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Abstract: This communication provides a discussion of a scheme originally proposed by Falcón in
a paper entitled “Latin squares associated to principal autotopisms of long cycles. Applications in
cryptography”. Falcón outlines the protocol for a cryptographical scheme that uses the F-critical
sets associated with a particular Latin square to generate access levels for participants of the scheme.
Accompanying the scheme is an example, which applies the protocol to a particular Latin square
of order six. Exploration of the example itself, revealed some interesting observations about both
the structure of the Latin square itself and the autotopisms associated with the Latin square. These
observations give rise to necessary conditions for the generation of the F-critical sets associated with
certain autotopisms of the given Latin square. The communication culminates with a table which
outlines the various access levels for the given Latin square in accordance with the scheme detailed
by Falcón.

Keywords: F-critical sets; Latin square; Latin subsquare; intercalate; secret sharing scheme

1. Introduction and Preliminaries

A Latin square of order n is an n×n array comprising of n distinct elements, such that
each element occurs exactly once in each row and column [1,2]. A partial Latin square is
an n×n array with all entries of the array belonging to the set {0, 1, . . ., n− 1}. There can
be blank entries within a partial Latin square, but each element of the set {0, 1, . . ., n− 1}
must only occur once in each row and column [3]. Partial Latin squares can be considered
substructures of Latin squares, as such; a partial Latin square can be completed to form a
Latin square by replacing the blank entries of the partial Latin square with elements of the
set {0, 1, . . ., n− 1} in such a way that each element in the set only occurs once in each row
and column [3]. A partial Latin square is said to be uniquely completable if it only has one
possible completion [3]. We consider two mechanisms by which a partial Latin square P can
be (uniquely) completed to a Latin square L. A triple (i, j; k) ∈ P denotes an entry within
a partial Latin square such that i is the row component, j is the column component and k
denotes the symbol in the cell (i, j). A triple (i, j; k) in a partial Latin square P is forced if the
cell (i, j) is the only empty cell in either the ith row or jth column and the symbol k is the
only symbol not appearing in the respective row or column. Similarly a triple is forced if
the symbol k appears in every row and column of L except the ith row and jth column [4].

The second mechanism considered is applying autotopisms to the set of triples of
a partial Latin square P to generate a Latin square L, on occasion this may additionally
require the application of forced moves. Before defining an autotopism, it is important to
define the notion of a quasigroup; a set S is a quasigroup if there exists a binary operator
∗ such that ∀a, b ∈ S a ∗ x = b and y ∗ a = b have exactly one solution. The multiplication
table of a quasigroup forms a Latin square [1,2]. An autotopism is formally defined [1,2,5];
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Definition 1. Let (B, ·) and (C, ∗) be two quasigroups. An isotopism is an ordered triple of row,
column and symbol permutations, θ = (α, β, γ) that maps (B, ·) onto (C, ∗), providing that ∀i, j ∈
B, i, j denote a pair of row and column coordinates (α(i)) ∗ (β(j)) = γ(i·j). An autotopism is an
isotopism that maps a quasigroup onto itself.

Let Atop(L) denote the set of all autotopisms associated with a Latin square L. Atop(L)
constitutes a group under the composition of permutations; this is know as the autotopism
group of L [4]. As stated in [4], each autotopism θ = (α, β, γ) ∈ Atop(L) generates a
subgroup of Atop(L), denoted 〈θ〉. This may be extended to the set generated by θ1, .., θq ∈
Atop(L), which will also form a subgroup of Atop(L), denoted 〈θ1, . . . , θp〉.

As in [4], let Ent(P) denote the set of non-empty cells of a partial Latin square P.
Further, Reference [4] defines the θ-orbit of a triple (i, j; k) ∈ Ent(L), for some autotopism
θ = (α, β, γ) ∈ Atop(L), as the set

Orbθ((i, j; k)) = {(αm(i), βm(j); γm(k) : m ≥ 0} ⊆ Ent(L)

This idea can be extended to F-orbits [4]. For a collection of autotopisms F ⊆ Atop(L),
the F-orbit of a triple (i, j; k) ∈ Ent(L) is the set

OrbF((i, j; k)) =
⋃

θ∈F
{(αm(i), βm(j); γm(k) : m ≥ 0} ⊆ Ent(L).

We are interested in using F-orbits to determine F-critical sets. A critical set is formally
defined [5]:

Definition 2. A critical set C in a Latin square, L, is a set

C = {(i, j; k) : i,j,k ∈ {0, 1, ..., n− 1}}

where:

1. L is the only Latin square of order n which has the symbol k in the cell (i, j) for each (i, j; k) ∈ C.
2. No proper subset of C has property 1.

Furthermore, we define a partial Latin square P to be F-completable to a Latin square
L, with F ⊆ Atop(P), if there exists a partial Latin square Q that is completable to L such
that;

Ent(Q) =
⋃

t∈Ent(P)
OrbF(t).

We can say that P is uniquely F-completable if L is unique, and moreover, P is an
F-critical set of the Latin square L if no proper subset of Ent(P) is F-completable to L [4].

The paper by Falcón [6], on which this communication is based, looks at building a
secret sharing scheme using F-critical sets.

A secret sharing scheme is a cryptographical scheme in which k participants are each
given a part of a secret key K, called a share [7]. In secret sharing schemes, certain shares
may be combined to generate the original secret key K. These are referred to as authorised
groups. All unauthorised groups will be unable to recover the secret key K [6]. The
access structure Γ defines the set of authorised groups of shares [6]. Throughout this
communication, the term access level will be used to refer to each minimal authorised group.

