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Abstract: In this paper, approaches to the numerical recovering of the initial condition in the inverse
problem for a nonlinear singularly perturbed reaction–diffusion–advection equation are considered.
The feature of the formulation of the inverse problem is the use of additional information about
the value of the solution of the equation at the known position of a reaction front, measured experi-
mentally with a delay relative to the initial moment of time. In this case, for the numerical solution
of the inverse problem, the gradient method of minimizing the cost functional is applied. In the
case when only the position of the reaction front is known, the method of deep machine learning is
applied. Numerical experiments demonstrated the possibility of solving such kinds of considered
inverse problems.

Keywords: inverse problem of recovering the initial condition; reaction–diffusion–advection equa-
tion; inverse problem with data on the reaction front position

MSC: 35R30; 65M32

1. Introduction

This paper discusses the inverse problem of numerical recovering of the initial condi-
tion for a nonlinear singularly perturbed reaction–diffusion–advection equation with data
on the position of a reaction front, measured in an experiment with a delay relative to the
initial time. Problems for equations of this type arise in gas dynamics [1], chemical kinet-
ics [2–6], nonlinear wave theory [7], biophysics [8–12], medicine [13–16], ecology [17–19]
and other fields of science [20]. A feature of this type of problem is the presence of multi-
scale processes. Mathematical formulations of these problems are described by nonlinear
parabolic equations with a small parameter at the highest derivative. Therefore, solutions
of these problems are able to contain narrow boundary and/or interior layers (stationary
and/or moving fronts).

In the formulations of inverse problems for partial differential equations additional infor-
mation about the solution on a part of the boundary is often used (see, for example, [21–30]).
For example, in formulation of so-called inverse backward problem (or retrospective inverse
problems) it is required to find a solution at the initial time from a known solution at the

Mathematics 2021, 9, 342. https://doi.org/10.3390/math9040342 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5140-3617
https://orcid.org/0000-0001-7408-724X
https://doi.org/10.3390/math9040342
https://doi.org/10.3390/math9040342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040342
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/342?type=check_update&version=1


Mathematics 2021, 9, 342 2 of 12

final time [31–33]. This type of problem is ill-posed [24,34,35]. For solving retrospective
inverse problems for parabolic equations the following methods have been used: quasi-
reversibility [36,37], optimal filtering [38], boundary element [39], mollification [40], group
preserving [41], operator-splitting [42], Fourier regularization [43,44], modified Tikhonov
regularization [45], sequential function specification [31], and collocation [46].

However, one of the possible formulations of the inverse problem for determining
the initial condition is a statement with additional information about the dynamics of the
reaction front movement, if it is available for experimental observation (position of the
shock wave front, reaction or combustion front, etc.). Moreover, under certain conditions,
observation of the reaction front can be started only with a certain time delay. This may be
due to both experimental limitations and the fact that at the initial moment of time there is
no reaction front at all. The latter case is possible in a situation in which the reaction front is
formed (and, therefore, can be observed) only some time after the start of the experiment.

The difference between the formulations of inverse problems of recovering the initial
condition with the data at the final time moment and with the data on the position of the
reaction front measured with a time delay are shown in Figure 1.

Figure 1. Formulations of the inverse problem of recovering the initial condition: (a) formulation
with data at the final time moment (an inverse backward problem), (b) formulation with data on the
position of a reaction front measured with a time delay.

The formulation of the inverse problem of recovering the initial condition considered
in this paper is quite new.

In the proposed formulation, it is impossible to extract a priori information about the
solution of the inverse problem using the methods of asymptotic analysis [2,47], because
the data of the inverse problem do not contain information about the reaction front at
all times, including the initial time. This significantly distinguishes this work from the
previous works of the authors [48–50]. Now we consider the formulation of the inverse
problem, in which the requirement for the presence of an experimentally distinguishable
reaction front at the initial moment of time is not required.

