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Abstract: In this paper, we apply the pseudospectral method based on the Chebyshev cardinal
function to solve the parabolic partial integro-differential equations (PIDEs). Since these equations
play a key role in mathematics, physics, and engineering, finding an appropriate solution is important.
We use an efficient method to solve PIDEs, especially for the integral part. Unlike when using
Chebyshev functions, when using Chebyshev cardinal functions it is no longer necessary to integrate
to find expansion coefficients of a given function. This reduces the computation. The convergence
analysis is investigated and some numerical examples guarantee our theoretical results. We compare
the presented method with others. The results confirm the efficiency and accuracy of the method.

Keywords: interpolating scaling functions; hyperbolic equation; Galerkin method

1. Introduction

In this paper, we apply the pseudospectral method based on Chebyshev cardinal
functions to solve one-dimensional partial integro-differential equations (PIDEs)

wt(x, t) + αwxx(x, t) = β
∫ t

0
k(x, t, s, w(x, s))ds + f (x, t), x ∈ [a, b], t ∈ [0, T], (1)

with initial and boundary conditions

w(x, 0) = g(x), x ∈ [a, b], (2)

w(0, t) = h0(t), w(1, t) = h1(t), t ∈ [0, T], (3)

where α and β are constants and the functions f (x, t) and k(x, t, s, w) are assumed to be
sufficiently smooth onD := [0, 1]× [0, T] and S with S := {(x, t, s) : x ∈ [0, 1], s, t ∈ [0, T]},
respectively, as prescribed before and such that (1) has a unique solution w(x, t) ∈ C(D).
In addition, we assume that the kernel function is of diffusion type which is given by

k(x, t, s, w(x, s)) := k1(x, t− s)w(x, s), (4)

and satisfies the Lipschitz condition as follows

|k(x, t, s, w(x, s))− k(x, t, s, v(x, s)) ≤ A|w(x, s)− v(x, s)|, (5)

where A ≥ 0 is referred to as a Lipschitz constant.
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In various fields of physics and engineering, systems are often functions of space
and time and are described by partial differential equations. But in some cases, such a
formulation can not accurately model this system. Because we can not take into account
the effect of a past time when the system is a function of a given time. Such systems appear
in heat transfer, thermoelasticity and nuclear reactor dynamics. This phenomenon has
resulted in the inclusion of an integral term in the basic partial differential equation that
leads to a PIDEs [1]. The existence, uniqueness, and asymptotic behavior of the solution
of this equation are discussed in [2]. In this paper, we can find the physical situation that
leads to Equation (1). A Simple example that refers to a PIDEs is considered by Habetler
and Schiffman [3] where the compression of viscoelastic media is studied. For more
applications, we refer readers to [4–7].

Spectral methods are schemes to discretize the PDEs. To this end, they utilize the
polynomials to approximate the exact solution. Since any analytic function can be exponen-
tially approximated by polynomials. In contrast to other methods such as finite elements
and finite differences, these methods can achieve an infinite degree of accuracy. That’s
mean the order of the convergence of the approximate solution is limited only by the
regularity of the exact solution. In other words, for numerical simulations, fewer degrees of
freedom are necessary to obtain a given accuracy. The Galerkin method is a class of spectral
techniques that convert a continuous operator problem to a discrete problem. In other
words, this scheme applies the method of variation of parameters to function space by
transforming the equation to a weak formulation. To implement this method, we can not
compute the integrals analytically. That’s why we can’t use this method in most cases [8,9].
Another method that is closely related to spectral methods is the pseudospectral method.
The pseudospectral methods are a special type of numerical method that used scientific
computing and applied mathematics to solve partial differential equations. These methods
allow the representation of functions on a quadrature grid and cause simplification of the
calculations [10,11].

