β−1 isnonnegativeincreasing, (57)

hence, by inequality
(

δXδYp

)2−(α+β)
≤
(

δXp δY

)2−(α+β)
, inequality (56) and Lemma 1,

we get
X ≤A−VQE Y. (58)

5.3. Record Values Model

In the sequel we are concerned with the preservation of the Awad–Varma quantile
entropy order in the record values model.

We consider {Xi | i ≥ 1} a sequence of independent and identically distributed
random variables from the random variable X with survival function FX and density
function fX. The nth record times are the random variables TX

n defined via TX
1 = 1 and

TX
n+1 = min{j > TX

n | Xj > XTX
n
}, n ≥ 1.

We denote XTX
n

de f
= RX

n and call them the nth record values. For more informations
about record values, the reader can consult [45].
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Concerning RX
n we have, for any x ≥ 0:

fRX
n
(x) =

1
Γ(n)

Λn−1
X (x) fX(x) (59)

and

FRX
n
(x) = FX(x)

n−1

∑
j=1

(ΛX(x))j

j!
= Γn(ΛX(x)), (60)

where Γn is the survival function of a Gamma random variable with the shape parameter n
and the scale parameter 1 and ΛX(x) = − log FX(x) is the cumulative failure rate function
of X.

Taking {Yi | i ≥ 1} a sequence of independent and identically distributed random
variables from the random variable Y, we have similar formulas for RY

n .

Theorem 11. Let m, n ∈ N
de f
= {1, 2, ...}.

1. If X ≤A−VQE Y and
(

δRX
n

δY

)2−(α+β)
≤
(

δXδRY
n

)2−(α+β)
then RX

n ≤A−VQE RY
n .

2. We suppose that n > m ≥ 1. If RX
m ≤A−VQE RY

m and
(

δRX
n

δRY
m

)2−(α+β)
≤(

δRX
m

δRY
n

)2−(α+β)
, then RX

n ≤A−VQE RY
n .

Proof. 1. We suppose that X ≤A−VQE Y. Then

EZ

( fX(Z))α+β−2

( fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δX
δY

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 (61)

for any t ≥ 0.
We can see that

fRX
n
(x)

fRY
n

(
F−1

RY
n

(
FRX

n
(x)
)) =

fX(x)

fY

(
F−1

Y (FX(x))
) . (62)

Then

EZ

( fRX
n
(Z)
)α+β−2


 fRX

n
(Z)

fRY
n
(F−1

RY
n
(FRX

n
(Z)))

2−(α+β)

−
(

δRX
n

δRY
n

)2−(α+β)
∣∣∣∣[Z > t]

 = EZ

((
1

Γ(n)
Λn−1

X (Z)
)α+β−1

( fX(Z))α+β−2
[(

fX(Z)
fY(F−1

Y (FX(Z)))

)2−(α+β)

−
(

δRX
n

δRY
n

)2−(α+β)]∣∣∣∣[Z > t]
)

f oranyt ≥ 0.

(63)
Because the function

[0, ∞) 3 x −→
(

1
Γ(n)

Λn−1
X (x)

)α+β−1
isnonnegativeincreasing, (64)

we obtain, by inequality
(

δRX
n

δY

)2−(α+β)
≤

(
δXδRY

n

)2−(α+β)
, inequality (61) and

Lemma 1, that

EZ

( fRX
n
(Z)
)α+β−2


 fRX

n
(Z)

fRY
n
(F−1

RY
n
(FRX

n
(Z)))

2−(α+β)

−
(

δRX
n

δRY
n

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 f oranyt ≥ 0,

(65)
i.e., RX

n ≤A−VQE RY
n .
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2. Let n > m ≥ 1. If RX
m ≤A−VQE RY

m, then

EZ

( fRX
m
(Z)
)α+β−2


 fRX

m
(Z)

fRY
m
(F−1

RY
m
(FRX

m
(Z)))

2−(α+β)

−
(

δRX
m

δRY
m

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 (66)

for any t ≥ 0.
Using previous formulas we get

fRX
m
(x)

fRY
m

(
F−1

RY
m

(
FRX

m
(x)
)) =

fRX
n
(x)

fRY
n

(
F−1

RY
n

(
FRX

n
(x)
)) =

fX(x)

fY

(
F−1

Y (FX(x))
) (67)

and
fRX

n
(x)

fRX
m
(x)