The structure of this work is as follows. Section 2 contains (1) the formulation of the
inverse problem of recovering the initial condition for a nonlinear singularly perturbed
reaction–diffusion–advection equation based on additional information about the value
of the solution of the equation at the known position of the reaction front, measured
experimentally with a delay relative to the initial time and (2) a method for solving it, based
on minimizing the target functional by the gradient method. This section also demonstrates
the results of numerical experiments, from which it is possible to draw conclusions about
the capabilities of the proposed method. Section 3 discusses a deep machine learning
method for solving the inverse problem of restoring the initial condition from additional
information about the position of the reaction front without knowing the solution to the
equation on this front, i.e., the inverse problem is solved with less additional information.
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2. Statement of the Inverse Problem and a Gradient Method of Its Solution

Let us consider the following direct problem for a nonlinear singularly perturbed
Burgers-type equation [51]:

ε
∂2u
∂x2 −

∂u
∂t

= −u
∂u
∂x

+ u, x ∈ (0, 1), t ∈ (0, T],

u(0, t) = ule f t(t), u(1, t) = uright(t), t ∈ [0, T],

u(x, 0) = q(x), x ∈ (0, 1),

(1)

where 0 < ε � 1 is a small parameter, and functions q(x), ule f t(t) and uright(t) are
sufficiently smooth.

In some situations it is possible that a moving front of the reaction starts forming
from a certain moment of time t0 ≥ 0. In this case, the solution of the problem (1) will
approach over time to two different functions ϕl(x) and ϕr(x) to the left and right of some
point xt.p.(t), and in a small (of the order of ε| ln ε|) neighborhood of this point, a narrow
internal transition layer will be observed (see Figure 2) [2,47]. The point xt.p.(t) we will call
as “transition point” (“t.p.”).

Figure 2. Typical form of the moving front solution in problem (1) for a fixed t.

Note that it is known from [50] that for the problem (1) the expressions for ϕl(x) and
ϕr(x) can be written out explicitly: ϕl(x) = ule f t(t) + x and ϕr(x) = uright(t) + x− 1.

The function x = xt.p.(t), which describes the position of the reaction front, can be
found as a solution to, for example, the following functional equation [50]:

u(x, t) = ϕ(x) ≡ 1
2
(

ϕl(x) + ϕr(x)
)
, t ∈ [t0, T].

Thus, we can match the conditions (parameters) of the problem (1), which has a
solution like a moving front on the time segment [t0, T] ⊆ [0, T], the position of this
reaction front xt.p.(t) ≡ f1(t) at any time t ∈ [t0, T], as well as the value of the function
u
(

xt.p.(t), t
)
≡ f2(t) (see Figure 1).

The inverse problem is to determine the initial condition qδ1,δ2(x), x ∈ (0, 1), from
some known additional information about the position of the reaction front and the value
of the function u at this front

xt.p.(t) = f1δ1
(t), u

(
xt.p.(t), t

)
= f2δ2

(t), t ∈ [t0, T] ⊆ [0, T], (2)

experimentally observed with errors δ1 and δ2:

‖ f1 − f1δ1
‖L2 ≤ δ1, ‖ f2 − f2δ2

‖L2 ≤ δ2.
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Remark 1. Note that the features of solving the retrospective inverse problem (an inverse backward
problem) for (1) were considered in [50].

In operator form, this statement can be rewritten as

A(qδ1,δ2) =
{

f1δ1
, f2δ2

}
. (3)

here

A = {A1, A2}, A1 : qδ1,δ2(x)→ xt.p.(t) = f1δ1
(t),

A2 : qδ1,δ2(x)→ u
(
xt.p.(t), t

)
= f2δ2

(t).

Let us reduce the inverse problem (3) to minimization of the cost functional

J[q] =
∥∥∥A2(q)− f2δ2

∥∥∥2

L2(t0,T)
→ min

q

by the gradient method [24,25,52,53]. Thus, the solution of the inverse problem (1)–(2) can
be found as an element qδ1,δ2 , realizing the minimum of the functional

J[q] =
T∫

t0

(
u
(

f1δ1
(t), t; q

)
− f2δ2

(t)
)2

dt, (4)

where u(x, t; q) is the solution of the direct problem (1) for a given function q(x).

The algorithm of gradient method for numerical solving of the inverse problem (1)–(2)
is formulated as follows.

1. Set s := 0 and q(0)(x) as an initial guess.
2. Find the solution u(s)(x, t) of the direct problem:

ε
∂2u(s)

∂x2 −
∂u(s)

∂t
= −u(s) ∂u(s)

∂x
+ u(s), x ∈ (0, 1), t ∈ (0, T],

u(s)(0, t) = ule f t(t), u(s)(1, t) = uright(t), t ∈ [0, T],

u(s)(x, 0) = q(s)(x), x ∈ (0, 1).