A previous secret sharing scheme based on critical sets in Latin squares was proposed
by Cooper et al [8]. In this secret sharing scheme, a particular Latin square K of order n is
chosen as the secret key. The k shares distributed to participants in this scheme are triples
of Ent(K). The access structure for this scheme is the set Γ = {S | Ent(C) ⊆ Ent(S) ⊆
Ent(K), where C is a critical set of K}.

The scheme proposed by Falcón, seeks to extend the scheme proposed by Cooper
et al. to F-critical sets of Latin squares. The secret key for the scheme proposed in [6]
is also a Latin square K. However, in this scheme there are two types of shares that
may be distributed to the k participants of the scheme; a group of the shares will be
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autotopisms θ ∈ F, such that F ⊆ Atop(K) and the remaining shares will be triples Ti ∈
Ent(K). Formally, the access structure for the scheme is then the set Γ = {S | Ent(C) ⊆
Ent(S) ⊆ Ent(K), where C is an F-critical set of K}.

Below, an overview of the scheme proposed in [6] is given:

Overview of the secret sharing scheme:

• A Latin Square K of order n is selected as the key for the scheme. The order n of the
Latin Square K is made public, whilst K is kept private.

• A set of T triples, where Ent(T) ⊂ Ent(K) is selected, along with a collection of F
autotopisms associated with K.

• The triples of Ent(T) and autotopisms in F associated with K are distributed to the
k participants in the secret sharing scheme in such a way that when a group of t
participants come together, the union of whose shares form an F-critical set of K. They
are thus able to combine their shares in order to find the key K.

In [6], Falcón provides an example to accompany the scheme, which demonstrates
how the secret sharing scheme may be applied to a particular Latin square of order 6. The
example is detailed below.

Example 1. The Latin square K is chosen as the key for the secret sharing scheme, where;

K =

0 1 2 3 4 5
1 2 0 4 5 3
2 0 1 5 3 4
3 4 5 0 1 2
4 5 3 1 2 0
5 3 4 2 0 1

The k participants in the scheme will be assigned autotopisms belonging to F and
triples belonging to a partial Latin square T, where Ent(T) ⊂ Ent(K). In this example, the
set F consists of the four autotopisms F={θ1,θ2,θ3,θ4} associated with the Latin square K.
These are defined;

θ1 = ((012)(345), (0)(1)(2)(3)(4)(5), (021)(354))
θ2 = ((0)(1)(2)(3)(4)(5), (012)(345), (021)(354))
θ3 = ((03)(14)(25), (03)(14)(25), (0)(1)(2)(3)(4)(5))
θ4 = ((0)(1)(2)(3)(4)(5), (03)(14)(25), (03)(14)(25))

There are 11 triples in the partial Latin square T. Each triple in the set T={T1,...,T11} is
defined;

T1 = (0, 4; 4), T2 = (1, 1; 2), T3 = (1, 5; 3), T4 = (2, 2; 1), T5 = (2, 4; 3), T6 = (3, 1; 4), T7 = (3, 2; 5), T8 = (3, 3; 0),
T9 = (4, 0; 4), T10 = (5, 3; 2), T11 = (5, 5; 1)

The autotopisms and T triples are assigned to participants within the scheme in accor-
dance with Table 1, where Table 1 provides examples of access levels for the autotopisms
and T triples given in Example 1. Note that m in Table 1 denotes the number of shares
within each access level. There has also been a change in notation from the original example
in [6]; the notation 〈. . .〉 has been used in Table 1 in place of the notation {. . . }. This is to
highlight more clearly that the autotopisms in each access level will generate a subgroup
of Atop(K).
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Table 1. Access level definitions in [6].

m Permutations Triples of P m Permutations Triples of P

11 - T 6 {θ1,θ2} {T1,T2,T6,T8}

11 〈θ4〉 T\{T9} 6 〈θ1,θ4〉 {T2,T3,T7,T9}

10 〈θ3〉 T\{T1,T11} 6 〈θ2,θ3〉 {T3,T6,T8,T10}

10 〈θ3,θ4〉 T\{T1,T9,T11} 6 〈θ1,θ3,θ4〉 {T2,T4,T8}

9 〈θ1〉 T\{T5,T7,T10} 5 〈θ1,θ2,θ3〉 {T1,T2}

9 〈θ2〉 T\{T1,T7,T10} 5 〈θ2,θ3,θ4〉 {T1,T2}

7 〈θ1,θ3〉 {T2,T3,T4,T6,T9} 5 〈θ1,θ2,θ4〉 {T2,T4}

7 〈θ2,θ4〉 {T1,T2,T4,T6,T9} 5 〈θ1,θ2,θ3,θ4〉 {T1}

To give an example of how these access levels work; take the set of shares θ3 and
T\{T1, T11}. Table 1, shown above, states that the union of F-orbits for each triple in the
set T\{T1, T11}, should form an F-critical set, when F is the subgroup of autotopisms
generated by 〈θ3〉. The autotopisms within this subgroup are;

Id = ((0)(1)(2)(3)(4)(5), (0)(1)(2)(3)(4)(5), (0)(1)(2)(3)(4)(5))
θ3 = ((03)(14)(25), (03)(14)(25), (0)(1)(2)(3)(4)(5))

This subgroup of Atop(K) will generate the following F-orbits for the shares T\{T1, T11};