=
Γ(m)

Γ(n)
(ΛX(x))n−m. (68)

Hence

EZ

( fRX
n
(Z)
)α+β−2


 fRX

n
(Z)

fRY
n
(F−1

RY
n
(FRX

n
(Z)))

2−(α+β)

−
(

δRX
n

δRY
n

)2−(α+β)
∣∣∣∣[Z > t]

 = EZ

((
Γ(m)

Γ(n)
(ΛX(Z))n−m

)α+β−1(
fRX

m
(Z)
)α+β−2

[ fRX
m
(Z)

fRY
m
(F−1

RY
m
(FRX

m
(Z)))

2−(α+β)

−
(

δRX
n

δRY
n

)2−(α+β)]∣∣∣∣[Z > t]
)

f oranyt ≥ 0.

(69)
Because the function

[0, ∞) 3 x −→
(

Γ(m)

Γ(n)
(ΛX(x))n−m

)α+β−1

isnonnegativeincreasing, (70)

using the inequality
(

δRX
n

δRY
m

)2−(α+β)
≤
(

δRX
m

δRY
n

)2−(α+β)
, inequality (66) and Lemma 1,

we obtain that

EZ

( fRX
n
(Z)
)α+β−2


 fRX

n
(Z)

fRY
n
(F−1

RY
n
(FRX

n
(Z)))

2−(α+β)

−
(

δRX
n

δRY
n

)2−(α+β)
∣∣∣∣[Z > t]

 ≥ 0 f oranyt ≥ 0,

(71)
i.e., RX

n ≤A−VQE RY
n .

Concrete Example. The exponential distribution can be applied to describe the time to
failure of a device.

We consider α, β ∈ R such that β ≥ 1 and β− 1 < α < β. Let ε > 0 and γ > 0. Let X
be an exponential absolute continuous nonnegative random variable with density function
fX given by

fX(x) =

{
εe−εx ; if x ≥ 0

0 ; otherwise

and Y a truncated exponential absolute continuous nonnegative random variable with
density function fY given by

fY(y) =


εe−εx

1− e−εγ
; if 0 ≤ y ≤ γ

0 ; otherwise.

We have

HX
α,β(QX(u)) =

1
β− α

log

(
EU

((
1−U
1− u

)α+β−2∣∣∣∣[u < U < 1]

))
(72)
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and

HY
α,β(QY(u)) =

1
β− α

log

(
EU

((
1−U(1− e−εγ)

1− u

)α+β−2∣∣∣∣[u < U < 1]

))
. (73)

If α + β ≥ 2, then X ≤A−VQE Y.
Placing components in parallel, system reliability can be improved. The only time the

system fails is when all the parallel components fail.
Applying the results that we proved above we have: Xn:n ≤A−VQE Yn:n (by Theorem 4)

and XN:N ≤A−VQE YN:N (by Theorem 6) without any supplementary computations.
The study of record values are linked with the study of order statistics. Moreover, it is

known that things that could be done relatively easily for order statistics are also feasible
for records and things that could be done hard for order statistics are, unfortunately, equally
or more difficult for records.

Due to Theorem 11 we have RX
n ≤A−VQE RY

n .
If α + β ≤ 2, then Y ≤A−VQE X etc.

6. Conclusions

Awad–Shannon entropy solves several drawbacks that appears in case of other en-
tropies (for example, in case of Awad–Shannon entropy: completely different systems
have different entropies, the entropy is nonnegative, the entropy of a continuous random
variable is a natural extension of the entropy of a discrete random variable etc.). We consid-
ered a generalization of this entropy, namely Awad–Varma entropy and investigated some
statistical order properties of it.

More exactly, we studied closure and reversed closure properties of Awad–Varma
quantile entropy order under several reliability transformations, like linear transformations,
parallel and series operations. Moreover, we applied the main result to some stochastic
models, like proportional hazard rate model, proportional reversed hazard rate model,
proportional odds model and record values model, showing that the order defined on
Awad–Varma residual entropy is preserved for the aforementioned models.

