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Abstract: For a simple graph G = (V, E) with no isolated vertices, a total Roman {3}-dominating func-
tion(TR3DF) on G is a function f : V(G)→ {0, 1, 2, 3} having the property that (i) ∑w∈N(v) f (w) ≥ 3
if f (v) = 0; (ii) ∑w∈N(v) f (w) ≥ 2 if f (v) = 1; and (iii) every vertex v with f (v) 6= 0 has a neighbor u
with f (u) 6= 0 for every vertex v ∈ V(G). The weight of a TR3DF f is the sum f (V) = ∑v∈V(G) f (v)
and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman
{3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-
domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we
present a linear-time algorithm to compute the value of γt{R3} for trees.

Keywords: dominating set; total roman {3}-domination; NP-complete; linear-time algorithm

1. Introduction

Let G = (V, E) be a graph with vertex set V = V(G) and edge set E = E(G).
For every vertex v ∈ V, the open neighborhood NG(v) = N(v) = {u ∈ V(G) : uv ∈ E(G)}
and the closed neighborhood NG[v] = N[v] = N(v) ∪ {v}. We denote the degree of v
by dG(v) = d(v) = |NG(v)|. A vertex of degree one is called a leaf and its neighbor is a
support vertex, and a support vertex is called a strong support if it is adjacent to at least two
leaves. Let Sn be a star with order n. A tree T is an acyclic connected graph. G = (G1 ∪ G2)
is a union graph G such that V(G) = V(G1) ∪V(G2) and E(G) = E(G1) ∪ E(G2).

Given a graph G and a positive integer k, assume that f : V(G) → {0, 1, 2, ..., k} is
a function, and suppose that (V0, V1, .., Vk) is the ordered partition of V introduced by f ,
where Vi = {v ∈ V(G) : f (v) = i} for i ∈ {0, 1, ..., k}. Then we can write f = (V0, V1, .., Vk)
and ω f (V(G)) = ∑v∈V(G) f (v) is the weight of a function f of G.

A subset S of a vertex set V(G) is a dominating set of G if for every vertex v ∈ V(G) \ S,
there exists a vertex w ∈ S such that wv is an edge of G. The domination number of G
denoted by γ(G) is the smallest cardinality of a dominating set S of G [1]. A function
f : V(G)→ {0, 1} is called a dominating function(DF) on G if every vertex u with f (u) = 0
has a vertex v ∈ N(u) such that f (v) = 1 [2]. The dominating set problem(DSP) is to
find the domination number of G, which has been deeply and widely studied in recent
years [3–7].

A subset S of a vertex set V(G) is a total dominating set of G if
⋃

v∈S N(v) = V(G).
The total domination number of G denoted by γt(G) is the smallest cardinality of a total
dominating set S of G [8]. The literature on the subject of total domination in graphs has
been surveyed and provided in detail in a recent book [9]. Moreover, Michael A. Henning
et al. presented a survey of selected recent results on total domination in graphs [10].

The mathematical concept of Roman domination is originally defined and discussed
by Stewart et al. [11] and ReVelle et al. [12]. A Roman dominating function(RDF) on graph
G is a function f : V(G) → {0, 1, 2} such that every vertex v ∈ V(G) for which f (u) = 0
is adjacent to at least one vertex u with f (u) = 2 [13]. The Roman domination number of
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G is the minimum weight overall RDFs, denoted by γR(G) [14]. On the basis of Roman
domination, signed Roman domination [15], double Roman domination [16] and total
Roman domination [17] have been proposed recently.

The total Roman dominating function(TRDF) on G is an RDF f on G with an additional
property that every vertex v ∈ V(G) with f (v) 6= 0 has a neighbor u with f (u) 6= 0. Let
γtR(G) denote the minimum weight of all TRDFs on G. A TRDF on G with weight γtR(G)
is called a γtR(G)-function. The conception of TRDF was first defined by Hossein Ahangar
et al. [18]. In addition, Nicolás Campanelli et al. studied the total Roman domination
number of the lexicographic product of graphs [17] and Chloe Lampman et al. presented
some basic results of Edge-Critical Graphs [19].

The Roman {2}-dominating function (also named Italian domination) f [20] intro-
duced by Chellali et al. which is defined as follows: f : V(G) → {0, 1, 2} has the prop-
erty that ∑u∈N(v) f (u) ≥ 2 for f (v) = 0 [21]. Chellali et al. proved that the Roman
{2}-domination problem is NP-complete for bipartite graphs [21]. Hangdi Chen showed
that the Roman {2}-domination problem is NP-complete for split graphs, and gave a
linear-time algorithm for finding the minimum weight of Roman {2}-dominating function
in block graphs [22]. As a generalization of Roman domination, Michael A. Henning et al.
studied the relationship between Roman {2}-domination and dominating set parameters
in trees [20].

