
mathematics

Article

Computer Vision and Human Behaviour, Emotion and
Cognition Detection: A Use Case on Student Engagement

Pieter Vanneste 1,2,*, José Oramas 3 , Thomas Verelst 4 , Tinne Tuytelaars 4 , Annelies Raes 1,2,5,
Fien Depaepe 1,2 and Wim Van den Noortgate 1,2

����������
�������

Citation: Vanneste, P.; Oramas, J.;

Verelst, T.; Tuytelaars, T.; Raes, A.;

Depaepe, F.; Van den Noortgate, W.

Computer Vision and Human

Behaviour, Emotion and Cognition

Detection: A Use Case on Student

Engagement. Mathematics 2021, 9,

287. https://doi.org/10.3390/math

9030287

Academic Editors: Heui Seok Lim,

Danial Hooshyar, Kyu Han Koh and

Michael Voskoglou

Received: 23 December 2020

Accepted: 27 January 2021

Published: 1 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 KU Leuven, Faculty of Psychology and Educational Sciences, 3000 Leuven, Belgium;
annelies.raes@kuleuven.be (A.R.); fien.depaepe@kuleuven.be (F.D.);
wim.vandennoortgate@kuleuven.be (W.V.d.N.)

2 KU Leuven, imec research group itec, 8500 Kortrijk, Belgium
3 University of Antwerp, Department of Computer Science, Internet Data Lab (IDLab),

2000 Antwerpen, Belgium; Jose.Oramas@uantwerpen.be
4 KU Leuven, Department of Electrical Engineering, research group on Processing Speech and Images (PSI),

3000 Leuven, Belgium; thomas.verelst@kuleuven.be (T.V.); tinne.tuytelaars@kuleuven.be (T.T.)
5 CIREL—Centre Interuniversitaire de Recherche en Education de Lille (ULR 4354), 59650 Villeneuve-d’Ascq, France
* Correspondence: pieter.vanneste@kuleuven.be

Abstract: Computer vision has shown great accomplishments in a wide variety of classification,
segmentation and object recognition tasks, but tends to encounter more difficulties when tasks
require more contextual assessment. Measuring the engagement of students is an example of
such a complex task, as it requires a strong interpretative component. This research describes a
methodology to measure students’ engagement, taking both an individual (student-level) and a
collective (classroom) approach. Results show that students’ individual behaviour, such as note-
taking or hand-raising, is challenging to recognise, and does not correlate with students’ self-reported
engagement. Interestingly, students’ collective behaviour can be quantified in a more generic way
using measures for students’ symmetry, reaction times and eye-gaze intersections. Nonetheless,
the evidence for a connection between these collective measures and engagement is rather weak.
Although this study does not succeed in providing a proxy of students’ self-reported engagement,
our approach sheds light on the needs for future research. More concretely, we suggest that not only
the behavioural, but also the emotional and cognitive component of engagement should be captured.

Keywords: student engagement; synchronous hybrid learning; computer vision

1. Introduction
1.1. Background and Rationale behind the Study

Computer vision techniques have been shown to be successful for tasks such as classi-
fication, segmentation or object recognition. There are plenty of examples across multiple
domains on how computer vision could impact our daily lives [1,2]. In mobility, for exam-
ple, computer vision and radar technologies are key components of the future self-driving
car. In industry, feedback loops with computer vision can contribute to controlling the
quality of products. Additionally, in security applications, facial recognition is increasingly
being used for identity control.

For tasks that require a stronger interpretative component and more contextual as-
sessment, computer vision tends to become less accurate. An example of a subtle task
that may be hard for machines and even for humans concerns recognising human be-
haviour, cognition and emotions. In addition, data for subtle constructs are more scarce,
which makes collecting data more labour intensive. Nonetheless, grasping subtle behaviour,
cognition and emotions will also be necessary in order for computers to attain a level of
intelligence that approaches that of humans. Imagine, for instance, computers that can be
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operated with small gestures, or that account for a user’s emotional or cognitive state [3].
Research on using computer vision to identify such more subtly articulated behavioural,
cognitive or emotional states can progressively contribute to machine intelligence.

This study addresses an example of a multifaceted subtle construct as a case study:
student engagement. The aim of this study is to elaborate a methodology that applies
computer vision techniques to video recordings in an attempt to measure students’ engage-
ment. Interestingly, engagement is usually conceptualised as a three-dimensional construct
consisting of a behavioural, a cognitive and an emotional component [4], which makes it a
suitable concept to uncover how well computer vision can grasp these three components.
In doing so, we take both an individual (student-level) and a collective (classroom-level) ap-
proach.

The video recordings concern lectures in higher education that take place in a hybrid
virtual classroom [5]. In this relatively new learning setting (see Figure 1), on-site and
remote learners are synchronously connected, which makes it even more difficult for the
teacher to grasp the engagement of the student group (see [5] for a more detailed description
of the learning space). If engagement could be measured automatically, this could be used
as immediate feedback to the teacher and support him/her in educational decision making.
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1.2. Possibilities of Computer Vision Techniques to Detect Human Behaviour, Cognition or
Emotion: State of the Art

Regarding recognising human behaviour, computer vision has been shown to be
very successful in pose estimation (thanks to applications like OpenPose, see [6]) and in
action recognition.

Regarding assessing human emotion, a large body of research has mainly addressed
the seven universal emotions: fear, anger, sadness, disgust, contempt, surprise and en-
joyment. These emotions can be related to movements of the facial muscles described
in the Facial Action Coding System [7], which, in turn, can be recognised by computer
vision. State-of-the-art results [8] have shown accuracies that typically exceed 90% for
subject-dependent analyses (when applying different classifiers to different individuals),
and exceed 70% for subject-independent approaches (when applying the same classifier
across all individuals). However, these accuracies depend on the method used, the size
of the training set, the emotion that is addressed and the extent to which that emotion is
pronounced. More subtle emotions tend to be much more difficult to identify, as they are
less linked to the muscles of the human face, and as training data are less abundant.