Several techniques have been used to solve one-dimensional partial differential equa-
tions, such as the finite difference method, finite element method, and spectral method.
In [12], the Legendre-collocation method is used to solve the parabolic Volterra integro-
differential equation. For an infinite domain, Dehghan et al. [12] used the algebraic map-
ping to obtain a finite domain and then they utilized their proposed method. The Legendre
multiwavelets collocation method is used to find the numerical solution of PIDEs [13].
To find the approximate solution of PIDEs, Avazzadeh et al. [14] applied the radial ba-
sis functions (RBFs) and finite difference method (FDM). To solve nonlinear parabolic
PIDEs in one space variable, Douglas and Jones [15] proposed backward difference and
Crank-Nicolson type methods. Han et al. [16] approximated the solution of (1) with kernel
function of diffusion type and on unbounded spatial domains using artificial boundary
method. In [17], a finite difference scheme is considered to solve PIDEs with a weakly
singular kernel.

According to the above, considerable attention has been devoted to solving PIDEs
numerically. In this paper, we introduce a simple numerical method with high accuracy.
To this end, while introducing the Chebyshev cardinal functions, the pseudospectral
method applies to obtain the approximate solution of PIDEs (1). Generally, cardinal
functions {Ci} are polynomials of a given degree that Ci vanishes at all interpolation grids
except xi. These bases are also called the shape functions, Lagrange basis, and so on. One
of the advantages of using such bases is the reduction of calculations to find the expansion
coefficients of a given function. In other words, to find the expansion coefficients based on
these bases, there is no need to integrate, and this is due to the cardinality, which makes
these bases superior to other functions. Laksetani and Dehghan [18] is used Chebyshev
cardinal functions to solve a PDE with an unknown time-dependent coefficient. In [19],
these functions are used to solve the fractional differential equation. Heydari [20] described
a new direct scheme for solving variable-order fractional optimal control problem via
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Chebyshev cardinal functions. For more details about the Chebyshev cardinal functions
and their applications, we refer the reader to [21,22].

This paper is organized as follows, Section 2 is devoted to a brief introduction to
Chebyshev cardinal functions. In Section 3, we presented an efficient and applicable
method based on Chebyshev cardinal functions to solve PIDEs (1). In Section 4, the conver-
gence analysis is investigated and we proved that the proposed method is convergence.
Section 5 is devoted to some numerical tests to show the ability ad accuracy of the method.
Finally, Section 6 contains a few concluding remarks.

2. Chebyshev Cardinal Functions

Given M ∈ N, assume thatM := {1, 2, . . . , M + 1} and X := {xi : TM+1(xi) = 0, i ∈
M} where TM+1 is the first kind Chebyshev function of order M + 1 on [−1, 1]. Recall that
the Chebyshev grid is obtained by

xi := cos
(
(2i− 1)π
2M + 2

)
, ∀i ∈ M. (6)

To utilize the Chebyshev functions of any arbitrary interval [a, b], one can apply the
change the variable x =

(
2(t−a)

b−a − 1
)

to obtain the shifted Chebyshev functions, viz

T∗M+1(t) := TM+1

(
2(t− a)

b− a
− 1
)

, t ∈ [a, b]. (7)

Note that it is easy to show that the grids of shifted Chebyshev function T∗M+1 is equal

to ti =
(x+1)(b−a)

2 + a.
A significant example of the cardinal functions for orthogonal polynomials is the

Chebyshev cardinal functions. The cardinal Chebyshev functions of order M + 1 are
defined as

Ci(x) =
TM+1(x)

TM+1,x(xi)(x− xi)
, i ∈ M, (8)

where the subscript x denotes x-differentiation. It is obvious that the functions Ci(x) are
polynomials of degree M which satisfy the condition

Ci(xl) = δil (9)

where δil is the Kronecker δ-function.
In view of (9), the cardinal functions are nonzero at one and only one of the points

xi ∈ X implies that for arbitrary function p(t), the function can be approximated by

p(t) ≈
M+1

∑
i=1

p(ti)Ci(t). (10)

Assume that Hn([a, b]), n ∈ N (Sobolev spaces) denotes the space of all functions
p ∈ Cn([a, b]) such that Dα p ∈ L2([a, b]) for all α ≤ n, where α is a nonnegative integer and
D is the derivative operator. Sobolov space Hn([a, b]) is equipped with a norm defined by

‖p‖2
Hn([a,,b]) =

n

∑
l=0
‖p(l)(t)‖2

L2([a,b]). (11)

There exista a semi-norm that is defined as follows

|p|2Hn,M([a,b]) =
M

∑
l=min n,M

‖p(l)(t)‖2
L2([a,b]). (12)
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It follows from [23] that the error of expansion (10) can be bounded by the follow-
ing lemma.