3. Find the solution ψ(s)(x, t) of the adjoint problem:

ε
∂2ψ(s)

∂x2 +
∂ψ(s)

∂t
= u(s) ∂ψ(s)

∂x
+ ψ(s)+

+ 2θ(t− t0)δ(x− f1δ1
(t))(u(s)(x, t)− f2δ2

(t)), x ∈ (0, 1), t ∈ [0, T),

ψ(s)(0, t) = 0, ψ(s)(1, t) = 0, t ∈ [0, T],

ψ(s)(x, T) = 0, x ∈ (0, 1).

(5)

Here δ(x) is the Dirac delta function., θ(t) is the Heaviside step function.
4. Find the gradient of the functional (4):

J′
[
q(s)
]
(x) = −ψ(s)(x, 0).

5. Find an approximate solution at the next step of the iteration:

q(s+1)(x) = q(s)(x)− βs J′
[
q(s)
]
(x), (6)

where βs is the descent parameter.
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6. Check a condition for stopping the iterative process. If it is satisfied, we put qinv(x) :=
q(s+1)(x) as a solution of the inverse problem. Otherwise, set s := s + 1 and go
to step 2.

(a) In the case of experimental data measured with errors δ1 and δ2, the stopping
criterion is

T∫
t0

[(
xt.p.

(
t; q(s+1))− f1δ1

(t)
)2

dt +
(

u
(

f1δ1
(t), t; q(s+1))− f2δ2

(t)
)2
]

dt ≤

≤ δ2
1 + δ2

2 .

Here xt.p.
(
t; q
)

is the position of the reaction front determined by the direct
problem (1) for a given function q(x).

(b) In the case of exact input data, the iterative process stops when J
[
q(s)
]

is less
than the error of the finite-difference approximation.

Remark 2. Note that the iteration number s of the gradient method is a regularization parame-
ter [25,52,53].

Remark 3. The convergence of the gradient method (6) for inverse and ill-posed problems was
considered in [54–56].

Examples of numerical calculations

Let us consider the efficiency of the above-proposed algorithm by the example of
solving the inverse problem (1)–(2) for the following model set of parameters:

q(x) ≡ qmodel(x) = x + 1 + 2 sin(5πx),

ε = 10−1.5, T = 0.7, t0 = T/100,

ule f t(t) = 6 e−100t − 5, uright(t) = 2.

(7)

Figure 3 shows the solutions to the direct problem (1). The process of convergence of
the solution to the functions ϕl(x) and ϕr(x) is clearly observed to the left and right of the
point xt.p.(t), in the vicinity of which the front of reaction is located.

Figure 3. The form of a solution to the direct problem u(x, tm) at some fixed set of time instants
tm ∈ [0, T].

Figure 4 shows the model functions f1(t), f2(t) and the result of restoring the function
q(x) from the simulated data f1δ1

(t) and f2δ2
(t) specified with errors. For simulating input
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data, solving the direct problem (1) (step 2 of the algorithm) and the adjoint problem (5)
(step 3 of the algorithm) a stiff method of lines, SMOL [57], which allows one to reduce the
system of partial differential equations to a system of ordinary differential equations. The
resulting systems of differential equations were solved using a single-stage Rosenbrock
scheme with a complex coefficient, CROS1 [58,59]. A detailed description of the numerical
solving of such problems can be found, for example, in [48]. To simulate the input data, we
used grids with N = 1000 and M = 1000 intervals for the spatial and temporal variables,
respectively. The descent parameter was set as βs = 10−4. The function q(0)(x) ≡ 0 was
used as an initial guess (approximation). When solving the adjoint problem (5) (step 3 of
the algorithm), the following formula was used to approximate the δ–function [60]:

δ(x) =



2
ω

(
1−

∣∣∣ x
ω

∣∣∣− 4
∣∣∣ x
ω

∣∣∣2 + 4
∣∣∣ x
ω

∣∣∣3),
∣∣∣ x
ω

∣∣∣ ≤ 1
2

,

2
ω

(
1− 11

3

∣∣∣ x
ω

∣∣∣+ 4
∣∣∣ x
ω

∣∣∣2 − 4
3

∣∣∣ x
ω

∣∣∣3),
1
2
<
∣∣∣ x
ω

∣∣∣ ≤ 1,

0,
∣∣∣ x
ω

∣∣∣ > 1,

where the support size of the discrete delta function: ω = 10−2. To calculate the integral
(step 4 of the algorithm), the trapezoid rule was used.

Figure 4. (a) Exact model function f1(t) and noisy function f1δ1
(t); (b) exact model function f2(t) and noisy function f2δ2

(t);
(c) result of restoring the function qinv(x) for {δ1, δ2} = {0.03, 0.1}.