As far as human cognition is concerned, research employing computer vision is
scarce. Mental states are more difficult to infer from facial expression than emotional states,
for two main reasons. A first reason is that whereas emotional states can be identified
from a few frames or even a single frame, mental states show more temporal dependency,
requiring multiple frames to be identified. A second reason is that, whereas emotional
states can be analysed solely based on information from facial muscles, analysing mental
states also requires information from head gestures and eye-gaze measures (pupil dilation,
micro-saccades, etc.) [9]. The spatial resolution that is required to assess eye-gaze measures
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is usually not (yet) achieved in classroom settings, and taking pupillometry from a con-
trolled lab environment to the real world involves quite some challenges [10]. Because of
the additional complexities that come with recognising mental states, cognition is rarely
measured by computer vision, but rather by self-reporting or by neuroscientific methods
such as electroencephalography. Still, Kaliouby and Robinson [9], who aimed to assess
(dis)agreement, concentration, uncertainty, thinking and interest from facial expression
and head movement, reported an average correct classification rate of 89.5%.

1.3. Engagement and Its Relevance for Learning

Engagement in learning is often considered as a multifaceted construct [4,11,12], par-
ticularly consisting of three dimensions: a behavioural, a cognitive and an emotional
dimension. The behavioural dimension represents all actions related to students’ par-
ticipation and involvement during their learning. The cognitive dimension covers the
mental resources that students invest during their learning processes. Finally, the emo-
tional dimension concerns positive and negative affective states and reactions to teachers,
fellow students and the school.

Given the relevance of engagement in terms of students’ learning outcomes [13,14]
and retention in education [15], many researchers have attempted to keep track of students’
engagement. It is generally acknowledged that retention and engagement are fundamental
weaknesses of distance education compared to conventional education [16]. Fostering en-
gagement in an attempt to decrease drop-out is therefore a key challenge in distance
learning. It is important that teachers can keep track of the engagement of their students if
they want to be able to act upon it.

Unfortunately, teachers’ options to grasp students’ engagement that exist in face-
to-face settings partly disappear in distance education. Although it is not straightfor-
ward to understand why this happens, we put forward two main reasons for this phe-
nomenon. A first reason is that teachers’ and students’ non-verbal immediacy behaviours
(e.g., eye-contact, movement, facial expression, vocal variety) that generate the perception
of closeness between students and the teacher are less prominent in distance settings [17].
These non-verbal immediacy behaviours are not only known to foster learning [18], but pre-
sumably also help teachers to sense the engagement of their classroom (see also the sys-
tematic review on synchronous hybrid learning by Raes [19]). A second reason is that in
distance settings, the behaviour of students is reflected through various channels, to which
the teacher cannot possibly pay attention at the same time. In the hybrid virtual classroom
setting, as examined in the current study, for example, students are simultaneously present
in the classroom and on LCD screens, participate in interactive quizzes and in a chatroom,
etc. Because there are fewer non-verbal immediacy behaviours and because students’
behaviour is scattered across different channels, monitoring students’ engagement becomes
more difficult, and teachers need to rely on other methods to do so. The next paragraphs
discuss the most common traditional methods to measure engagement, and a novel method
to do so, namely computer vision.

1.4. Measuring Engagement

One of the traditional approaches to measure engagement is via self-reporting [20].
However, self-reports interrupt the learning process, and may as such also influence
learning itself. In addition, the frequency at which self-reports can be collected is limited,
as subjects cannot be interrogated on a permanent basis. Collecting self-reports after the
learning process requires a post hoc reconstruction of one’s own engagement, which may
be more biased. Moreover, the information on the classroom engagement is then not
available during the classroom activity itself, so teachers cannot act upon it.

Observations are another traditional approach to measure engagement. They consist
of having teachers or external observers complete a questionnaire on students’ engage-
ment [21]. An advantage of observations compared to self-reports is that they do not
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interrupt the learning process. Nonetheless, the temporal resolution of observations is
limited, and collecting them is labour intensive.

Another traditional way to measure engagement is by keeping track of time-on-task.
As an example, Spanjers et al. [22] established a small partial correlation (r = .30) between
students’ self-reported engagement and the time spent on a task. Time-on-task in learning
exercises has also been shown to strongly influence academic achievement [23]. In a
context of computer-based learning, it is possible to automatically keep track of time-
on-task. However, this is not possible when students do not merely learn through an
electronic device, but rather in a class setting in which all students work in a common time
period. Because this study looks into the automatic measurement of engagement during
synchronous learning, time-on-task is not further investigated.

In addition to the aforementioned “practical” limitations, self-reports are also prone
to several more fundamental limitations. As an example, it is not straightforward to
assess one’s own mental or emotional state. Furthermore, subjects cannot capture their
unconscious emotions [24]. Brown et al. [25] acknowledge that self-reports are prone to
many complex pitfalls, most of which cannot be easily resolved. Interestingly, the authors
also mention pitfalls that researchers can actually avoid to some extent, such as issues
related to reliability, grading, social response bias, response style, influences of peers and
the environment in general. As an example, researchers are encouraged to create a climate
that allows students to make honest, insightful and evidence-based judgements.

Despite these practical and fundamental limitations, self-reporting remains a valuable
and often-used instrument in many research areas. A particular strength of self-reports is
their relatively high construct validity, as self-reports at least directly inquire the construct
of interest. The subjective nature of self-reports is not necessarily an obstacle, as it is
learners’ subjective perception that actually determines their behaviour during learning.

It is primarily the aforementioned “practical” limitations of self-reports in combination
with their rather high construct validity that have inspired some of today’s innovative
research projects. This made researchers wonder if self-reports could somehow be replaced
by a model consisting of directly measurable engagement proxies.

Unlike machines, humans can use their intelligence to give meaning to a complex
interrelatedness of behaviour, cognition, emotion and context. Nonetheless, driven by the
drawbacks that are inherent to self-reporting and observations, several researchers have
attempted to measure engagement using machine intelligence, through computer vision.
In doing so, two main approaches can be distinguished. In a first and most often addressed
approach, individual learners are analysed. In a second approach, the collective behaviour
of a group of learners is analysed.

When analysing individual learners’ engagement through computer vision, researchers
either focus on their behaviour (the actions they exhibit), or on their emotions. As previ-
ously argued, cognition is usually not addressed, as this comes with additional complexities.
The behavioural dimension of engagement may include effort, attention, participation and
persistence [26], concepts which are manifested by actions such as students raising their
hand, taking notes, wrinkling, yawning, interacting with each other or with the teacher,
exhibiting a certain body pose, etc. Several studies have attempted to recognise such
actions using computer vision techniques and evaluate the obtained accuracy.