Lemma 1. Let {ti}i∈M ∈ X ∗ denotes shifted Gauss-Chebyshev points where X ∗ := {ti :
T∗M+1(ti) = 0, i ∈ M} and that p(t) ∈ Hn([a, b]) can be approximated by pM via

pM(t) =
M+1

∑
i=1

p(ti)Ci(t).

Then one can prove that

‖p− pM‖L2([a,b]) ≤ CM−n|p|Hn,M([a,b]), (13)

where C is a constant and independent of M.

3. Pseudospectral Method

In this section, we apply the pseudospectral method to solve PIDEs (1) based on
Chebyshev cardinal functions. Let us consider the partial integro-differential Equation (1)
on the region Ω× T. We introduce differential operator

L :=
∂

∂t
+ α

∂2

∂x2 , (14)

and integral operator

I := β
∫ t

0
k(x, t, s, .)ds. (15)

Applying these operators, PIDEs (1) can be rewritten in the operator form

(L+ I)(w) = f . (16)

Let the solution of (1) is approximated by the polynomial w̃(x, t), via

w̃(x, t) =
M+1

∑
i=1

M+1

∑
j=1

wn(ti, tj)Ci(x)Cj(t). (17)

If we define a matrix W of dimension (M + 1)× (M + 1) whose (i, j)-th element is
w(ti, tj), then Equation (17) becomes the matrix problem

w̃(x, t) = CT(x)WC(t), (18)

where the vector elements of C(x) are the Chebyshev cardinal functions {Ci(x)}.
Inasmuch as the Chebyshev cardinal functions are polynomial, it is easy to evaluate

their derivatives. In view of (17), one can write

w̃x(x, t) =
M+1

∑
i=1

M+1

∑
i=1

w(ti, tj)Ci,x(x)Cj(t) = CT
x (x)WC(t), (19)

where Cx(x) is a vector of dimension (M + 1) whose i-th element is Ci,x(x). Similarly
we have

w̃t(x, t) =
M+1

∑
i=1

M+1

∑
i=1

w(ti, tj)Ci,x(x)Cj(t) = CT(x)WCt(t), (20)

where Ct(t) is a vector of dimension (M + 1) whose i-th element is Ci,t(t). Suppose
that D ∈ RM+1,M+1 is the operational matrix of derivative whose (i, j)-th element is
Di,j = Ci,t(tj). Thus, it follows from Cx(x) = DC(x) that
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w̃x(x, t) = CT(x)DTWC(t), (21)

and
w̃t(x, t) = CT(x)WDC(t). (22)

It can easily be shown that w̃xx(x, t) is approximated as follows

w̃xx(x, t) = CT(x)DT2
WC(t). (23)

Thus, by substituting (22) and (23) into the differential part of desired Equation (16),
we can approximate the differential operator L (14), via

L(w)(x, t) ≈ CT(x)WDC(t) + αCT(x)DT2
WC(t), (24)

To approximate the integral part, we assume that∫ t

0
C(x)dx = IC(t), (25)

where I ∈ RM+1,M+1 is the operational matrix of integral. It follows from (15) that

I(w)(x, t) = β
∫ t

0
k(x, t, s, w(x, s))ds. (26)

If we replace w with w̃, then one can write

I(w)(x, t) ≈ β
∫ t

0
k(x, t, s, w̃(x, s))ds. (27)