A Roman {3}-dominating function(R{3}DF) f defined by Mojdeh et al. [23], which is
defined as follows: f : V(G)→ {0, 1, 2, 3} has the property that for every vertex v ∈ V(G)
with f (v) ∈ {0, 1} and ∑u∈N(v) f (u) ≥ 3. Mojdeh et al. presented an upper bound on the
Roman {3}-domination number of a connected graph G, characterized the graphs attaining
upper bound and showed that the Roman {3}-domination problem is NP-complete, even
restricted to bipartite graphs [23] .

The total Roman {3}-domination [24] was studied recently . The total Roman {3}-dominating
function(TR3DF) on a graph G is an R{3}DF on G with the additional property that every
vertex v ∈ V(G) with f (v) 6= 0 has a neighbor w with f (w) 6= 0. The minimum weight of
a total Roman {3}-dominating function on G denoted by γt{R3}(G) is named the total Ro-
man {3}-domination number of G. A γt{R3}(G)-function is a total Roman {3}-dominating
function on G with weight γt{R3}(G). Doost Ali Mojdeh et al. showed the relationship
among total Roman {3}-domination, total domination, and total Roman{2}-domination
parameters. They also presented an upper bound on the total Roman {3}-domination
number of a connected graph G and characterized the graphs arriving this bound. Finally,
they investigated that total Roman {3}-domination problem is NP-complete for bipartite
graphs [24].

In this paper, we further investigate the complexity of total Roman {3}-domination
in planar graphs and chordal bipartite graphs. Moreover, we give a linear-time algorithm
to compute the γt{R3} for trees which answer the problem that it is possible to construct
a polynomial algorithm for computing the number of total Roman {3}-domination for
trees [24].

2. Complexity

In this section, we study the complexity of total Roman {3}-domination of graph. We
show that the total Roman {3}-domination problem is NP-complete for planar graphs and
chordal bipartite graphs. Consider the following decision problem.

Total Roman {3}-Domination Problem TR3DP.
Instance: Graph G = (V, E) , and a positive integer m.
Question: Does G have a total Roman {3}-function with weight at most m?

Please note that the dominating set problem is NP-complete for planar graphs [25]
and chordal bipartite graphs [26]. We show the NP-completeness results by reducing the
well-known NP-complete problem, dominating set, to TR3D.
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Let G be a graph on n vertices. Let Tv be the tree with V(Tv) = {v, va, vb, vc, vd, ve, v f , vp, vq},
E(Tv) = {vva, vavc, vcve, vcv f , vvb, vbvd, vdvp, vdvq}, as depicted in Figure 1.

Figure 1. The tree Tv.

Let G′ be the graph obtained by adding edges between v′ ∈ Tv′ and v′′ ∈ Tv′′ if
v′v′′ ∈ E(G) from the union of the trees Tv for v ∈ V(G). Please note that |V(G′)| =
n× |V(Tv)| = 9n and |E(G′)| = |E(G)|+ n× |E(Tv)| = |E(G)|+ 8n.

Lemma 1. If G is a planar graph or chordal bipartite graph , so is G′.

Lemma 2. ([24]) Let Sn be a star with n ≥ 3, then γt{R3}(Sn) = 4.

Lemma 3. Let g be a TR3DF of G. If v is a strong support vertex of G, then ωg(N[v]) ≥ 4.

Proof of Lemma 3. Let v1, v2, .., vk be leaves of v with k ≥ 2. Since g(N[vi]) ≥ 3 for
i ∈ {1, 2, .., k}, we have g(vi) ≥ 3 − g(v) for i ∈ {1, 2, .., k}. Then ωg(N[v]) = g(v) +
∑i∈{1,2,...,k} g(vi) ≥ g(v) + g(v1) + g(v2) ≥ 6− g(v). If g(v) ≤ 2, it is clear that ωg(N[v]) ≥
4. If g(v) = 3, there exists a vertex u ∈ N(v) with g(u) 6= 0. Then ωg(N[v]) ≥ 4.

Lemma 4. If f is a DF of G with ω f (G) ≤ `, then there exists a TR3DF g of G′ with ωg(G′) ≤
`+ 8n.