An important nuance to the majority of the studies mentioned below is that although
these studies in general reached relatively high action recognition precision, they did not
address the strength of the connection between these indicators and engagement (e.g.,
by comparing computer vision measures to self-reports or observations).

An often-addressed action is hand-raising. Wang et al. [27] elaborated a two-stage
method consisting of body pose estimation and hand-raising detection and achieved
up to 95% precision and 90% recall. Lin, Jiang and Shen [28] analysed a large-scale
dataset consisting of 40,000 examples of hand-raising gestures and achieved 85% overall
detection accuracy. Böheim, Knogler, Kosel and Seidel [29] did not employ computer
vision, but human observers, with an aim to study the association between hand-raising
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and motivation (which covaries with engagement to an important extent [30]). Their results
indicated that students’ hand-raising explains—depending on the lecture topic—between
11 and 15% of the variance in their motivation. In sum, it seems that hand-raising can be
detected relatively well by means of computer vision, and there is some evidence for a
weak but significant association with students’ engagement.

Students’ eye-gaze directions have also been used as an indicator of engagement.
Barbadekar et al. [31] analysed whether students’ heads were directly facing the teacher,
and if so, students were assumed to be engaged. Canedo, Trifan and Neves [32] built a
prototype to track students’ faces and their eye gaze direction, while assuming that the
more students’ eye-gazes differ from the camera direction (the location of the teacher,
the slides or the blackboard), the lower their level of attention is.

Researchers have also attempted to detect actions that indicate disengagement, such as
yawning and sleeping. Li, Jiang and Shen [33] investigated sleep detection and applied it
to a dataset containing 3000 images of students in a real classroom setting, including 5000
sleep gesture targets (some pictures included multiple targets). Their method obtained an
average precision of 75%. Wang, Jiang and Shen [27] addressed yawning with a dataset of
12,000 samples and reached up to 90% detection accuracy.

Regarding the emotional aspect of engagement, the most commonly used method that
does not interrupt learners is facial expression analysis. As the majority of research focuses
on the facial expression of the seven universal emotions [7], there is less knowledge on other,
more subtle and multifaceted emotional or cognitive states, such as engagement, which are
typically less pronounced in the face. Nonetheless, some researchers have attempted to
recognise engaged faces through computer vision.

Nezami et al. [34] annotated facial expressions of over 4600 samples of students’
faces in terms of emotional and behavioural engagement. Students were annotated as
behaviourally engaged when they were looking at the screen or down to the keyboard.
Accuracies of around 72% were achieved to distinguish engaged from disengaged samples
(note that the chance level equals 50%). Machardy, Syharath and Dewan [35] classified
images across 20 individuals as bored or engaged. Labels were annotated by the users
themselves. The overall accuracy reached 72%. Bosch et al. [36] seeked out to detect
several affective states of 137 students playing educational games. Classification accuracies
for engagement reached around 68% compared to trained observers’ ratings. Note that
these studies distinguished engaged from disengaged samples, and did not consider more
fine-grained engagement scales.

Besides analysing individual learners, some researchers have also taken a collective
approach, analysing groups of learners as a whole. In a study from Raca, Tormey and Dil-
lenbourg [37], the level of attention was measured based on the synchronisation of students’
actions and reaction times (referred to as sleepers’ lag by the authors). More specifically,
Raca et al. [37] verified whether there was a correlation between the average reported level
of attention and the reaction speed, obtained by analysing movement intensity graphs.
Although the obtained Kendall correlation had the expected trend (τ = −0.259), it was not
significant (p = 0.06) for the observed sample (n = 29). The idea of Raca et al. [37] to use the
variance in reaction time of the classroom as a whole, in an attempt to obtain a measure
for the classroom, is equally used in this study. However, this study does not examine
reaction times based on movement intensity graphs, but based on transitions between
latent students’ states. These latent states are obtained via unsupervised clustering of
students’ joints and body parts (see further).

2. Research Gaps and Aim of This Study

There is relatively little research on how to measure subtle human behaviour, cognition
or emotion through computer vision. That is why this study elaborates a methodology to
measure engagement, as an example of one such subtle states.

The field still wonders if there is a single “gold standard”, pinpointing multidimen-
sional concepts like engagement or cognitive load [38]. Being aware of the many limitations
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of self-reporting, it is still one of the best available criteria to measure engagement. That is
why we decided to use self-reports as a gold standard for engagement. By simultaneously
collecting engagement self-reports and monitoring different kinds of computer vision
measures, this study aims to investigate if computer vision measures could serve as prox-
ies for engagement. If effect sizes are strong enough, a combination of computer vision
proxies could potentially be used to measure engagement, and self-reports could be omit-
ted. This would then enable one to keep track of engagement continuously and in an
automatic way.

The study may be interesting for computer vision as well as educational researchers
and practitioners, by providing insights into the strengths and shortcomings of computer
vision in view of measuring the multifaceted construct of engagement.

More precisely, this study sets the following objectives:

(1) At the individual (student) level:

(1a) Describing a methodology to apply computer vision to detect student-level
indicators for engagement (hand-raising, note-taking, etc.) and evaluating
how well computer vision can detect these, in terms of precision and recall;

(1b) evaluating how well these indicators can measure self-reported engagement.

(2) At the collective (classroom) level:

(2a) Describing a methodology to apply computer vision to detect classroom-level
indicators for engagement (a measure for synchronicity, students’ reaction
times and shared eye-gaze intersections);

(2b) evaluating how well these indicators can measure self-reported engagement.