Assume that k(x, t, s, w̃(x, s)) can be approximated by CT(x)KC(t) where K is a matrix
whose elements depend on t and unknown coefficients W. Replacing CT(x)KC(t) into (27),
and using the operational matrix of integration I, we get

I(w)(x, t) ≈ β
∫ t

0
CT(x)KC(s)ds

= βCT(x)K
∫ t

0
C(s)ds

= βCT(x)KIC(t)
= q(x, t) = CT(x)QC(t), (28)

where (i, j)-th element of matrix Q is q(ti, tj). Substituting (25) and (28) into (16), one
can write

CT(x)(WD + αDT2
W + Q)C(t) = CT(x)FC(t). (29)

The Chebyshev cardinal functions {Ci(x)} are orthogonal with respect to weighted
inner product on [−1, 1]

〈Ci(x), Cj(x)〉ω(x) =

{ π
M+1 , i = j,
0, i 6= j,

where ω(x) = 1/
√

1− x2. This gives rise to equation

WD + αDT2
W + Q = F. (30)

Let us rewrite this system as

F (W) := WD + αDT2
W + Q− F = 0. (31)



Mathematics 2021, 9, 286 6 of 14

We Replace the first column of (31) with the initial condition (2) and the first and last
rows of (31) with the boundary conditions (3), i.e.,

[F (W)]i,1 = [WC(0)]i − g(ti),

[F (W)]1,i = [CT(0)W]i − h0(ti),

[F (W)]M+1,i = [CT(1)W]i − h1(ti),

i = 1, . . . , M + 1.

Using the matrix to vector conversion, this system is changed to a new system by
(M + 1)2 equations with (M + 1)2 unknowns{

W̄Γ = F, if k is a nonlinear function of w,
F̄ = F, if k is a linear function of w,

(32)

where W̄, F, and F̄ are obtained using the matrix to vector conversion of W, F, and F
respectively.

After solving the linear or nonlinear system (32) using the generalized minimal resid-
ual method (GMRES) [24] and Newton-Raphson method, respectively, the unknowns W
are found, and then the approximate solution can be obtained using (18).

4. Convergence Analysis

Because the function f (x, t) is a continuous function on D, the approximate error by
comparing the function f with f̃ may be bounded, established by the following theorem.

Theorem 1. Let f : D → R2 be a sufficiently smooth function. Thus Chebyshev cardinal
approximation to function f can be written as

‖ f − f̃ ‖ ≈ O(2−2M). (33)

Proof. Let PM+1(x) denote that polynomial of degree M + 1 which interpolates to the func-
tion f at the M + 1 zeros of the first kind Chebyshev polynomials. It follows from [25] that

| f (x, t)− PM+1(x, t)| = ∂M+1

∂xM+1 f (ξ, t)
ΠM+1

i=1 (x− ti)

(M + 1)!
+

∂M+1

∂tM+1 f (x, η)
ΠM+1

j=1 (t− tj)

(M + 1)!

− ∂2M+2

∂xM+1tM+1 f (ξ ′, η′)
ΠM+1

i=1 (x− ti)ΠM+1
j=1 (t− tj)

(M + 1)!(M + 1)!
.

Since the leading coefficient of the first kind Chebyshev functions is 2M, and |Ti(x)| ≤
1, ∀i ∈ M. It is possible to write

| f (x, t)− PM+1(x, t)| ≤
(

b− a
2

)M+1 1
2M(M + 1)!

(
sup

ξ∈[a,b]
| ∂M+1

∂xM+1 f (ξ, t)|+ sup
η∈[0,T]

|∂
M+1

∂tr f (x, η)|
)

+

(
b− a

2

)2M+2 1
4M((M + 1)!)2 sup

(ξ ′ ,η′)∈D
| ∂2M+2

∂xr∂tM+1 f (ξ ′, η′)|.

Since f̃ is approximated by Chebyshev cardinal functions and these bases are polyno-
mials, thus one can obtain
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‖ f − f̃ ‖2 =
∫∫

D
| f (x, t)− f̃ (x, t)|2dtdx

≤
∫∫

D
| f (x, t)− PM+1(x, t)|2dtdx

≤
∫∫

D

(
b− a

2

)M+1 1
2M(M + 1)!