OrbF(T2) = OrbF((1, 1; 2)) = {(1, 1; 2), (4, 4; 2)}
OrbF(T3) = OrbF((1, 5; 3)) = {(1, 5; 3), (4, 2; 3)}
OrbF(T4) = OrbF((2, 2; 1)) = {(2, 2; 1), (5, 5; 1)}
OrbF(T5) = OrbF((2, 4; 3)) = {(2, 4; 3), (5, 1; 3)}
OrbF(T6) = OrbF((3, 1; 4)) = {(3, 1; 4), (0, 4; 4)}
OrbF(T7) = OrbF((3, 2; 5)) = {(3, 2; 5), (0, 5; 5)}
OrbF(T8) = OrbF((3, 3; 0)) = {(3, 3; 0), (0, 0; 0)}
OrbF(T9) = OrbF((4, 0; 4)) = {(4, 0; 4), (1, 3; 4)}
OrbF(T10) = OrbF((5, 3; 2)) = {(5, 3; 2), (2, 0; 2)}

Ent(Q1) =
⋃

Ti∈T\{T1,T11}
OrbF(Ti).

Let q1=Ent(Q1) be a partial Latin square, where;

q1 =

0 4 5
2 4 3

2 1 3
4 5 0

4 3 2
3 2 1

Observe that the partial Latin square q1 is uniquely completable, hence applying
the subgroup of Atop(K) generated by 〈θ3〉 to the set of triples T\{T1, T11} will give a
uniquely F-completable set. Notice that the removal of any F-orbit of Ent(Q1) will generate
a partial Latin square q1=Ent(Q1) that is not uniquely completable to K. This demonstrates
that F-orbits of T\{T1, T11} under the autotopism θ3 form an F-critical set. As the set is a
minimal collection of shares that combine to generate the secret key K, it is an access level
for the scheme.
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2. Interesting Observations about Uniquely Completable Partial Latin Squares and
the Applications of These Observations to the Example

The Applications of These Observations to the Example in [6], In this section, we
will consider further substructures of Latin squares and demonstrate how the existence
of these substructures within a Latin square L informs how the F-critical sets of L may be
constructed.

Definition 3. [9] A Latin subsquare of a Latin square is an m×m submatrix of (not necessarily
adjacent) entries that is itself a Latin square. Note that a Latin subsquare has order at least 2.

Definition 4. [9] An intercalate of order 2 is a Latin subsquare of order 2.

Example 2. Observe that the four quadrants of the Latin square K given in the example in [6] form
four Latin subsquares of order 3, which will form a set S = {S(0,0), S(0,3), S(3,0), S(3,3)}, where
S(i,j) = {(i, j; k), (i, j + 1; k + 1), (i, j + 2; k + 2), (i + 1, j; k + 1), (i + 1, j + 1; k + 2), (i + 1, j +
2; k), (i+ 2, j; k+ 2), (i+ 2, j+ 1; k), (i+ 2, j+ 2; k+ 1)} for i, j, k ∈ {0, 3}. There are also nine in-
tercalates of the form I(i,j) = {(i, j; k), (i+ 3, j; k+ 3), (i, j+ 3; k+ 3), (i+ 3, j+ 3; k)} for i, j, k ≤
2 within K. The set of intercalates will be denoted I = {I(0,0), I(0,1), I(0,2), I(1,0), I(1,1), I(1,2),
I(2,0), I2,1), I(2,2)}.

Lemma 1. All Latin squares of order n ≥2 contain critical sets.

Proof. Let L be a Latin square of order n ≥ 2. Removing the triple (i, j; k) from L will
generate a partial Latin square P in which the cell (i, j) is empty, but all other cells within P
are non-empty. Hence, P is a uniquely completable to the Latin square L and P ⊂ L.

The empty partial Latin square P′ of order n ≥ 2 is not uniquely completable to any
Latin square of order n.

Therefore, every Latin square L of order n contains a non-empty partial Latin square P
that is uniquely completable to L and a partial Latin square that is not uniquely completable
to L. Therefore, there exists a minimal partial Latin square P∗ that is uniquely completable
to L, such that every subset of P∗ is not uniquely completable to L. Hence, every Latin
square of order n ≥ 2 contains a critical set.

Corollary 1. For each Latin subsquare Q of order m ≥ 2 there exists a partial Latin square A such
that A is not uniquely completable to Q.

Proof. A Latin subsquare Q is a Latin square of order m within a Latin square of order n.
By Lemma 1, as Q has order m ≥ 2, it has a critical set and hence there will be some partial
Latin square A such that A is not uniquely completable to Q.

Lemma 2. Let Q be a Latin subsquare of order m ≥ 2 contained within a Latin square L and let A
be a partial Latin square that is not uniquely completable to the Latin subsquare Q. If a partial Latin
square P contains A and no other elements of Ent(Q), then P will not be uniquely completable to L.

Proof. By Corollary 1, every Latin subsquare Q of order m, where |m| ≥ 2, contains a
partial Latin square A, where A is not uniquely completable to Q. Note, when Q is an
intercalate, A is the empty partial Latin square. Let P denote a partial Latin square, such
that P ⊂ L. If a partial Latin square P contains A and no other triples in Ent(Q), then the
partial Latin square P will not force the entries of the Latin subsquare Q. As Q ⊂ L and
the triples of Q are not forced from the triples of P, then P is not uniquely completable to
L.