3. Methodology
3.1. Participants, Setting, Procedure, Self-Reporting and Annotations

This study’s empirical data originate from two different groups of participants.
The first group of participants includes 14 students of grade 12 from a Belgian secondary
education school. These students follow a general education programme that prepares
them for higher education, and includes Latin as a major topic. There are 4 female and
10 male students (average age = 17.5 years). These students are followed during six lectures
on economics and marketing, an elective subject they voluntarily applied for. The lectures
last around 70 min each and take place in a hybrid virtual classroom. In this relatively
new educational setting, both face-to-face and virtual students can simultaneously attend
a lecture. In the first two lectures, all students follow face-to-face. The third and fourth
lectures are mixed, in that half of the students attend the lecture face-to-face, the other half
virtually. In the last two lectures, the teacher is alone in the classroom, and all students
attend the lecture virtually (the way in which these different learning settings affect stu-
dents’ relatedness, intrinsic motivation and learning achievement has been investigated
by Raes [5]). Five relatively large (55 inch) screens at the back of the classroom can each
simultaneously display four virtual students. The classroom can give space to about 25
face-to-face students.

During these lectures, student engagement is inquired via digital pop-ups that appear
at random moments on their computers, with interval times that differ from student to
student and range from 5 to 12 min. Students were explained that they should position
the slider fully to the left if they felt totally disengaged (a score of 0), and fully to the
right if they felt totally engaged (a score of 2). When students were in a neutrally engaged
state, we explained to them to position their slider in the middle. As the scale was quasi-
continuous, all other positions could be used to represent intermediate engagement states.
These self-reports are used as a gold standard for engagement. All six lectures resulted
in a total amount of 580 digital self-reports for students’ engagement (on average about
40 measurements per student).

The second group of participants includes 51 first year university students (38 female,
13 male, aged around 18.5 years). Most participants are enrolled in a programme on educa-
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tional sciences, with a smaller number of participants studying mathematics, engineering
or chemistry. These students attended six traditional face-to-face lectures, each lasting
around 1 h 20 min. The topic of the lecture is educational technology and mainly deals
with educational theories that underpin how technology can foster learning. During these
lectures, students’ engagement was not repeatedly inquired. The classroom is fairly tradi-
tional and can fit about 50 students within six different rows. The only reason to include
this group of participants was to test the collective approach to measuring engagement
(see further), and to increase the amount of annotations for students’ individual actions.
In total, 1031 annotations were made for students’ individual actions, for the entire set
of recordings.

All students signed an informed consent form indicating their voluntary participa-
tion in the study. The study was approved by the ethical commission of the university
(reference G- 2018 06 1264).

Before the start of the study, students were informed about the learning settings that
they would experience. Students did not know that the aim of this research in particular
was to study whether the monitored manifest variables could measure their engagement.
Nonetheless, students realised that they were monitored, which most probably had some
effect on their behaviour in the classroom. However, as students were followed during
multiple lectures, we believe that their behaviour was quite natural, although we assume
that explicit off-task behaviour was greatly reduced.

3.2. High-Level Overview of Data-Processing Pipeline

A camera mounted in front of the classroom provides a video stream of all students.
In order to extract meaningful higher-level representations from this video stream, the first
processing stage applies a body pose estimator on the image, extracting students’ body
keypoint locations (joints and other parts of the body). Interesting advantages of body pose
estimators are that they can be trained on a large variety of data and are robust against
camera viewpoint changes.

The second stage uses the body keypoint locations to estimate students’ engagement
levels. Training a neural network that directly estimates engagement levels from these
keypoint locations was considered. However, this would require annotations of students’
engagement levels by independent observers that watched the videos of the lectures, a task
which is, even for human observers, not straightforward. Nonetheless, these manual
annotations could then serve as a ground truth to train a computer vision algorithm for
detecting engagement, based on the position of students’ body parts. A major concern
of this approach is that it would require a huge amount of training data, for two reasons.
First, the high dimensionality of the space: there are 2N dimensions representing the 2D
positions of N different parts of the body. Second, we do not expect a strong association
between the position of a single part of the body and engagement, but rather a complex
association between the entirety of body parts and engagement. Because covering the
entire n-dimensional space with training data (manual annotations) was far from possible,
the dimensionality of the latent space has to be reduced. To that aim, our approach extracts
meaningful and unidimensional intermediate measures that could be derived from the N
positions of the parts of the body.

The indicators for student engagement can be split into two groups: measures of
individual behaviour and measures of collective behaviour. The predicted poses are taken
as input by an action recognition component, which is in charge of providing cues for
behaviour at the individual level. These cues represent action units of which the literature
has shown their possible relevance for student (dis)engagement (actions such as raising
hands, taking notes, etc.). In parallel, the predicted poses are also given as input to a
collective analysis component which will aggregate the body poses of all students and
which will provide cues related to the collective/group behaviour of students in the
classroom. Such measures are related to synchrony or reaction times [37]. This high-level
approach is illustrated in Figure 2.
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This study does not address facial expression, for two main reasons. A first reason is
that facial expression analysis requires a relatively high spatial resolution, which may be
hampered in real-world classroom settings that include rather cheap cameras, large groups
of students that may be positioned relatively far away and bandwidth limitations. A second
reason is that more subtle emotional or cognitive states, such as engagement, tend to be
less pronounced in the face.

The body pose estimation is described in more detail in Section 3.3, the action detector
in Section 3.4 and the collective analysis in Section 3.5.

3.3. Estimating Body Poses of Students in the Classroom

Body pose estimation algorithms estimate the locations of N human keypoint locations,
based on an image. These are joints and other parts of the body, including the nose, ears,
chin, shoulders, elbows, wrists, hips and legs. Contemporary computer vision algorithms
are based on deep learning methods. We use the popular OpenPose library [6].

In order to identify internal states that can represent every student appearing in the
videos, and potentially new students, we compute the pose representation pm,t for every
student em at time t in every training video. We represent the location of keypoint n at
time t as a 2D image (xn,t; yn,t). A pose, being a set of keypoints, for a student em in the
classroom at time t is then given by pm,t = [(x1,t,y1,t); (x2,t,y2,t); . . . ;(xN,t,yN,t)]. This produces,
at each time t, a data matrix P = [p1,t; p2,t; . . . ; pN,t.] in RM×N×2 where M represents the
total number of students in the videos and N corresponds to the dimensionality of the pose
representation p.

Given that in the classroom setting, keypoints related to legs are not visible, we will
limit further analysis to keypoints from the upper body (torso, head and arms). This re-
duces the total set of keypoints per student to 13, thus producing a 26-dimensional pose
representation pm per student em.