(
sup

ξ∈[a,b]
| ∂M+1

∂xM+1 f (ξ, t)|+ sup
η∈[0,T]

|∂
M+1

∂tr f (x, η)|
)

dtdx

+
∫∫

D

(
b− a

2

)2M+2 1
4M((M + 1)!)2 sup

(ξ ′ ,η′)∈D
| ∂2M+2

∂xr∂tM+1 f (ξ ′, η′)|dtdx

≤ 2−2M (b− a)2M

(M + 1)!
Cmax(1/2 + 2−2M−2/(M + 1)!)

∫∫
D

dtdx

≤ C12−2M,

where C1 := (b−a)2M

(M+1)! Cmax(1/2 + 2−2M−2/(M + 1)!)|D| and

Cmax := max{ sup
ξ∈[a,b]

| ∂M+1

∂xM+1 f (ξ, t)|, sup
η∈[0,T]

|∂
M+1

∂tr |, sup
(ξ ′ ,η′)∈D

| ∂2M+2

∂xr∂tM+1 |}.

Theorem 2. The pseudospectral method for solving PIDEs (1) is convergence.

Proof. Let w̃ denotes the approximate solution of (1) for which e = w− w̃. We subtract
Equation (1) from

w̃t(x, t) + αw̃xx(x, t) = β
∫ t

0
k(x, t, s, w̃(x, s))ds + f̃ (x, t), (34)

to obtain the following equation

et(x, t) + αexx(x, t) = β
∫ t

0
k(x, t, s, e(x, s))ds + f (x, t)− f̃ (x, t). (35)

Now, Assume that we can approximate the error function e(x, t) as follows

e(x, t) ≈ CT(x)EC(t), (36)

where E is a matrix whose (i, j)-th element is e(ti, tj). Using this approximation and
Lipschitz condition (5), Equation (35) may be written as

CT(x)EDC(t) + αCT(x)DT2
EC(t) ≤ βACT(x)EIC(t) + CT(x)ηC(t), (37)

where | f − f̃ | ≈ CT(x)ηC(t). By dropping the second term in the left to the other side of
the inequality and taking norm from both sides, we have

‖ED‖ ≤ A|β|‖EI‖+ |α|‖DT2
E‖+ ‖η‖. (38)

Because {Ci} are orthogonal functions, we removed ‖C‖ from both sides. Multiplying
the right side of (38) by ‖D‖, it follows that
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‖ED‖ ≤ A|β|‖EI‖‖D‖+ |α|‖DT2
E‖‖D‖+ ‖η‖‖D‖

≤ A|β|‖E‖‖I‖‖D‖+ |α|‖DT2‖‖E‖‖D‖+ ‖η‖‖D‖,

and then

‖E‖‖D‖ ≤ A|β|‖EI‖‖D‖+ |α|‖DT2
E‖‖D‖+ ‖η‖‖D‖

⇒ ‖E‖ ≤ A|β|‖E‖‖I‖+ |α|‖DT2‖‖E‖+ ‖η‖.

So, it is obvious that we shall have

‖E‖
∣∣∣1−A|β|‖I‖ − |α|‖D2‖

∣∣∣ ≤ ‖η‖. (39)

Consequently, we obtain

‖E‖ ≤
∣∣∣1−A|β|‖I‖ − |α|‖D2‖

∣∣∣−1
‖η‖. (40)

If f be a sufficiently smooth function, then ‖η‖ → 0 as M→ ∞. Thus, we have

‖e‖ → 0, as M→ ∞.

Therefore, the proposed method is convergent.