We intend to continue this work, considering other generalizations of
Awad–Shannon entropy.
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34. Ebrahimi, N.; Pellerey, F. New partial ordering of survival functions based on the notion of uncertainty. J. Appl. Probab. 1995, 32,

202–211. [CrossRef]
35. Di Crescenzo, A.; Longobardi, M. Entropy-based measure of uncertainty in past lifetime distributions. J. Appl. Probab. 2002, 39,

434–440. [CrossRef]
36. Di Crescenzo, A.; Longobardi, M. A measure of discrimination between past lifetime distributions. Statist. Probab. Lett. 2004, 67,

173–182. [CrossRef]
37. Ebrahimi, N.; Kirmani, S.N.U.A. A measure of discrimination between two residual lifetime distributions and its applications.

Ann. Inst. Statist. Math. 1996, 48, 257–265. [CrossRef]
38. Kumar, V.; Taneja, H.C. Some characterization results on generalized cumulative residual entropy measure. Statist. Probab. Lett.

2011, 81, 1072–1077. [CrossRef]
39. Nanda, A.K.; Paul, P. Some results on generalized past entropy. J. Statist. Plann. Inference 2006, 136, 3659–3674. [CrossRef]

http://dx.doi.org/10.1016/j.physa.2007.11.051
http://dx.doi.org/10.1016/j.physa.2008.02.050
http://dx.doi.org/10.1016/j.physa.2008.06.039
http://dx.doi.org/10.3390/math8081203
http://dx.doi.org/10.3390/math8040587
http://dx.doi.org/10.3390/e16052686
http://dx.doi.org/10.3390/e22030304
http://dx.doi.org/10.1016/j.physa.2014.04.011
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1103/PhysRevE.67.016106
http://dx.doi.org/10.1016/S0378-4371(03)00019-0
http://dx.doi.org/10.1103/PhysRevE.71.046144
http://dx.doi.org/10.1177/1687814015590297
http://dx.doi.org/10.1016/j.ijthermalsci.2008.07.011
http://dx.doi.org/10.1115/1.4002395
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.058
http://dx.doi.org/10.3390/e22060663
http://dx.doi.org/10.1016/j.physa.2018.08.148
http://dx.doi.org/10.2478/awutm-2018-0015
http://dx.doi.org/10.1093/imamci/4.2.143
http://dx.doi.org/10.2307/3214930
http://dx.doi.org/10.1017/S002190020002266X
http://dx.doi.org/10.1016/j.spl.2003.11.019
http://dx.doi.org/10.1007/BF00054789
http://dx.doi.org/10.1016/j.spl.2011.02.033
http://dx.doi.org/10.1016/j.jspi.2005.01.006


Mathematics 2021, 9, 280 15 of 15

40. Sunoj, S.M.; Sankaran, P.G. Quantile based entropy function. Statist. Probab. Lett. 2012, 82, 1049–1053. [CrossRef]
41. Nanda, A.K.; Sankaran, P.G.; Sunoj, S.M. Rényi’s residual entropy: A quantile approach. Statist. Probab. Lett. 2014, 85, 114–121.

[CrossRef]
42. Yan, L.; Kang D.-t. Some new results on the Rényi quantile entropy ordering. Stat. Methodol. 2016, 33, 55–70. [CrossRef]
43. Shaked, M.; Shanthikumar, J.G. Stochastic Orders; Springer Science Business Media LLC: New York, NY, USA, 2007.
44. Navarro, J.; del Aguila, Y.; Asadi, M. Some new results on the cumulative residual entropy. J. Statist. Plann. Inference 2010, 140,

310–322. [CrossRef]
45. Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. Records; John Wiley & Sons: New York, NY, USA, 1998.

http://dx.doi.org/10.1016/j.spl.2012.02.005
http://dx.doi.org/10.1016/j.spl.2013.11.016
http://dx.doi.org/10.1016/j.stamet.2016.04.003
http://dx.doi.org/10.1016/j.jspi.2009.07.015

	Introduction
	Preliminaries 
	Main Results
	Closure Properties
	Applications to Some Stochastic Models
	Proportional Hazard Rate Model and Proportional Reversed Hazard Rate Model
	Proportional Odds Model
	Record Values Model

	Conclusions
	References

