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Abstract: In this paper, we prove that for any pair of weak Hopf monoids H and B in a symmetric
monoidal category where every idempotent morphism splits, the category of H-B-Long dimodules
B Long is monoidal. Moreover, if H is quasitriangular and B coquasitriangular, we also prove that
B Long is braided. As a consequence of this result, we obtain that if H is triangular and B cotriangular,
B Long is an example of a symmetric monoidal category.

Keywords: Braided (symmetric) monoidal category; Long dimodule; (co)quasitriangular weak Hopf
monoid

1. Introduction

Let R be a commutative fixed ring with unit and let C be the non-strict symmetric
monoidal category of R-Mod where ® denotes the tensor product over R. The notion
of Long H-dimodule for a commutative and cocommutative Hopf algebra H in C was
introduced by Long [1] to study the Brauer group of H-dimodule algebras. For two arbitrary
Hopf algebras H and B with bijective antipode there exists a well-known connection
between the category of left-left H-B-Long dimodules, denoted by ;Long, and the category
of left-left Yetter-Drinfel’d modules over the Hopf algebra H ® B, denoted by gggYD.
This relation can be formulated in the following way: if H is a quasitriangular and B
coquasitriangular, ¥ Long is a braided monoidal subcategory of gggYD. As a consequence
of this fact, we ensure that under the suitable conditions, Long dimodules provide non-
trivial examples of solutions for the Yang-Baxter equation. On the other hand, for a
commutative and cocommutative Hopf algebra H, the category of left-right H-H-Long
dimodules, denoted by pLong, is the category of left-right Yetter-Drinfel’d modules
over H. Then, for all these reasons, it is not unreasonable to assume that there exists an
interesting relationship between Long dimodules and the problem of find solutions for the
Yang-Baxter equation. Moreover, the previous statement can be extended, as was proved
by Militaru in [2], to the problem of find solutions for the D-equation.

The results about the connections between Long dimodules and Yetter-Drinfeld mod-
ules can be generalized to Hom-Hopf algebras and to non-associative Hopf structures
as for example Hopf quasigroups. In [3], for two monoidal Hom-Hopf algebras (H, «)
and (B, B) the authors introduce the notion of generalized Hom-Long dimodule and the
category of generalized Hom-Long dimodules proving that this category is an example of
autonomous category. Also, if (H, &) is quasitriangular and (B, ) is coquasitriangular they
obtain that the category of generalized Hom-Long dimodules is a braided monoidal sub-
category of the category of left-left Yetter-Drinfel’d modules over the monoidal Hom-Hopf
algebra (H ® B,a ® ). On the other hand, in [4] (see also [5]) we can find the definition
of Long dimodule for Hopf quasigroups and, if H is a quasitriangular Hopf quasigroup
and B coquasitriangular Hopf quasigroup, as in the previous settings, the authors prove
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that the category of left-left H-B-Long dimodules is a braided monoidal subcategory of the
category of Yetter-Drinfel’d modules over the Hopf quasigroup H ® B.

The main motivation of this paper is to prove that for weak Hopf algebras and Long
dimodules associated with them we can obtain similar results to the ones cited in the
previous paragraphs. Weak Hopf algebras (or quantum groupoids in the terminology of
Nikshych and Vainerman [6]) were introduced by Bohm, Nill and Szlachanyi [7] as novel
algebraic structures encompassing Hopf algebras and groupoid algebras. The central differ-
ence with other associative and coassocitive Hopf objects is the following: The coproduct
is not required to preserve the unit, equivalently, the counit is not a monoid morphism.
The main motivations to study weak Hopf algebras come from many relevant facts. For
example, on one hand, groupoid algebras and their duals provide natural examples of
weak Hopf algebras and, on the other hand, weak Hopf algebras have a remarkable con-
nection with some interesting theories, as for example, the theory of algebra extensions,
the theory of dynamical twists of Hopf algebras, the theory of quantum field theories,
the theory of operator algebras [6] and the theory of fusion categories in characteristic
zero [8]. Also, Hayashi’s face algebras (see [9]) are relevant examples of weak Hopf alge-
bras and Yamanouchi’s generalized Kac algebras [10] are exactly C*-weak Hopf algebras
with involutive antipode. Finally, for weak Hopf algebras there exists a well-established
theory of Yetter—Drinfeld modules (see [11,12]) for which, as in the Hopf algebra setting,
the more remarkable property related with the Yang—Baxter equation is the following: If
H is a weak Hopf algebra with bijective antipode the category of left-left Yetter—Drinfeld
modules over H is braided monoidal. In this case is a remarkable fact that in a different
way to the previously cited cases, the tensor product of two Yetter—Drinfeld modules
M and N is a subspace of M @ N defined by the image of a suitable idempotent R-map
VM®N:M®N—>M®N.