Although Lemma 2 does not imply that a partial Latin square P will always be
uniquely completable to a Latin square L if it contains a critical set of each Latin subsquare
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Q ∈ L, it does imply that if this condition is not met, then P will not be uniquely completable
to L.

To relate this to F-critical sets in the example in [6]; if the F-orbits for some partial Latin
square P do not intersect with the critical sets of each Latin subsquare within S(i,j), I(i,j) ∈ K,
then the partial Latin square P will not be an F-critical set of K. Example 3 details the more
specific implications of Lemma 2 to the example in [6].

Example 3. In [4], it was demonstrated that the critical sets of Latin squares of order 3 either
consist of two triples (i1, j1; k1) and (i2, j2; k2), where i1 6= i2, j1 6= j2 and k1 6= k2, or a critical set
of a Latin square of order 3 consists of a set of three triples such that each pair of triples in this set
share exactly one common ith, jth or kth component. The key observation here is that critical sets of
Latin squares of order 3 must contain entries in at least two distinct rows, two distinct columns and
the critical sets contain two sets of distinct symbols. By Lemma 2, a partial Latin square P is not
uniquely completable to the Latin square K if it does not contain a critical set of each Latin subsquare
in K. This implies that if a partial Latin square P does not contain an entry in at least two distinct
rows and columns of each order 3 Latin subsquare Si,j ∈ K, or if each of the Latin subsquare Si,j in
P does not contain at least two distinct symbols, then P will not be uniquely completable to K.

Furthermore, the Latin square K contains nine intercalates, each denoted by I(i,j) for i, j ≤ 2.
Since order 2 Latin squares have a critical set of size 1, if a partial Latin square does not contain at
least one entry in each intercalate I(i,j) ∈ K, then P will not be uniquely completable to K.

3. Interesting Observations about the Autotopisms θ1,θ2,θ3 and θ4 in the Example

Interesting Observations about the Autotopisms θ1,θ2,θ3 and θ4 in the Example in [6].
Each individual autotopism θ ⊆ Atop(L) for some Latin square L will act differently on
the triples of L. The actions of individual autotopisms on a Latin square L is important
in determining the structure of F-critical sets of L. It is therefore worth examining the
actions of the individual autotopisms θ1,θ2,θ3,θ4 ⊆ Atop(K), where K is the Latin square in
example [6], to determine the structure of each F-critical set associated with each subgroup
of autotopisms in the group Atop(K).

Example 4. The autotopisms θ1 and θ2 permute the elements of some Latin subsquare of order 3
Si ∈ S to two other triples within the same Latin subsquare S(i,j). Both θ1 and θ2 map each triple T
in some intercalate I(i,j) to some intercalate I(i′ ,j′), where I(i,j) 6= I(i′ ,j′).

The autotopisms θ3 and θ4 permute the sets {0,3}, {1,4} and {2,5}. They map triples of an
intercalate I(i,j) to another triple within the same intercalate, and map triples in a particular Latin
subsquare S(i,j) of order three to some Latin subsquare S(i′ ,j′) of order three, where i 6= i′ and j 6= j′.

4. Discussion of Example

Ref [6]. Not all autotopisms listed in example [6] are members of the autotopism
group Atop(K). Further to this, there are some minor errors in the access levels listed in
Table 1 in Section 1. Lemma 2 and the observations about the autotopisms discussed in
Section 3, make it possible to modify to the example. Each amendment will be discussed in
detail within this section.

4.1. Discussion Regarding the Autotopisms θ1 and θ2

Discussion Regarding the Autotopisms θ1 and θ2 in [6]. The first two modifications are
changes to some of the autotopisms associated with the Latin square K in [6]. Two of the
autotopisms, θ1 and θ2, are not associated with the Latin square K. By definition, applying
an autotopism to a Latin square that it is associated with should generate another element
of that Latin square. However, applying the autotopisms θ1 and θ2 to any of the 11 chosen
shares from the set {T1,...,T11} does not generate another element of K. To demonstrate this,
θ1 and θ2 are applied to the share T1;

T1 = (0, 4; 4) =⇒ θ1(T1) = (1, 4; 3), θ2(T1) = (0, 5; 3)
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Observe, applying θ1 and θ2 to T1 does not generate elements of the original Latin
square, L. Hence, these autotopisms are not associated with Atop(K). It is believed that the
intended autotopisms for θ1 and θ2 should be;

θ1 = ((012)(345), (0)(1)(2)(3)(4)(5), (012)(345))
θ2 = ((0)(1)(2)(3)(4)(5), (012)(345), (012)(345))

From this point in the communication, when θ1 and θ2 are referred to, they refer to the
autotopisms θ1 and θ2 given above and not the autotopisms given in [6].

All subsequent suggested amendments focus on the access levels.