In order to compensate for the perspective effects introduced by the position of the
camera, we conduct a two-step normalisation process on the pose representation pm,t of
each student em at time t. First, we centre every predicted pose (pm,t’ = pm,t − cm,t) w.r.t.
its neck keypoint cm,t. Then, we divide the centred coordinates of each keypoint from
pm,t’ by the width and height of the rectangle defined by the shoulder and hips keypoints
from pm,t’.

3.4. Recognising Individual Behaviour from Students’ Body Poses

Manual annotations are made for 8 actions that are relevant for student engagement:
hand-raising, note-taking, hand on face, working with laptop, looking back, fiddling
with hair, playing with cellphone and crossing arms. In total, we annotated 1031 sample
clips. For each action, 10% of the clips are used as a test set. The other clips serve as
training data for computer vision techniques in an attempt to learn to recognise these
actions automatically.

We trained a deep learning-based action classifier following a transfer learning ap-
proach: a general action classification network, trained on a large variety of data, is re-
trained to detect actions in this specific classroom setting. Such an approach reduces the
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amount of labeled training data, since the pretrained backbone network already extracts
meaningful features. The general action classifier is based on the state-of-the-art i3D
model [39], which takes as input a clip of about 2 seconds and generates a rich representa-
tion with 1024 dimensions. We train a separate classification head for each sample class.
The classification head is a multilayer fully connected neural network with three layers of
512, 256 and 2 neurons, respectively.

As well as the accuracy in detecting students’ individual and collective behaviour,
we also attempt to investigate if and how these behaviours relate to the engagement scores.
For this purpose, multilevel regression is used, to account for the nesting of the engagement
scores (level 1) within students (level 2). The following equation applies:

yti = β0 + β1timeti + β2 computer_vision_measureti + r0i + eti (1)

yti refers to the engagement score of student i at time t. The first two terms (β0 + β1timeti)
in the equation model the average trajectory of engagement over time. The third term
(β2 computer_vision_measureti) models the average effect of students’ behaviour (de-
tected by computer vision) on their engagement.

The random intercept, r0i, captures individual differences in engagement levels. In this
way, the model can also account for the possible individual nature of students’ self-
reporting, in that some students may systematically report higher or lower engagement
scores (this phenomenon is known as grade inflation).

Finally, the residual eti represents the deviation in y at time t around a subjects’
individual trajectory, due to noise, measurement error or the influence of other confound-
ing variables.

3.5. Quantifying Collective Behaviour from Students’ Body Poses
3.5.1. Estimating Intermediate Individual State Representations

After obtaining the normalised pose representation of each student, we attempt to
cluster keypoint combinations, dividing the data contained in the pose representation
matrix P into groups that represent similar poses students can take. In our experiments,
this grouping process is conducted via k-means clustering, minimising the squared Eu-
clidean distance between points and centroids. As a result of the grouping (clustering)
process, each pose representation pm,t’ in P is assigned a corresponding cluster id si which
indicates its state at a given frame (time t). We decided to start our experiments with a
relatively smaller number of k = 12 states. This number was large enough to distinguish
sufficient states and, at the same time, low enough to ease the generation of discernible
visualisations that will be used in later steps of the analysis. No other number for k
was investigated.

In order to verify this observation, we run the clustering approach, focusing on three
different subsets of keypoints: upper body (14 keypoints), head (6 keypoints) and arms
(6 keypoints). This allows us to allocate students to different clusters based on the position
of their joints and body parts.

3.5.2. Measuring Collective States

Consequently, the proportion of students over the possible states si within a temporal
window ∆t is computed. This distribution will provide insight on whether students,
or subsets of them, are behaving in synchrony or in a random fashion.

To this end, we compute the collective state distribution Ψsi ,t, representing the pro-
portion of students in state si at time (frame) t over a temporal window ∆t composed
of T frames. As illustrated in Figure 3, Ψsi ,t is computed by assigning to each student
the state label si that he or she adopted with the highest frequency within ∆t after time t.
Using a temporal window ∆t to calculate the collective state distribution is advantageous
over using real-time calculations because temporal windows average out possible noisy
predictions introduced by the pose estimator.
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Figure 3. Example of the clustering approach applied to the keypoints of students’ heads. Students are allocated to different
clusters depending on their eye-gaze direction (here in a face-to-face setting). Students allocated to the red cluster tend to
look to the front. The yellow, light green and dark blue clusters group students that are looking to the side or backwards.
The feature spaces covered by each of these clusters only differ in a subtle and not necessarily meaningful way. As an
example, the students allocated to the yellow cluster seem to have a larger nose-to-chest distance. The blue cluster includes
a student that is looking down. Results are less consistent for the dark red cluster that includes two front-row students that
were wrongly detected. The graph in the top right corner shows Ψsi ,t, the collective state distribution.

We use Ψsi ,t to compute two collective measures that may be relevant in view of the
classroom engagement: a measure for collective behaviour, and a measure for the reaction
time to educational events in the classroom. This procedure is visualised in Figure 4.
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3.5.3. Collective State Transition: A Measure to Detect Synchrony and Educational Events

An educational event is defined as any specific event that may simultaneously impact
the engagement of the students in the classroom (e.g., when a student or the teacher asks a
question, when students start interacting with each other, when an interactive quiz, a video
or a new part of the lecture being started, etc.). The hypothesis put forward is that when
educational events occur, the way in which students are distributed over the k different
clusters changes in a relatively short period of time. Indeed, one could assume that an
educational event may cause students to react and eventually change their body pose pm,t’,
which may in turn result in allocation to a different cluster si. Collective state transition
(CST) is defined as the sum, over all k clusters, of the squared differences between the
proportion Ψsi ,t of the students that are allocated to cluster si at time t and the students
that are allocated to cluster si at time t + ∆t, divided by the interval time ∆t. As such,
CST represents the extent to which students simultaneously switch to similar postures
(in indication for collective behaviour, or symmetry). In a formula, this becomes:

CSTt =
i=k

∑
i=1

(
Ψsi ,t − Ψsi ,t+∆t

)2

∆t
(2)

where:
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• k is the total number of clusters, obtained by applying unsupervised clustering to
students’ joints and body parts;

• ∆t is the time interval between two consecutive calculations (e.g., 0.5 s for a stride of
2 frames per second);

• Ψsi ,t is the proportion of students that are assigned to cluster si at time t;
• Ψsi ,t+∆t is the proportion of students that are assigned to cluster si at time t + ∆t.