It is known [35] that when restoring a function of one argument from the results of
measuring a function/functions of another argument, the amount of information used
matters. In other words, the quality of reconstruction of the required function q(x) depends
not only on the error levels δ1 and δ2 of the input data set, but also from the start time of
the observation t0 and the final moment of time.
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Let us investigate the quality of reconstruction of the desired function q(x) depending
on the amount of input data. To do this, for different values of t0 (the other parameters
in the model example (7) remain unchanged), we find an approximate solution to the
inverse problem qinv(x). From the dependence ‖qinv − qmodel‖L2 on t0 (see Figure 5) we can
conclude that the quality of restoration strongly depends on the value t0: the smaller it
is, the more accurately the unknown function is restored. The value of T is of secondary
importance if it exceeds the time required for the complete formation of a solution of the
moving front type (solutions close to the functions ϕl(x) and ϕr(x) to the left and right of
the point xt.p.(t) ≡ f1(t)) [2,47].

Figure 5. The dependence of the accuracy of the reconstruction of the approximate solution qinv(x)
on the value t0, which determines the time delay at the beginning of experimental measurements of
the input data. The dashed curves mark the error of the reconstruction for the case when error “δ” is
equal to 0.

Now, let us investigate the stability of the solution to the inverse problem depend-
ing on the error level of the input data δ1 and δ2. To do this, for different values of
t0 and different values of δ1 and δ2, we find an approximate solution to the inverse
problem qinv(x) (the other parameters in the model example (7) remain unchanged).
Figure 6 shows the dependence of ‖qinv − qmodel‖L2 on the input data error level “δ”

=
√(

δ1/ < ‖ f1δ1
(t)‖L2 >

)2
+
(
δ2/ < ‖ f2δ2

(t)‖L2 >
)2 · 100% expressed as a percentage,

where < cdot > means averaging over the set of experiments for the same δ1,2 . It can be
seen that as δ decreases, the accuracy of recovering the function qinv(x) increases. Moreover,
smaller values of t0 lead to a more accurate reconstruction of the desired function q(x).

Figure 6. Dependence of the accuracy of the reconstruction of the approximate solution qinv(x) on
the mean square error of the input data “δ”.

3. Deep Machine Learning Method

When applying the gradient method for minimizing the target functional described in
the previous section, additional information is used about two functions f1(t) and f2(t).
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Thus, an inverse problem arises of recovering one function of a spatial variable from two
time-dependent functions.

From an experimental point of view, this imposes practical limitations on the applica-
bility of the considered approach. Obviously, it is easier to obtain experimental information
only about the function f1(t), which determines the position of the front, than about the
second additional function f2(t).

Thus, the following question arises. Is it possible to develop a method that allows
solving problems of this type in the following formulation: it is necessary to restore one
function of one spatial argument from the results of measurements of one function of one time
variable? This question can be solved by applying deep machine learning methods [61–63],
the use of which in solving the problem under consideration seems quite effective. This is
due to the fact that a neural network [61] is a multiparametric nonlinear function that can
approximate a real physical law that sets the correspondence between the position of the
reaction front and the initial condition that needs to be determined. Moreover, the trained
neural network in the case of the problem under consideration allows obtaining good results,
since we have an explicit relationship between the function being restored and the input
data, determined by the well-known mathematical formulation of the direct problem.

In one of the examples considered in [61], the possibility of recovering the constant
coefficient was demonstrated when solving the inverse problem for a nonlinear partial
differential equation with data on a part of the boundary. In this paper, we consider
restoring the initial condition as a function of the spatial variable and written as a sum of
three series in basis functions, from the data on a certain curve inside the considered region.
For the numerical implementation, we use MLP [62] and LSTM [63] neural networks.

It should be noted that the approach considered below is effective only for the case
when inverse problems of the considered class must be solved many times. This is due
to the fact that training a neural network for arbitrary basis functions (and for arbitrary
boundary conditions) requires a significant amount of time, but it is performed only once.
Then, for a specific input data, the result is obtained in negligible amount of time.