4.2. Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ4〉
Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ4〉

in [6]. The access level generated by the autotopism subgroup 〈θ4〉 was mis-recorded in [6].
According to the example in [6], combining the subgroup of Atop(K), 〈θ4〉, with all triples
in the set T\{T9} should generate a uniquely completable partial Latin square. However,
combining 〈θ4〉 with the stated triples generates the following F-orbits;

OrbF(T1) = OrbF((0, 4; 4)) = {(0, 4; 4), (0, 1; 1)}
OrbF(T2) = OrbF((1, 1; 2)) = {(1, 1; 2), (1, 4; 5)}
OrbF(T3) = OrbF((1, 5; 3)) = {(1, 5; 3), (1, 2; 0)}
OrbF(T4) = OrbF((2, 2; 1)) = {(2, 2; 1), (2, 5; 4)}
OrbF(T5) = OrbF((0, 4; 4)) = {(2, 4; 3), (2, 1; 0)}
OrbF(T6) = OrbF((3, 1; 4)) = {(3, 1; 4), (3, 4; 1)}
OrbF(T7) = OrbF((3, 1; 4)) = {(3, 2; 5), (3, 5; 2)}
OrbF(T8) = OrbF((3, 3; 0)) = {(3, 3; 0), (3, 0; 3)}
OrbF(T10) = OrbF((5, 3; 2)) = {(5, 3; 2), (5, 0; 5)}
OrbF(T11) = OrbF((5, 5; 1)) = {(5, 5; 1), (5, 2; 4)}

The union of these F-orbits gives the partial Latin square P1, where;

P1 =

∗ 1 ∗ ∗ 4 ∗
∗ 2 0 ∗ 5 3
∗ 0 1 ∗ 3 4
3 4 5 0 1 2
∗ ∗ ∗ ∗ ∗ ∗
5 ∗ 4 2 ∗ 1

This partial Latin square P1 is not uniquely completable as it only uniquely completes
to the partial Latin square P2, where;

P2 =

0 1 2 3 4 5
∗ 2 0 ∗ 5 3
2 0 1 5 3 4
3 4 5 0 1 2
∗ 5 3 ∗ 2 0
5 3 4 2 0 1

Since there are no entries in the intercalate I(1,0), by Lemma 2, P2 is not uniquely
completable to L. In order for the partial Latin square P1 to be uniquely completable to L,
the share T9 needs to be included within this access level so that there is an entry in the
intercalate I(1,0).

It is also worth noting that F-critical sets are supposed to be minimal. As T1 and T6 are
both members of the intercalate I(0,1) and similarly T4 and T11 both belong to the intercalate
I(2,2), this set is not minimal. By removing one element of each set {T1, T6} and {T4, T11},
the access level becomes an F-critical set comprising of nine triples from the set T and the
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autotopism θ4; giving ten individual shares in total. An example of a viable F-critical set is
to take the F-orbits of the triples {T1, T2, T3, T4, T5, T7, T8, T9, T10}, where F is the subgroup
of Atop(K) generated by the autotopism θ4.

4.3. Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ3, θ4〉
Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ3, θ4〉

in [6]. Access levels can also be generated by F-orbits, where F is a subgroup of the Atop(K)
generated by more than one autotopism. The first access level to be generated by a set
of multiple autotopisms, is the access level generated by the F-orbits of the subgroup of
autotopisms 〈θ3, θ4〉. This subgroup consists of the following non-trivial autotopisms;

θ3 = ((03)(14)(25), (03)(14)(25), (0)(1)(2)(3)(4)(5))
θ4 = ((0)(1)(2)(3)(4)(5), (03)(14)(25), (03)(14)(25))
θ3θ4 = ((03)(14)(25), (0)(1)(2)(3)(4)(5), (03)(14)(25))

The example in [6] (see Table 1 in Section 1) suggests that applying this subgroup
of Atop(K) to the set of triples {T2,T3,T4,T5,T6,T7,T8,T10} will generate an F-critical set.
However, when F is the subgroup of Atop(K) generated by 〈θ3, θ4〉, the F-orbits of the
set of triples {T2,T3,T4,T5,T6,T7,T8,T10} forms a partial Latin square that is not uniquely
completable, as the F-orbits do not contain an entry in the intercalate I(1,0). As above, if the
triple T9 is included within the set of triples for this access level, then the resultant partial
Latin square is uniquely completable to the Latin square K. However, adding T9 to this set
means that this access level consists of nine triples from the set T and both autotopisms θ3
and θ4. This gives a total of eleven shares. As previously shown, the F-orbits of the triples
{T2,T3,T4,T5,T6,T7,T8,T9,T10} under the subgroup of Atop(K), 〈θ4〉, form an F-critical set of
size 10. Hence, the autotopisms 〈θ3, θ4〉 will generate a uniquely F-completable set that
is not minimal, and therefore not an F-critical set. Therefore, the autotopisms θ3 and θ4
cannot be used in combination to generate an access level for this scheme.

4.4. Discussion Regarding the Access Level for for the Autotopisms in the Subgroup 〈θ2, θ3, θ4〉
Discussion Regarding the Access Level for for the Autotopisms in the Subgroup

〈θ2, θ3, θ4〉 in [6]. This access level uses the subgroup of Atop(K) generated by 〈θ2, θ3, θ4〉. As
θ2 is an autotopism based upon length 3 cycles and θ3 and θ4 are based upon length 2 cycles,
this subgroup of Atop(K) consists of eleven non-trivial autotopisms, these autotopisms are;

θ2 = ((0)(1)(2)(3)(4)(5), (012)(345), (012)(345))
θ2θ2 = ((0)(1)(2)(3)(4)(5), (021)(354), (021)(354))
θ3 = ((03)(14)(25), (03)(14)(25), (0)(1)(2)(3)(4)(5))
θ4 = ((0)(1)(2)(3)(4)(5), (03)(14)(25), (03)(14)(25))
θ2θ3 = ((03)(14)(25), (042315), (012)(345))
θ2θ2θ3 = ((03)(14)(25), (051324), (021)(354))
θ2θ4 = ((0)(1)(2)(3)(4)(5), (042315), (042315))
θ2θ2θ4 = ((0)(1)(2)(3)(4)(5), (051324), (051324))
θ3θ4 = ((03)(14)(25), (0)(1)(2)(3)(4)(5), (03)(14)(25))
θ2θ3θ4 = ((03)(14)(25), (012)(345), (042315))
θ2θ2θ3θ4 = ((03)(14)(25), (021)(354), (051324))