The hypothesis put forward is that an educational event occurs in the classroom
when students simultaneously switch to similar postures, which we can detect by CST
exceeding a certain threshold value τ. In addition, we investigate if higher values of CST
will correspond to higher engagement levels.

3.5.4. From Collective Behaviour to Individual Behaviour: The Variance in Students’
Reaction Time to Classroom Events

When CST exceeds τ and an educational event may be happening, it is checked which
students changed cluster between the moment CST was exceeded and the moment CST
dropped again below another threshold value τ’.

Then, it is calculated how much time it took for each student to change cluster. Let us
indicate the time for student em to change cluster upon educational event e by Timem,e.

Finally, the variance in cluster changing time (VCCT) is calculated. This is the vari-
ance in Timem,e required for all M students to change cluster si after the occurrence of an
educational event e. The following formula applies:

VCCTe =
m=M

∑
m=1

(
Timem,e − Timee

)2

M − 1
(3)

where:

• M is the total number of students.
• Timem,e is the time for student m to change cluster upon educational event e.
• Timee is the average time across students to change cluster upon educational event e.

Inspired by the research of Raca et al. [37], the hypothesis put forward is that VCCT is
an indicator of students’ engagement. More specifically, we assume that the classroom is
more engaged at time ta than at time tb, when at ta the variance in reaction time is lower and
the proportion of students that react to the event is higher. Figure 5 shows a visualisation
of this idea.
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3.6. Assessing the Number of Eye-Gaze Intersections That Students Share

This study also addresses eye-gaze interactions, by detecting the number of eye gazes
that each pair of students share within a certain time window. Both the eye-gaze intersec-
tions at the individual (student) level and at the collective (classroom) level are quantified.
The aim is to study the relatedness between the eye-gaze intersection frequency and the
engagement self-reports. As such, the time window is centred around the occurrence of
the self-reports, ranging from one minute before to one minute after the self-report.
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4. Results
4.1. Recognising Individual Behaviour

Following our experiments, we observed that the action classifier does not perform
equally well for all kinds of actions. We distinguish four reasons that have caused these
low precision and recall values.

First, for all of the four actions that were mentioned, there was only a small number
of annotations (between 37 and 185) available for training the computer vision algorithm.
This reduces its capability to generalise and its robustness. To alleviate the effect of few
annotations, the model follows a transfer learning approach by means of an i3D feature
extractor pretrained on the Kinetics dataset. Despite this approach, the number of annotated
samples still remains rather small.

Second, most of these actions are quite subtle, in that the position of students’ body
keypoints (used for the analysis) does not change much compared to a neutral position.
This is, for example, the case for the action “playing with cellphone”. When a certain action
is so subtle, the discriminative visual clue to detect is too small, and the computer vision
algorithm sometimes fails to do so.

Third, some of these actions are quite similar to others, in particular from certain
viewpoints. As an example, fiddling with hair can be easily confused with hand on face or
with raising a hand. The similarity of these actions results in some actions being erroneously
recognised as other actions.

A final reason is that, in our classroom setting, some of the actions are prone to
occlusion. This is, for example, the case for “working with laptop”, as students’ hands and
cellphones are often occluded behind their laptops. Moreover, students sitting at the back
of the classroom are often occluded by students that are sitting more to the front of the
classroom.

The number of annotated samples and the obtained precision and recall are mentioned
in Table 1. Given that the performance was found to be unsatisfactory for six of the eight
actions, we decided only to withhold the two most accurate ones in our further analysis:
hand-raising and note-taking.

Table 1. Binary action classification on top of i3D features for each class.

Annotated Samples Precision Recall

Raising hand 85 0.67 0.59
Taking notes 315 0.69 0.63
Hand on face 185 0.35 0.32

Working with laptop 76 0.26 0.31
Looking back 84 0.50 0.53

Fiddling with hair 45 0.17 0.11
Playing with

cellphone 37 0.22 0.38

Crossing arms 48 0.27 0.50

4.2. Measuring Engagement through Students’ Individual Behaviour

As well as accuracies in detecting this behaviour through computer vision, we are
also interested in the correlation between this behaviour and students’ engagement. Re-
sults from the multilevel analysis indicate that both hand-raising (t(284) = −0.20, p = 0.99)
and note-taking (t(284) = 0.00, p = 0.83) are not related to students’ individual self-reported
engagement scores.

4.3. Recognising Collective Behaviour
4.3.1. Unsupervised Clustering

As regards unsupervised clustering, a detailed analysis demonstrated that clusters
related to students’ heads were more consistent and more informative than clusters related
to students’ upper bodies and arms. Clusters related to students’ upper body and arms
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are not considered for further analysis because these were highly subject to “random”
movements that were not meaningful in terms of engagement. In addition to that, joints and
body parts belonging to these clusters were more often invisible because other students
that were sitting more to the front of the classroom occluded them. Therefore, only the
clusters related to students’ heads were kept for further analysis.

4.3.2. Collective State Transition: A Measure to Detect Synchrony and Educational Events

First, the optimal temporal window to calculate CST (collective behaviour) was inves-
tigated. Human observations of several samples across videos of the face-to-face lectures
(a total length of 103 min was analysed) showed that a ∆t of 4 s is optimal to detect class-
room events. If ∆t is too short, e.g., 1 s, some classroom events are overlooked, because
only a small proportion of students react within that short timeframe, resulting in the
threshold value τ of the CST not being exceeded. If ∆t is too long, e.g., 15 s, the classroom
event cannot be detected either because the length of the window is much longer than the
reaction time of most students, resulting in the flattening of peaks in the value of CST.

In addition, an optimal value for the threshold value τ was addressed. Further human
observations of recordings showed that a good threshold value for τ in order to be a reliable
indicator for classroom events is 0.2 × 10−3 s−1. If the threshold value is lower, it sometimes
gets exceeded, while no educational event happened (false positives). If the threshold
value is higher, some educational events are missed (false negatives). The analysed sample
of 103 min indicated a recall of 63% for classroom events being visible, as peaks in CST
exceeded τ, and a precision of 45% for peaks in CST corresponding to classroom events.