Examples of Numerical Calculations

Let us first describe the generation of a dataset for training neural networks. To train
MLP and LSTM neural networks, we use a synthetic dataset obtained by solving a direct
problem. For each previously generated set of grid values q(xn), xn ∈ (0, 1), n = 1, N − 1,
of the function q(x), we solve the direct problem (1) and get a set of grid values f1δ1

(tm),
tm ∈ [t0, T], m = 0, M, of functions f1δ1

(t).
To generate a set of grid values (dataset) of the function q(x), we will use the parame-

terized basis function qbase(x) of the following form:

qbase(x; {pi}P
j=0, {sj}Fs

j=1; {cj}Fc
j=1) =

P

∑
j=0

pjxj +
Fs

∑
j=1

sj sin(jπx) +
Fc

∑
j=1

cj cos(jπx).

Note that such choice of the basis function (including the specific values of P, Fs,
and Fc) is heuristic. Another choice of this function can either improve the quality of the
solution or degrade it.

Specific sample q̂:

q̂ ≡ qbase
(

x; { p̂i}P
j=0, {ŝj}Fs

j=1; {ĉj}Fc
j=1

)
we will generate for random coefficients p̂j ∼ N (pj, p2

j + 1), ŝj ∼ N (sj, s2
j + 1) and ĉj ∼

N (cj, c2
j + 1), where N (µ, σ2) is normal distribution with expectation µ and standard

deviation σ.
For numerical experiments P = 1, Fs = 5, and Fc = 2 were chosen with the factors

{p0, p1} = {1, 1}, {s1, s2, s3, s4, s5} = {0, 0, 0, 0, 5} and {c1, c2} = {0, 2}. An arbitrary set of
functions q̂(x) for these parameters is shown in Figure 7.
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Figure 7. An arbitrary example of a set of functions q̂(x) used to train a neural network.

To solve the inverse problem under consideration, we used a neural network consisting
of a bundle of LSTM + MLP. The LSTM + MLP network consists of a bidirectional LSTM
neural network with a hidden state size of 200 and an MLP neural network with two
hidden layers of size 400 and nonlinearity ReLU [64,65]. The LSTM neural network is
used to transform the sequence f1δ1

(tm), tm ∈ [t0, T], m = 0, M, into a hidden state for
subsequent transfer to MLP.

The result of restoring the function qinv(x) for the model example (7) after training the
neural network can be seen in Figure 8. Note that the result of the reconstruction of the
unknown function turned out to be much more accurate than the approach considered in
the previous section. This is primarily due to the fact that for training the neural network
we chose a quite good dataset that is close enough to the solution of the problem. In the
case of restoring a function, which does not lie in this dataset (this is equivalent to the case
of using “bad” dataset) recovery results become worse (see Figure 9). However, this does
not limit the generality, since our main goal is to demonstrate the possibility in principle
of using deep machine learning to solve the inverse problem under consideration with
limited experimental data.

Figure 8. The result of restoring the function qinv(x) using deep machine learning in the case of
“good” dataset used for training the neural network..
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Figure 9. The result of restoring the function qinv(x) using deep machine learning in the case of “bad”
dataset used for training the neural network.

4. Discussion

1. The question of the theoretical justification of the uniqueness and stability of the
solution of the considered inverse problem remains open. This may be the subject for
a separate work. In this article, we limited ourselves to testing the effectiveness of the
proposed approach using numerical experiments.

2. When constructing the objective functional, it is possible to use additional smoothing
terms (for example, in the form of Tikhonov’s functional [53]). We have limited
ourselves to considering the cost functional that determines the least squares method,
since its use has already given rather good results.

3. Applying deep machine learning, we aimed to demonstrate the fundamental possibil-
ity of solving problems of the considered type with limited experimental data using
this method. In this regard, we used a fairly good dataset to train the neural network.
The question of choosing the optimal neural network configuration remains open.
This issue is of significant interest and may be the topic of a separate work.

4. The methods of asymptotic analysis were used only to determine the function xt.p.(t)
in the formulation of the direct problem. However, other equivalent ways of defining
this function are possible that will not affect the quality of the recovered solution.

5. Conclusions

We considered the inverse problem of recovering the initial condition for a nonlinear
singularly perturbed reaction–diffusion–advection equation based on additional information
about the value of the solution to the equation at the known position of the reaction front,
measured experimentally with a delay relative to the initial time. The inverse problem
is reduced to minimization of the cost functional by the gradient method. Numerical
calculations have demonstrated the good potential of the proposed approach. For the inverse
problem of recovering the initial condition from additional information about the position of
the reaction front without knowing the solution to the equation on this front, the method of
deep machine learning is applied. Numerical experiments have demonstrated that the cost
of efficiency of this method is the ability to construct a good dataset for training the neural
network. The possibility of solving such problems by this method is demonstrated.
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