The example in [6] suggests that, when F is generated by 〈θ2, θ3, θ4〉, the union of
the F-orbits OrbF(T1) and OrbF(T2) should be uniquely F-completable to K. However,
combining these F-orbits generates the partial Latin square P3, where;
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P3 =

0 1 2 3 4 5
1 2 0 4 5 3
∗ ∗ ∗ ∗ ∗ ∗
3 4 5 0 1 2
4 5 3 1 2 0
∗ ∗ ∗ ∗ ∗ ∗

As the intercalates I(2,0), I(2,1) and I(2,2) are missing from P3, it is not uniquely com-
pletable under the autotopism θ2. A triple present in any one of these intercalates will gen-
erate an F-orbit that spans all three intercalates under the subgroup of Atop(K) generated
by 〈θ2,θ3,θ4〉. Hence, to make this an access level, one triple from the set {T4, T5, T10, T11}
should be included in the set of triples.

There are multiple F-critical sets that may be formed using this subgroup of Atop(K).
As discussed in Section 3, each autotopism within the autotopism group Atop(K) has
a unique action. When multiple autotopisms are combined in an F-critical set, each
autotopism generated by the union of any subgroup of autotopisms will also take on
a unique action. Observe that in combination, the subgroup of Atop(K) generated by
autotopisms 〈θ3, θ4〉 takes a triple Ti ∈ I(i,j) and maps it to every other triple within the same
intercalate. The autotopism subgroup generated by 〈θ2〉maps each Ti′ = (i′, j′; k′) ∈ S(i,j)
to all other triples in the i′th row of the Latin subsquare S(i,j). This means that the combined
action of the autotopism subgroup generated by 〈θ2, θ3, θ4〉 takes a triple Ti′ ∈ K and maps
Ti′ = (i′, j′; k′) to all triples in i′th and i′ + 3 mod 6 row of K. Hence, any F-critical set under
the subgroup of autotopisms 〈θ2, θ3, θ4〉 must contain 3 triples, with one triple in either the
0th or 3rd row, one triple in either the 1st or 4th row and finally one triple in either the 2nd
or 5th row. This ensures that the F-orbits contain a critical set of each intercalate I(i,j) and
each Latin subsquare S(i,j).

Therefore, exactly one entry must be chosen from each of the following three sets;
{T1,T6,T7,T8}, {T2,T3,T9} and {T4,T5,T10,T11}, as each individual set contains all entries of the
ith and i + 3th rows, where i ≤ 2.

4.5. Discussion Regarding the Access Level for for the Autotopisms in the Subgroup 〈θ1, θ2, θ4〉
Discussion Regarding the Access Level for for the Autotopisms in the Subgroup

〈θ1, θ2, θ4〉 in [6]. This access level uses the subgroup of Atop(K) generated by 〈θ1, θ2, θ4〉.
As θ1 and θ2 are both autotopisms based upon length 3 cycles, and θ4 is an autotopism based
upon length 2 cycle; this subgroup of Atop(K) will consist of 17 non-trivial autotopisms.
Example 4 states that autotopism θ1 maps a triple Ti ∈ S(i,j), where Ti = (i, j; k) to the
other two triples in the ith row of the Latin subsquare S(i,j) ∈ S, while the autotopism θ2
maps each triple Ti ∈ S(i,j) to the other two triples in the jth column of the Latin subsquare
S(i,j) ∈ S and the autotopism θ4 maps a triple Ti ∈ I(i,j), where I(i,j) ∈ I, to the triple
I(i,j+3)mod 6. This means that the subgroup of autotopisms generated by θ1, θ2 and θ4 will
map a triple Ti ∈ S(i,j), for S(i,j) ∈ S to all other triples in the Latin subsquare S(i,j), as well
as all triples in the Latin subsquare S(i,j+3) mod 6 ∈ S

The access level in the example in [6] suggests that this subgroup of Atop(K) should
be combined with the triples {T1,T2} and from here it should be possible to generate the
Latin square L. However, when F is generated by 〈θ1, θ2, θ4〉, OrbF(T1) ∪ OrbF(T2) is the
partial Latin square P4, where:

P4 =

0 1 2 3 4 5
1 2 0 4 5 3
2 0 1 5 3 4
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
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The entries of the Latin subsquares S(3,0) and S(3,3) are missing from the partial
Latin square P4, hence by Lemma 2, P4 is not uniquely completable to K. To amend this
access level, either T1 or T2 should be removed and replaced with a triple from the set
{T6, T7, T8, T9, T10, T11}.