In this paper, we work in a monoidal setting to ensure a good level of generality. Then,
we use monoids, comonoids, weak bimonoids and weak Hopf monoids instead of algebras,
coalgebras, weak bialgebras and weak Hopf algebras. Our main results are contained in
Sections 3 and 4. For two weak Hopf monoids H and B, in the third section we introduce
the category of H-B-Long dimodules, denoted as for the category R-Mod, by ¥ Long and
we describe in detail the tensor product of this category. In this setting the tensor product is
defined as the image of the composition of two idempotent morphisms associated with the
module and comodule structure, respectively. The main result is Theorem 1 which states
that % Longis monoidal. Finally, in the fourth section we prove the main result of this paper.
As in the cases cited in the previous paragraphs, we obtain that if H is quasitriangular and
B coquasitriangular, ¥ Long is a braided subcategory of gggYD (see Theorem 3). Moreover,
if H is triangular and B cotriangular, we established that ZLong is symmetric.

2. Preliminaries

A monoidal category is a category C together with a functor @ : C x C = C, called
tensor product, an object K of C, called the unit object, and families of natural isomorphisms

apnp: (MON)®P - M® (N®P),

M M®K—=M, Iy:KM— M,
in C, called associativity, right unit and left unit constraints, respectively, satisfying the
Pentagon Axiom and the Triangle Axiom, i.e.,

aM,N,PeQ © AMeN,P,Q = (idym ® an,p,0) © ap,Nep,Q © (aMN,p ®idg),

(idy ®In) oamN = rm ®idy,

where for each object X in C, idx denotes the identity morphism of X. For simplicity of
notation, given objects M, N, P in C and a morphism f : M — N, we write P ® f for
idp® fand f ® P for f ® idp.
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A monoidal category is called strict if the associativity, right unit and left unit con-
straints are identities. It is a well-known fact that every non-strict monoidal category is
monoidal equivalent to a strict one (see [13]). Then, in general, we can assume without loss
of generality that the category is strict and, as a consequence of the quoted equivalence, the
results proved in this paper remain valid for every non-strict symmetric monoidal category,
what would include for example the categories of vector spaces over a field IF, or the one of
left modules over a commutative ring R. In what follows, for simplicity of notation, given
objects M, N, P in C and a morphism f : M — N, we write P ® f for idp ® f and f ® P for
f®@idp.

A braiding for a strict monoidal category C is a natural family of isomorphisms

tMN - M®N —- NQM
subject to the conditions

tmNep = (N®@typ) o (bun @ P), tmenp = (tmp @ N) o (M ®ty,p).

A strict braided monoidal category is a strict monoidal category with a braiding.
Braided monoidal categories were introduced by Joyal and Street (see [14]) motivated
by the theory of braids and links in topology. Please note that as a consequence of the
definition, the equalities ty; x = txpm = idp hold, for all object M of C. If the braiding
satisfies that ty a1 0 tp N = idpenN, for all M, N in C, we will say that C is symmetric and
the braiding will be called a symmetry.

Throughout this paper C denotes a strict symmetric monoidal category with tensor
product ®, unit object K and natural isomorphism of symmetry c. We also assume that in
C every idempotent morphism splits, i.e., for any morphism g : X — X such thatgog =g
there exist an object Z, called the image of g4, and morphismsi: Z — X, p: X — Z, such
thatg = iopand poi = idz. Please note that Z, p and i are unique up to isomorphism.
The categories satisfying this property constitute a broad class that includes, among others,
the categories with epi-monic decomposition for morphisms and categories with equalizers
or coequalizers. For example, complete bornological spaces is a symmetric monoidal
closed category that is not abelian, but it has coequalizers (see [15]). On the other hand,
let Hilb be the category whose objects are complex Hilbert spaces and whose morphisms
are the continuous linear maps. Then, Hilb is not an abelian and closed category but it is a
symmetric monoidal category (see [16]) with coequalizers.

A monoid in Cis a triple A = (A, 74, 1t4) where A is an objectin Cand 774 : K — A
(unit), gy : A® A — A (product) are morphisms in C such that yy o (A ®n4) = idy =
pao(ma®A)and ppo (AR pa) =pao (pa®A). Given two monoids A = (A, 74, 1A)
and B = (B,yp, up), f : A — Bisamonoid morphismif ygo (f® f) = foua, fona = 1.
Also, if A, B are monoids in C, the object A ® B is a monoid in C where #7455 = 14 ® 1B
and pagp = (Ha @ pg) © (A @ cpa @ B).