5. Test Problems

Example 1. Let us dedicate the first example to the case that the desired Equation (1) is of form

wt(x, t)− wxx(x, t) = f (x, t)−
∫ t

0
ex(t−s)w(x, s)ds,

with initial and boundary conditions

w(x, 0) = 0, x ∈ [0, 1],

w(0, t) = sin(t), w(1, t) = 0, t ∈ [0, 1],

and also f (x, t) := (−x2+1)ext+(x3+2 x2−x+2) sin(t)+(−x4+x2) cos(t)
x2+1 . The exact solution for this

example is given by [13]
w(x, t) = (1− x2) sin(t).

Table 1 shows a comparison between the proposed method and Legendre multi-
wavelets collocation method [13]. As you can see, our proposed method gives better results
than [13]. According to Table 1, we can see that with fewer bases, we have achieved much
better accuracy than the method in [13]. For different values of M, the errors in Table 2 are
given with L∞, L2 norms applying pseudospectral method based on Chebyshev cardinal
functions. In Figure 1, the approximate solution, and absolute value of error are depicted.
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Table 1. Comparison of the maximum absolute errors at different times for Example 1.

Legendre Multiwavelets Collocation Method [13] Proposed Method

t M = 8 M = 16 M = 32 M = 8

0.0625 7.4383× 10−5 4.6240× 10−6 1.2106× 10−5 2.2070× 10−8

0.1875 7.5155× 10−5 1.2275× 10−5 2.4685× 10−5 1.1514× 10−9

0.3125 1.4643× 10−4 2.5696× 10−5 3.5745× 10−5 4.8570× 10−8

0.4375 7.5929× 10−5 4.2169× 10−5 4.5563× 10−5 1.4616× 10−9

0.5625 1.2180× 10−4 6.0743× 10−5 5.3926× 10−5 1.7855× 10−9

0.6875 1.0567× 10−4 8.1933× 10−5 6.0499× 10−5 1.0870× 10−7

0.8125 4.7215× 10−5 1.0738× 10−4 6.4915× 10−5 5.3619× 10−9

0.9375 2.1869× 10−4 1.3833× 10−4 6.6396× 10−5 3.8717× 10−7

Table 2. The L∞, L2 errors and CPU time for Example 1.

m M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10

‖E‖2 5.8921× 10−3 1.0990×
10−3

5.7105×
10−5

3.2074×
10−6

6.3119×
10−8

4.6636×
10−9

7.3474×
10−11

‖E‖∞ 5.4300× 10−2 1.9000×
10−3

1.1000×
10−3

1.3510×
10−4

3.8717×
10−7

2.3385×
10−8

3.8785×
10−10

CPU time 1.141 1.985 3.953 7.172 15.890 23.515 42.031
Order of convergence - - 1.00679 1.10766 1.24750 1.27087 1.33619

Figure 1. Plot of the approximate solution and absolute value of the error for Example 1.

Example 2. Consider the following PIDEs [14]

wt(x, t)+wxx(x, t) =

(
−x3 +

(
t2 + 1

)
x2 − (t + 1)2x + 2 t

)
e−xt + e−tx

x− 1
−
∫ t

0
es−tw(x, s)ds,

with initial and boundary conditions

w(x, 0) = x, x ∈ [0, 1],

w(0, t) = 0, w(1, t) = e−t, t ∈ [0, 1],

The exact solution for this example is w(x, t) = xe−xt.

In Table 3, we report the L∞, L2 errors and CPU time for different values of M.
These results guarantee our convergence investigation in Section 4. When M increases,
the error decreases, and approaches zero. The L∞, L2 errors obtained by presented method
are compared with Hermite-Taylor matrix method [26] and radial basis functions [14]
in Table 4. According to Table 4, we can see that our presented method is better than
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Hermite-Taylor matrix method [26] and radial basis functions [14]. Finally, we illustrate
the approximate solution and absolute error in Figure 2.