There are multiple pairs of F-orbits that constitute an F-critical set when F is the
subgroup of Atop(K) generated by 〈θ1, θ2, θ4〉. As an F-orbit of a triple Ti under these
autotopisms will span two adjacent Latin subsquares S(i,j) and S(i,j+3)mod 6, when Ti ∈
S(i,j) each F-orbit contains a critical set of each intercalate I(i,j) ∈ I. Therefore, a second
F-orbit is only required to ensure that the union of F-orbits contains a critical set of the
Latin subsquares S(i+3,j)mod 6 and S(i+3,j+3)mod 6. Hence, any two triples Ti, Tj ∈ T,
where Ti 6= Tj will generate an F-critical set under the autotopisms θ1,θ2 and θ4 providing
that if Ti is a triple in some Latin subsquare S(i,j) ∈ S, then the triple Tj is either in the Latin
subsquare S(i+3,j) or the Latin subsquare S(i+3,j+3). All triples in the set {T1, T2, T3, T4, T5}
belong either to the Latin subsquare S(0,0) or the Latin subsquare S(0,3), while triples
in the set {T6, T7, T8, T9, T10, T11} belong either to the Latin subsquare S(3,0) or the Latin
subsquare S(3,3). Therefore, if Ti ∈ {T1, T2, T3, T4, T5} and Tj ∈ {T6, T7, T8, T9, T10, T11} then
the union of the F-orbits OrbF(Ti) ∪ OrbF(Tj) will be an F-critical set, when F is generated
by 〈θ1, θ2, θ4〉.

4.6. Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ1, θ3〉
Discussion Regarding the Access Level for the Autotopisms in the Subgroup 〈θ1, θ3〉

in [6]. Whereas other access levels given in the example in [6] contain too little information,
the access level specified for the subgroup of Atop(K) generated by 〈θ1, θ3〉 gives too
much information.

The subgroup 〈θ1, θ3〉 consists of 5 non-trivial autotopisms, these are autotopisms
denoted by; θ1, θ1θ1, θ3, θ1θ3 and θ1θ1θ3. The example suggests that the F-orbits, where F is
generated 〈θ1, θ3〉, for the triples {T2,T3,T4,T6,T9} should be an F-critical set. However, the
union F-orbits of these triples is the partial Latin square P5, where;

P5 =

∗ 1 2 3 4 5
∗ 2 0 4 5 3
∗ 0 1 5 3 4
3 4 5 ∗ 1 2
4 5 3 ∗ 2 0
5 3 4 ∗ 0 1

Observe that P5 is uniquely completable to L, however, access levels are supposed to
provide the minimal amount of information required to generate the original key. Note
that if either one of the shares T3 or T6 were to be removed from this access level, then one
is still able to generate a uniquely F-completable partial Latin square, hence the specified
set of triples is not an F-critical set when F is generated by 〈θ1, θ3〉. To amend this, each
access level should be defined in such a way that only one triple from the set {T3, T6} is
included.

4.7. Summary of Findings

The above subsections discuss amendments to particular errors in the example in [6].
Following this, it is possible to generalise sets of triples of T that can be combined with

each possible subgroup of the autotopism group Atop(K) generated by some collection
of the autotopisms θ1, θ2, θ3 and θ4. Using the results discussed in Sections 2 and 3, it is
possible to generalise combinations of triples that form F-critical sets under the subgroups
of Atop(K) defined by the autotopisms θ1, θ2, θ3 and θ4. Table A1 in Appendix A details
the combinations of triples that will generate a F-critical set when combined with the
autotopisms stated in the same row of the table. Reasoning behind the constructions of
certain F-critical sets in Table A1 in Appendix A is outlined in Section 4. Table A2 in
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Appendix A provides an example of an F-critical set for each subgroup of autotopisms
generated by elements of the set {θ1, θ2, θ3, θ4}.

5. Conclusions

In this correspondence, minor errors in the original definitions of the F-critical sets
detailed within the paper [6] are amended. The importance of Lemma 2 in determining
both critical sets and F-critical sets within a Latin square is highlighted.

Lemma 2 states that if a partial Latin square P does not contain a critical set for each
Latin subsquare Q ∈ L, where L is a Latin square, P is not be uniquely completable to
L. Further, let a partial Latin square P ⊂ L, where L is a Latin square and let F denote a
subgroup of the autotopism group of L. If the F-orbits of a partial Latin square P, do not
contain a critical set for each Latin subsquare Q ∈ L, then the combination of these triples
and autotopisms do not form an F-critical set. Lemma 2 can therefore be used to eliminate
several partial Latin squares that are not F-critical sets of a Latin square L.

By considering F-orbits that satisfy Lemma 2, F-critical sets of a Latin square K can be
generated, where:

K =

0 1 2 3 4 5
1 2 0 4 5 3
2 0 1 5 3 4
3 4 5 0 1 2
4 5 3 1 2 0
5 3 4 2 0 1

The F-critical sets detailed within the correspondence use subgroups of the autotopism
group of K to generate all possible combinations of the autotopisms θ1, θ2, θ3 and θ4, where;

θ1 = ((012)(345), (0)(1)(2)(3)(4)(5), (012)(345))
θ2 = ((0)(1)(2)(3)(4)(5), (012)(345), (012)(345))
θ3 = ((03)(14)(25), (03)(14)(25), (0)(1)(2)(3)(4)(5))
θ4 = ((0)(1)(2)(3)(4)(5), (03)(14)(25), (03)(14)(25))

The F-critical sets generated by the F-orbits of the triples (0,4;4),(1,1;2),(1,5;3),(2,2;1),
(2,4;3),(3,1;4),(3,2;5), (3,3;0),(4,0;4),(5,3;2),(5,5;1) ⊆ Ent(K) are listed in Table A1 of
Appendix A. For comparison, the suggested F-critical sets for the example in [6] are
listed in Table 1 in Section 1.