Proof of Lemma 4. For each v ∈ V(G), we define g as follows: V(Tv) → {0, 1, 2, 3},
g(va) = g(vb) = 1, g(vc) = g(vd) = 3, g(v) = f (v), g(x) = 0 otherwise. It is clear that g is
a TR3DF of G′. Therefore we have that ωg(G′) = ω f (G) + 8n ≤ `+ 8n.

Claim 1. Let g be a TR3DF of G′, then ωg(T′v) ≥ 8.

Proof of Claim 1. By Lemmas 2, 3 and definition, we have that ωg(N[vc]) ≥ 4 and
ωg(N[vd]) ≥ 4. Since N(vc)

⋂
N(vd) = ∅, then we can reduce ωg(T′v) = ωg(N[vc]) +

ωg(N[vd]) ≥ 8.

Claim 2. If there exists a TR3DF h of G′ with h(va) + h(vb) ≥ 3 for va, vb ∈ V(Tv), then there
exists a TR3DF g of G′ such that ωg(G′) ≤ ωh(G′) and g(va) + g(vb) ≤ 2.

Proof of Claim 2. By the definition of TR3DF, we have ωh(N[ve]) ≥ 3 and ωh(N[vp]) ≥ 3,
then we have ωh(T′v) ≥ 9.

If h(v) = 0, then we define g : V(G′)→ {0, 1, 2, 3} such that g(ve) = g(v f ) = g(vp) =
g(vq) = 0, g(v) = g(va) = g(vb) = 1 , g(vc) = g(vd) = 3, g(x) = h(x) otherwise, seeing
Figure 2. Therefore g is a TR3DF of G′ such that g(va) + g(vb) ≤ 2 and ωg(G′) = ωh(G′).

If h(v) ≥ 1, then we define g : V(G′)→ {0, 1, 2, 3} such that g(ve) = g(v f ) = g(vp) =
g(vq) = 0, g(va) = g(vb) = 1 , g(vc) = g(vd) = 3, g(x) = h(x) otherwise. Therefore g is a
TR3DF of G′ such that g(va) + g(vb) ≤ 2 and ωg(G′) ≤ ωh(G′).
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Figure 2. Pre-labeling of g.

Lemma 5. If g is a TR3DF of G with ωg(G′) ≤ ` + 8n, then there exists a DF f of G with
ω f (G) ≤ `.

Proof of Lemma 5. By Claim 2, w.l.o.g, let g be a TR3DF of G′ with g(va) + g(vb) ≤ 2 for
va, vb ∈ V(Tv), v ∈ V(G). Define f : V(G)→ {0, 1} such that f (v) = g(v) if g(v) ≤ 1, and
f (v) = 1 if g(v) ≥ 2. For each vertex v ∈ V(G), since g(va) + g(vb) ≤ 2, we have g(v) ≥ 1
or there exists a vertex u ∈ N(v) ∩V(G) such that g(u) ≥ 1. Therefore f is DSF of G and
ω f (G) ≤ ωg(G)− 8n ≤ ` by Claim 1.

Theorem 1. By Lemmas 1, 4, 5, the total Roman {3}-domination problem is NP-complete for planar
graphs and chordal bipartite graphs.

3. A Linear-Time Algorithm for Total Roman {3}-Domination in Trees

In this section, we present a linear-time algorithm to compute the minimum weight of
total Roman {3}-dominating function for trees. First, we define the following concepts:

Definition 1. Let u be a vertex of G, and let F(i,j)
u,G on G be a function f : V(G) → {0, 1, 2, 3}

having the property that (i) f (u) = i, ∑w∈N(u) f (w) ≥ j; (ii) ∀v ∈ V(G) \ {u}, ∑p∈N[v] f (p) ≥
3 if f (v) ≤ 2 and ∑p∈N(v) f (p) ≥ 1 if f (v) = 3.

Definition 2. The minimum weight overall F(i,j)
u,G functions on G denoted by γ

(i,j)
tR3 (u, G) is the

F(i,j)
u,G number of G, and a γ

(i,j)
tR3 (u, G)-function is an F(i,j)

u,G function on G with weight γ
(i,j)
tR3 (u, G).

Definition 3. Let coil(x) be a function defined as follows: coil(x) =

{
x, x ≥ 0;
0, x < 0.

Lemma 6. For any graph G with specific vertex u, we have

γt{R3}(G) = min{γ(0,3)
tR3 (u, G), γ

(1,2)
tR3 (u, G), γ

(2,1)
tR3 (u, G), γ

(3,1)
tR3 (u, G)}.