Table 3. The L∞, L2 errors and CPU time for Example 2.

m M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10

‖E‖2 7.4563× 10−4 4.7516×
10−5

3.0177×
10−6

2.3288×
10−7

3.4667×
10−9

2.7823×
10−10

2.4512×
10−12

‖E‖∞ 5.8000× 10−3 1.1697×
10−4

2.6094×
10−5

6.7272×
10−8

5.0805×
10−8

1.74111×
10−9

5.4471×
10−11

CPU time 0.922 1.890 3.578 6.547 15.203 23.344 40.062
Order of convergence - - 1.19642 1.17133 1.29749 1.30468 1.38764

Table 4. Comparison of the L∞ and L2 errors at different times for Example 2.

Reference [14] (M = 12) Reference [26] (M = 40) Proposed Method (M = 10)

t L2-Error L∞-Error L2-Error L∞-Error L2-Error L∞-Error

0.1 7.9401× 10−8 3.9522× 10−8 1.8818× 10−5 1.1285× 10−5 8.6171× 10−15 6.0890× 10−15

0.2 6.7287× 10−8 3.2388× 10−8 2.6480× 10−5 1.6630× 10−5 1.9171× 10−14 8.9706× 10−14

0.3 5.8151× 10−8 2.6768× 10−8 3.0188× 10−5 1.9483× 10−5 3.4101× 10−14 4.2781× 10−14

0.4 5.1314× 10−8 2.3917× 10−8 3.1915× 10−5 2.0935× 10−5 4.7705× 10−14 6.2679× 10−14

0.5 4.6268× 10−8 2.3437× 10−8 3.2470× 10−5 2.1539× 10−5 1.4383× 10−13 3.5485× 10−13

0.6 4.2620× 10−8 2.3220× 10−8 3.2421× 10−5 2.1615× 10−5 2.9489× 10−13 4.3306× 10−13

0.7 4.0062× 10−8 2.3226× 10−8 3.2001× 10−5 2.1366× 10−5 5.3306× 10−13 7.6451× 10−13

0.8 3.8392× 10−8 2.3424× 10−8 3.1393× 10−5 2.0923× 10−5 9.3758× 10−13 1.3921× 10−12

0.9 3.7575× 10−8 2.3788× 10−8 3.0699× 10−5 2.0376× 10−5 1.3326× 10−12 1.3917× 10−12

Figure 2. Plot of the approximate solution and absolute value of the error for Example 2.

Example 3. To show the ability of the proposed method for solving nonlinear PIDEs (1), we
consider the following equation.

wt(x, t) + wxx(x, t) =
∫ t

0
ex+t+sw2(x, s) + f (x, t),

where

f (x, t) =

(
x
(
(cos(t))2 + 2 cos(t) sin(t) + 2

)
ex+2 t − 3 ex+tx− 5 sin(t)

)
x

5
,
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with the boundary and initial conditions

w(x, 0) = x, x ∈ [0, 1],

w(0, t) = 0, w(1, t) = cos(t), t ∈ [0, 1],

The exact solution for this Example is given by w(x, t) := x cos(t). Thus, we can easily judge
the accuracy and convergency of the method.

Figure 3 illustrates the log(L2errors), taking different values for M. To show the order
of convergence, we also plotted the linear regression. The slope of this line is equal to the
order of convergence (1.03248915355714). The numerical values with associated L2 error
and L∞ error are tabulated in Table 5. Finally, we illustrate the approximate solution and
absolute error, taking M = 8 in Figure 4.

Table 5. The L∞ and L2 errors for Example 3.

m M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8

‖E‖2 9.8128× 10−2 5.2408× 10−3 8.3112× 10−4 1.7116× 10−5 5.8815× 10−6 6.8421× 10−7 6.0015× 10−8

‖E‖∞ 3.8674× 10−1 2.9204× 10−2 7.7564× 10−3 2.6865× 10−4 3.9205× 10−5 6.2192× 10−6 4.8173× 10−7

2 3 4 5 6 7 8

M

-8

-7

-6

-5

-4

-3

-2

-1

L
2
 (

lo
g

1
0
 e

rr
o

rs
)

linear regression

0.886926712099999 - 1.03248915355714t

Figure 3. Plot of the log(L2errors) and the linear regression for Example 3.