If a partial Latin square P satisfies Lemma 2, this does not guarantee that P is uniquely
completable to a Latin square L; however, Lemma 2 does provide a necessary condition,
that if not met, means a partial Latin square P is not uniquely completable. Lemma 2 can
then be applied to all partial Latin squares P of order n. In other words, by looking at all
Latin subsquares of order m within a Latin square L of order n, where m < n, one can
ascertain the critical sets of each Latin subsquare Q within L. Each partial Latin square P
that is uniquely completable to L then contains some combination of critical sets of Latin
subsquares of L, hence by determining the Latin subsquares of L, the problem of generating
the critical sets of L is reduced in size. This approach may similarly be applied to θ-critical
sets or F-critical sets.

Further work is needed to determine necessary conditions for ensuring that a partial
Latin square P is a critical set of a Latin square L, but by the application of Lemma 2, it may
be possible for larger Latin squares of order n to be analysed.
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Appendix A

Table A1 details the newly defined access levels, generated by results in this commu-
nication. Note that m the number of individual shares in each access level.

Observe, that the access level defined by the autotopisms 〈θ3, θ4〉 has been removed
from Table A1, as it is shown that these autotopisms cannot form an F-critical set.

Table A2 gives specific examples of F-critical sets for the Latin square K under the
autotopisms {θ1, θ2, θ3, θ4}. Each F-critical set is constructed in accordance with the specifi-
cations of Table A1.

Table A1. Redefined access levels based upon results of this communication.

m Permutations Triples of P

11 - T

10 〈θ3〉 T exluding one entry from each of the sets {T1,T6} and {T4,T11}

10 〈θ4〉 T exluding one entry from each of the sets {T1,T6} and {T4,T11}

9 〈θ1〉 T excluding one entry from each of the sets {T1,T5}, {T8,T10} and
{T6,T7,T9}

9 〈θ2〉 T excluding one entry from each of the sets {T6,T7}, {T10,T11} and
{T1,T3,T5}

7 〈θ2, θ4〉 Exactly one entry from five out of the following six sets;
{T1},{T2,T3},{T4,T5}, {T6,T7,T8},{T9},{T10,T11}

6 〈θ1, θ3〉 To ensure that two distinct columns of S(0,3) and S(3,0) contain two entries, one triple should
be selected from two of the following three sets {T1, T5, T6}, {T3, T7}, {T9}, to

ensure two distinct columns of S(0,0) and S(3,3) contain entries, two of the three sets;
{T2}, {T4, T11}, {T8, T10} should be selected. To ensure each intercalate contains
at least one entry, at least one element from the following sets should be chosen;

{T1, T2, T5, T6}, {T3, T4, T7, T11}, {T8, T9, T10}

6 〈θ1, θ2〉 Exactly one entry should be chosen from each of the sets {T1,T3,T5}, {T2,T4},
{T6,T7,T9} and {T8,T10,T11}.

6 〈θ1, θ4〉 To ensure that two distinct columns of S(0,0) and S(0,3) contain entries, one triple should
be selected from both of the following sets {T1, T2, T5}, {T3, T4}, to ensure two

distinct columns of S(0,0) and S(3,3) contain entries, one entry from two of the sets;
{T6}, {T7, T11}, {T8, T9, T10} should be selected. To ensure each intercalate contains

at least one entry, at least one element from the following sets should be chosen;
{T1, T2, T5, T6}, {T3, T4, T7, T11}, {T8, T9, T10}

6 〈θ2, θ3〉 To ensure that two distinct columns of S(0,3) and S(3,0) contain entries, one triple should
be selected from two of the following three sets {T1,T6,T7} {T3,T9}, {T5}, to

ensure two distinct columns of S(0,0) and S(3,3) contain entries, two of the three sets;
{T2} {T4,T10,T11}, {T8} should be selected. To ensure each intercalate contains

at least one entry, at least one element from the following sets should be chosen;
{T1, T6, T7, T8}, {T2, T3, T9},{T4, T5, T10, T11}

6 〈θ1,θ3,θ4〉 One entry from each of the sets {T1,T2,T5,T6}, {T3,T4,T7,T11} and
{T8,T9,T10}

6 〈θ2,θ3,θ4〉 One entry from each of the sets {T1,T6,T7,T8}, {T2,T3,T9} and {T4,T5,T10,T11}

5 〈θ1, θ2, θ3〉 One entry from each of the sets {T1,T3,T5,T6,T7,T9} and {T2,T4,T8,T10,T11}

5 〈θ1, θ2, θ4〉 One entry from each of the sets {T1,T2,T3,T4,T5} and {T6,T7,T8,T9,T10,T11}

5 〈θ1, θ2, θ3, θ4〉 One share of T
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Table A2. Examples of access levels as outlined in Table A1.

m Permutations Triples of P m Permutations Triples of P

11 - T 6 〈θ1, θ4〉 {T1, T4, T6, T10}

10 〈θ3〉 T\{T1, T4} 6 〈θ2, θ3〉 {T1, T2, T9, T10}

10 〈θ4〉 T\{T6, T11} 6 〈θ1, θ3, θ4〉 {T1, T3, T10}

9 〈θ1〉 T\{T5, T7, T10} 6 〈θ2, θ3, θ4〉 {T1, T2, T4}

9 〈θ2〉 T\{T5, T6, T11} 5 〈θ1, θ2, θ3〉 {T1, T2}

7 〈θ2, θ4〉 {T1, T2, T4, T6, T9} 5 〈θ1, θ2, θ4〉 {T1, T6}

6 〈θ1, θ3〉 {T1, T3, T4, T8} 5 〈θ1, θ2, θ3, θ4〉 {T7}

6 〈θ1, θ2〉 {T1, T2, T6, T8}
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