Lemma 7. Suppose T1 and T2 are trees with specific vertices v and u, respectively. Let T3 be the
tree with the specific vertex u, which is obtained by joining a new edge uv from the union of T1 and
T2, as depicted in Figure 3.
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Figure 3. T3.

Then the following statements hold for γ
(i,j)
tR3 (u, Tk).

(a) For i = 0, j ∈ {0, 1, 2, 3}, we have :

γ
(0,j)
tR3 (u, T3) = min{γ(3,1)

tR3 (v, T1) + γ
(0,0)
tR3 (u, T2),

min{γ(s,3−s)
tR3 (v, T1) + γ

(0,coli(j−s))
tR3 (u, T2)|s = 0, 1, 2}}

(b) For i ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3}, we have :

γ
(i,j)
tR3 (u, T3) = min{γ(s,coil(3−i−s))

tR3 (v, T1) + γ
(i,coil(j−s))
tR3 (u, T2)|s = 0, 1, 2, 3}

Proof of Lemma 7. Let V(T′1) = V(T1) ∪ {u}, E(T′1) = E(T1) ∪ {vu}, f be a γ
(i,j)
tR3 (u, G)-

function of T3, f ′ be the restriction of f on T′1 and f ′′ be the restriction of f on T2.

(a) If f is a γ
(0,j)
tR3 (u, T3)-function on T3 , for j ∈ {0, 1, 2, 3}. By the definition of

γ
(i,j)
tR3 (u, G)-function, we have that if f (v) = 3, then ∑w∈NT3\{u}

f (w) ≥ 1. It follows from

the fact that f is a γ
(0,j)
tR3 (u, G)-function of T3 if and only if f = f ′′ ∪ f ′ , where at least

one of followings holds: (i) f ′′ is a γ
(0,0)
tR3 (u, G)-function of T2 , f ′ is a γ

(3,1)
tR3 (v, T1)-function

of T1 ; (ii) f ′′ is a γ
(0,coil(j−s))
tR3 (u, G)-function of T2 , f ′ is a γ

(s,3−s)
tR3 (v, T1)-function of T1,for

s ∈ {0, 1, 2}.
(b) It follows from the fact that f is a γ

(i,j)
tR3 (u, T3)-function of T3, for i ∈ {1, 2, 3},

j ∈ {0, 1, 2, 3} if and only if f = f ′′ ∪ f ′, where f ′′ is a γ
(i,coli(j−s))
tR3 (u, T2)-function of T2 and

f ′ is a γ
(t,coil(3−i−s))
tR3 (v, T1)-function of T1, for s ∈ {0, 1, 2, 3}.

Lemmas 6 and 7 give the following dynamic programming algorithm 1 for the total
Roman {3}-domination problem in trees.

Algorithm 1 Counting γt{R3} in trees.

Input: A tree T with a tree ordering [v1, v2, .., vn].
Output: the TR3D number γt{R3}(T) of T.

1 for p = 1 to n do
2 for i = 0 to 3, j = 0 to3 do
3 if j=0 then
4 γ(i,j)(vp)← i;

5 else
6 γ(i,j)(vp)← ∞;

7 for p = 1 to n− 1 do
8 let vq be the parent of vp
9 for i = 0 to 3 and j = 0 to 3 do

10 if i=0 then
11 γ(i,j)(vq)=min{min{γ(s,3−s)(vp) + γ(i,coil(j−s))(vq)|s = 0, 1, 2}; γ(3,1)(vp) + γ(i,0)(vq)};
12 else
13 γ(i,j)(vq)=min{γ(s,coil(3−i−s))(vp) + γ(i,coil(j−s))(vq)|s = 0, 1, 2, 3};

14 return min{γ(0,3)(vn), γ(1,2)(vn), γ(2,1)(vn), γ(3,1)(vn)}
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4. Conclusions

The total Roman {3}-domination problem was introduced and studied in [24] , and it
was proven to be NP-complete for bipartite graphs. In this paper , we prove that the total
Roman {3}-domination problem is NP-complete for planar graphs or chordal bipartite
graphs , and showed a linear-time algorithm for total Roman {3}-domination problem on
trees. For the algorithmic aspects of the total Roman {3}-domination problem , designing
exact algorithms or approximation algorithms on general graphs , or polynomial algo-
rithms for total Roman {3}-domination problem on some special classes graphs deserve
further research.
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