Figure 4. Plot of the approximate solution and absolute value of the error for Example 3.
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Example 4. The last example is dedicated to equation

wt(x, t)− wxx(x, t) = f (z, t) +
∫ t

0
3xstew(x,s)ds,

where

f (x, t) :=
−3 t2x cos(sin(x)t) sin(x) + 3 tx sin(sin(x)t)− sin(x)(cos(x)− 1)(cos(x) + 1)(t + 1)

(sin(x))2 ,

and

w(x, 0) = 0, x ∈ [0, 1],

w(0, t) = 0, w(1, t) = sin(1)t, t ∈ [0, 1],

Since the closed form of the exact solution to the problem is unavailable, we compute
a reference solution by picking a large M = 12. The L∞, L2 errors, CPU time and order
of convergence are tabulated in Table 6 for different values of M. Figure 5 illustrates the
approximate solution and absolute error, taking M = 9. Table 7 shows the L∞, L2 errors at
the different times, taking different M.

Table 6. The L∞, L2 errors, CPU time and order of convergence for Example 4.

m M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9

‖E‖2 3.9186× 10−2 1.3828×
10−4

9.8169×
10−6

3.2073×
10−7

1.5216×
10−8

3.7417×
10−10

1.3539×
10−11

‖E‖∞ 6.3472× 10−4 7.3752×
10−6

2.8966×
10−6

7.4561×
10−8

3.2107×
10−9

1.5876×
10−11

2.3226×
10−12

CPU time 0.750 1.203 2.547 4.640 8.656 27.703 34.516
Order of convergence - - 1.73646 1.60251 1.51998 1.50915 1.49803

Table 7. Comparison of the L∞ and L2 errors at different times for Example 4.

M = 6 M = 8 M = 10

t L2-Error L∞-Error L2-Error L∞-Error L2-Error L∞-Error

0.1 3.6577× 10−8 7.4561× 10−8 4.3201× 10−11 5.8656× 10−11 3.0868× 10−14 4.9832× 10−14

0.2 8.9209× 10−8 1.7000× 10−7 1.0306× 10−10 1.4755× 10−10 7.3013× 10−14 1.1669× 10−13

0.3 1.4797× 10−7 2.6555× 10−7 1.7008× 10−10 2.4742× 10−10 1.2171× 10−13 1.9019× 10−13

0.4 2.0766× 10−7 3.5705× 10−7 2.4193× 10−10 3.5170× 10−10 1.7217× 10−13 2.6485× 10−13

0.5 2.6816× 10−7 4.4936× 10−7 3.1506× 10−10 4.5674× 10−10 2.2295× 10−13 3.3922× 10−13

0.6 3.3127× 10−7 5.4884× 10−7 3.8600× 10−10 5.6010× 10−10 2.7508× 10−13 4.1582× 10−13

0.7 3.9738× 10−7 6.5574× 10−7 4.5574× 10−10 6.6222× 10−10 3.2645× 10−13 4.9100× 10−13

0.8 4.6191× 10−7 7.5670× 10−7 5.2929× 10−10 7.6617× 10−10 3.7527× 10−13 5.6141× 10−13

0.9 5.1196× 10−7 8.1715× 10−7 6.0246× 10−10 8.7071× 10−10 4.2776× 10−13 6.3991× 10−13

1.0 5.2605× 10−7 8.0354× 10−7 6.3088× 10−10 9.5150× 10−10 4.5370× 10−13 6.7249× 10−13
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Figure 5. Plot of the approximate solution and absolute value of the error for Example 4.

6. Conclusions

In this paper, an efficient and novel numerical method is applied to solve partial
integro-differential equations using the pseudospectral method based on Chebyshev cardi-
nal functions. Due to the simplicity of using cardinal functions, the presented method is
good for solving PIDEs. The convergence analysis is investigated and we can show when
the number of bases increases, the accuracy is also increased. The presented method was
applied to solve some numerical tests and the results guarantee our convergence inves-
tigation and application of the proposed method to this problem shows that it performs
extremely well in terms of accuracy.
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