From that analysis, it is also concluded that when CST drops again below a threshold
value of 0.1 × 10−3 s−1, this is a good indication for the end of that classroom event.

4.4. Measuring Engagement through Students’ Collective Behaviour
4.4.1. CST

The multilevel analysis that applies to the individual engagement scores for each stu-
dent did not establish a significant relationship between engagement and CST ((t(284) = 1.24,
p = 0.22). Next to individual engagement, the average engagement score across the entire
classroom was also studied, and its association with CST. Figure 6 indicates that high
degrees of synchrony (CST > τ) correspond to high levels of classroom engagement. A mul-
tilevel analysis confirmed this observation, in that a significant effect of a dichotomous
indicator based on CST (equal to 1 when CST exceeds τ, and 0 otherwise) on classroom
engagement (t(387) = 2.54, p = 0.01) was established.
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Despite this significant finding, this relationship is not very strong and we found that
it is also possible that the classroom is engaged while students do not show any collective



Mathematics 2021, 9, 287 14 of 20

behaviour. In addition, the events characterised by high values in CST all correspond
to the start of the first lecture (where students were seemingly both synchronous and
engaged) and not to multiple moments spread out in time, which makes the evidence of the
significance of the association between engagement and collective behaviour much weaker.

4.4.2. The Variance in Students’ Reaction Time to Educational Events

The results show that the variance in students’ reaction time to educational events does
not correlate with the average engagement of the classroom (r = 0.03, p = 0.69). The same
observation applies to the mean of students’ reaction times (r = −0.07, p = 0.42) and to the
proportion of students that react to an educational event by changing cluster (r = −0.08,
p = 0.33). The scatterplots in Figure 7 illustrate these observations.
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Separate plots and analyses are foreseen for the pure face-to-face setting (lectures 1
and 2) and for the hybrid setting (lectures 3 and 4). The pure virtual lectures 5 and 6 are
not analysed, as virtual students cannot share eye gazes.

The results suggest that eye gazes in the classroom do not covary with engagement for
lectures 1 and 2 (r = −0.13, p = 0.21), but do covary for lectures 3 and 4 (r = 0.59; p < 0.001).
When analysing the graphs (see Figure 8) more closely, it seems that there is no correlation
within a lecture, but there is some correlation between lectures, in that students are more
engaged and at the same time share more eye gazes during lecture 3 than during lecture
4. It seems that lecture 3 triggered the students more than lecture 4, both in terms of
engagement and the eye gazes students share.
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5. Discussion
5.1. Discussion of This Study’s Main Findings on Individual Behaviour

Regarding the recognition of students’ individual behaviour, the results show that it is
not yet straightforward to recognise students’ actions in the classroom through computer
vision, and some actions are more difficult to recognise than others. Similarly, as with
Wang et al. [40], we found that recognising actions typically becomes more challenging as
the degree of variation with which the action can be exhibited (both within and between
students) increases, the number of joints that are involved increases, there is more interfer-
ence with other similar actions and there are fewer annotations available. The hand-raising
study by Wang et al. [27], for example, uses a much larger dataset (>10,000 hand-raising
samples versus 85 in our study), which resulted in a higher accuracy of 95%.

Regarding the measurement of engagement through students’ individual behaviour,
the results are somewhat disappointing. Although there is a theoretical ground for a
connection between several of the investigated actions (note-taking and hand-raising) and
engagement, no significant correlations were established in our sample.

5.2. Discussion of This Study’s Main Findings on Collective Behaviour

This study quantified students’ collective behaviour by applying unsupervised clus-
tering to students’ body keypoints. In this way, measures could be obtained for students’
synchrony, eye-gazes and reaction times.

Regarding the measurement of engagement through these measures for collective
behaviour, this study found a significant association between the engagement of the
classroom and the extent to which students simultaneously change body poses, a measure
for their synchrony. Despite this interesting finding, this correlation was only found
between the first lecture and the other lectures, which makes the evidence of this association
rather weak. Students’ reaction times did not relate to their self-reported engagement either.
As for students’ eye-gaze intersections, a significant correlation was established with the
classroom engagement, but this was merely a correlation between lectures rather than
within a lecture. A possible explanation for this is that lecture 3 was the first time students
experienced the hybrid setting. It is plausible that this novelty effect both resulted in higher
engagement levels and more interaction, manifested by more eye-gaze intersections.

5.3. Limitations of the Study

An important limitation is that the way in which this study measures individual and
collective behaviour is tightly connected to the behavioural component of engagement,
but does not cover the emotional and cognitive components, although these components
are represented in students’ self-reported score. As a result, students who are mainly cog-
nitively and emotionally engaged, but not exhibiting explicit engaged behaviour, may not
be recognised as actually being engaged.

Capturing the different components of engagement is important as they only covary
to a limited extent [26]. Interrogating the different engagement components may be inter-
esting, as this would enable us to reveal how different indicators relate to the behavioural,
emotional and cognitive component separately.

Another limitation is the limited sample size, both in view of the number of partici-
pants and the number of lectures that were recorded, which reduces the study’s statisti-
cal power.

The way in which engagement is inquired also has its limitations, as the criterion
validity of self-reporting is not perfect. Self-reporting scales may cause some subjects to
consistently report lower or higher scores than others. This phenomenon creates some
additional variance in the data, which makes it more difficult to detect significant effects,
if these exist. Furthermore, this additional variance puts a certain “upper limit” on the
variance in the self-reported engagement that the manifest variables can eventually explain.

Although this phenomenon cannot be entirely mitigated, multilevel regression models
are well suited to deal with this, as they include person-specific intercepts to represent



Mathematics 2021, 9, 287 16 of 20

differences between subjects, which can, for example, account for students consistently
reporting higher or lower engagement levels. This functionality improves the robustness
of the parameter estimation, even if some subjects tend to indicate higher/lower scores
than others.

We expect the social response bias in reporting engagement to be small, as participants
did not benefit from reporting high scores. Participants were also sufficiently old to
understand abstract concepts such as engagement. Apart from this, there may have been
an influence of peers, as students had the possibility to exchange experiences about the
study in between different lectures.

Another limitation concerns the conceptualisation of engagement: as a trait, or as a
state [41]. This conceptualisation affects the extent to which engagement can fluctuate.
When engagement is operationalised as a trait (e.g., at the institute level), it refers to how
engaged someone is with a certain educational programme in general [42]. This concep-
tualisation implies that engagement is relatively constant over time, as it is influenced by
students’ characteristics (academic self-concept, sense of belonging, interest in the academic
programme, etc.) that do not change rapidly. Another way to operationalise engagement
is as a state, i.e., the extent to which students engage during a lecture. If students partici-
pate more actively (behaviour), invest more mental resources (cognition) and show more
positive reactions to the topic of the lecture, the teacher and the fellow students (emotion),
we assume students are more engaged. The second conceptualisation is the one that is used
in our research. It implies that engagement is malleable and can fluctuate over the course
of a lecture [43]. Nonetheless, we agree that the variation of engagement within a lecture
may be somewhat limited. From a research perspective, this is a pity, as the somewhat
limited variations in engagement during a lecture make the proxies for engagement less
visible, thereby reducing statistical power.

A final limitation arises from the cultural lens through which engagement is measured.
As engagement is socially constructed, it is perceived differently across cultures [44]. Per-
ceptions of emotion are not universal, but depend on cultural and conceptual contexts [44].
Parents also have an effect on their children, by transferring a “cultural toolkit” to them,
that impacts their attitude and preferences [45]. As an example, Western countries may
tend to associate engagement more with its behavioural component (e.g., assertiveness,
hand-raising and discourse), whereas other cultures may value the cognitive component
more (thoughtful attentiveness). As a result, self-reporting scores as well as associations
between engagement and its proxies may differ across cultures. In a similar line of thought,
engagement may also depend on students’ personality and the context of the classroom as
a whole (fellow students, teaching style, etc.).

5.4. Assets of the Study

Irrespective of these results, the methodology to quantify collective behaviour may
be a promising approach for future research. Clustering the most meaningful keypoints
and detecting changes in the distribution across clusters over time has several advantages.
A first advantage is its generalisability, which enables us to apply this method to variables
other than engagement or to settings other than the hybrid virtual classroom. A second
advantage is that the collective approach does not require the identification of individuals,
which makes it less privacy intrusive. A third advantage is that the uni-dimensional
(or low-dimensional) collective measures require fewer data to investigate the problem at
hand than the initial high-dimensional latent space. A final advantage is that a measure
that is inaccurate in a non-systematic way, and thus not suitable on an individual level,
may still provide an accurate estimation for groups, as the aggregation tends to cancel out
individual differences.

This work may also inspire researchers in the teaching and learning field regarding
methods that are used to conduct manual video analysis [46], in two particular ways. First,
computer vision may automate the recognition of several actions, which could make the
counting process more efficient. Second, computer vision enables us to quantify certain
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complex measures in a more precise way than is possible with manual video analysis,
expanding the number of events that can be kept track of (think about measures related to
synchrony, eye gaze or reaction times).

5.5. Implications for Practice and Future Research

The nonexistent or weak associations that this study obtained do not yet allow us to
measure students’ engagement in an accurate way. As a consequence, and even irrespective
of ethical concerns, we recommend being very careful when monitoring students in terms
of their engagement through computer vision. Based on this study’s results, we advise not
to display any of the addressed measures (e.g., synchrony, eye-gaze intersections, hand-
raising, note-taking, etc.) on teacher dashboards, as they may give teachers the unjustified
impression that they represent an accurate measure of the engagement of their classroom.

Extending the current approach to better cover the behavioural component of engage-
ment, as well as to cover parts of the emotional and cognitive components of engagement,
could result in better estimations. Therefore, additional data sources could be monitored,
taking a more multimodal approach. Regarding behavioural engagement, more actions
could be monitored, such as students’ participation in a chat room and their participation
in interactive quizzes. To cover the emotional component, facial recognition could still be
considered, as far as the spatial resolution and the classroom setting (occlusion) allow it.
Covering the cognitive component remains challenging, as neuroscientific methods are
typically intrusive and expensive, and their accuracy is still limited. Conducting discourse
analysis to capture students’ thoughts and therefore part of their emotional and cognitive
engagement is another option to further extend the multimodal approach. To operationalise
this idea in an automatic way, students’ voices could be captured by means of natural lan-
guage processing. Alternatively, one may also think of an application to analyse students’
notes in real time.

Even with a multimodal approach, estimating the engagement of a specific student will
most likely still be difficult. Estimating the average engagement of a group may be more
feasible as this may cancel out non-systematic inaccuracies of individual measurements,
but even this approach is uncertain. If the engagement measurement could be improved,
it could be given as feedback to teachers, who could combine this information with an
interpretation of the classroom context. In this way, computer vision could provide objective
information to a human agent, who could employ his or her ability to interpret this
information together with a complex interplay of context, emotions and past events. In this
way, in a similar vision as that of Luckin [47], AI does not replace teachers, but supports
them, to solve educational challenges together.

It is important to be aware of aspects related to ethics and privacy when monitoring
students and analysing their data, and accounting for them before deploying a monitoring
system of any kind. More specific guidelines, however, are not the focus of this study,
and are therefore not further expanded upon.

6. Conclusions

This study has elaborated a methodology to detect individual behaviour (hand-raising,
note-taking) as well as collective behaviour (symmetry, reaction times, eye-gaze intersec-
tions) of students in a hybrid virtual classroom. Computer vision techniques allow us
to recognise individual behaviour with reasonable accuracy and precision, and they can
also quantify collective behaviour, via unsupervised clustering. However, none of the
investigated measures for individual behaviour is found to correlate significantly with
students’ self-reported engagement. Nonetheless, at the collective level, a weak but signifi-
cant connection is established between the classroom engagement on the one hand and
students’ collective behaviour and students’ eye-gaze intersections on the other hand.

Based on this and some other studies’ findings, we recommend not to use computer
vision techniques to estimate students’ engagement. Only if it can be clearly demonstrated
that engagement can be measured sufficiently precisely, which includes also grasping
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the cognitive and emotional component, does it make sense to provide teachers with
that information. Even then, we suggest that teachers combine this estimate with their
perception of the entire classroom context, emotion and past events, in an aim to obtain a
reliable engagement estimate of their classroom.
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