A comonoid in Cis a triple D = (D, ep, dp) where D is an objectin Cand ep : D — K
(counit), dp : D — D ® D (coproduct) are morphisms in C such that (ep ® D) o 6p = idp =
(D ®£D) o dp and (5D (9 D) odp = (D ®(5D) oép.If D = (D,SD,5D) and E = (E,SE,5E)
are comonoids, f : D — E is a comonoid morphism if (f ® f) odp = dgo f,ego f = ep.
If D, E are comonoids in C, D ® E is a comonoid in C where epgpr = ¢p ® € and dpgg =
(D® CD,E® E)o (6p ® IE).

If A is a monoid, C is a comonoid and f : C =+ A, g : C — A are morphisms, we
define the convolution product by f* ¢ = ps o (f ® g) 0 dc.

Definition 1. A weak bimonoid H is an object in C with a monoid structure (H,yy, ) and a
comonoid structure (H, ey, 8y ) such that the following axioms hold:

(a1) dgopn = (hH @ pH) © dHeH,
(@2) egoppo(up®H) = (en ®epn) o (uy ® py) o (H® oy ® H)
= (eg®eq)o (pa @ pn) o (H® (cpHody) ® H),
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(a3) (on ® H) 00y oy = (H@ py @ H) 0 (0 @ o) © (111 © 1111)
= (H® (pr ocnn) © H) o (6n @ 0n) o (111 @ 11)-
Moreover, if there exists a morphism Ay : H — H in C (called the antipode of H) satisfying

(a4) idp * Ag = ((en o pu) ® H) o (H® cp,n) © ((0m © 7w) ® H),
(@5) Ay *idy = (H® (egopn))o (chu®@H)o (H® (dponn)),
(ab) )\H * ZdH * )LH = /\H,

we will say that the weak bimonoid is a weak Hopf monoid.

For any weak bimonoid, if we define the morphisms HIL{ (target), Hlfl (source), ﬁ%l
and TTj by

Iy = ((en o p) ® H) o (H@ e p) © (0 0 p) @ H),
I = (H® (em o prr)) © (e © H) o (H® (8 0 1m)),
=L
Iy = (H® (en o pn)) o ((On o u) © H),
=R
Iy = (e o pr) @ H) o (H® (05 0 7m)),
it is straightforward to show that they are idempotent and the equalities
Ik oTly, = 11k, T1hoTIy =TIy, IRoIly =11y, IRolly=TIIK, ()
Ijollh =TIy, TipollR =TIR, TINoIlh =11k, TipoIlR =TI, ()
hold.
On the other hand, denote by Hj the image of the target morphism 1} and let

pk + H— Hy, ik : Hp — H be the morphisms such that i}, o pk, = I and pk o ik = idy, .
Then,

(Hp, m, = plofu, wr, = pho pp o (if ® ify))

is a monoid and

(Hp, e, = ego iIszéHL = (ph @ ph) odyoily)

is a comonoid. The morphisms 77y, , py, , €q, and dy, are the unique morphisms satisfying

ifrony, = nm, i opn, = pro (i ®if), ©)

en, O Pi = e, Omy © pfr = (Ph © Ph) © O, 4)
respectively.
Now we summarize the main properties of the idempotent morphisms Ik, TIR, ﬁIL{
and ﬁﬁ (see [17] for the detailed proofs).

M opugo (HRII) =g ouy, IIfopuyo (I ® H) =TI oug, ®)
=L =L —L —R —R —R

Mopugo(H®Ty) =Tgouy, Hyougo(Ily®H) =Tlgouy, (6)
(HoT1k) 0oy ollh = 6y o1k, (T8 ® H) 06 o TTX = 8y o TR, @)
(H®ﬁﬁ)05Hoﬁg:§Hoﬁﬁ, (ﬁIL{@)H)oéHoﬁLHzéHoﬁ%{, (8)

pr o (H®TIE) = ((egopp) ® H) o (H®cp,p) © (6 @ H), )
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(H®Iy) oy = (pg ® H) o (H® cpy,pr) © (6 0 71) @ H), (10)
ppo (I @ H) = (H® (egopp)) o (cpu ® H) o (H® o) (11)
M ®H)ody = (H® up)o (cuy®H) o (H® (g ony)) (12)
uiro (Tl ® H) = ((epr o ) ® H) o (H® 6p), (13)
uo (HeTI) = (H® (e 0 p)) © (6 ® H), (14)
(T ® H) 06y = (H® py) o (8 0 1) ® H), (15)
(H®TIY) 0y = (ur© H) o (H® (S0 111)), (16)

Spony =IIR @ H)odyony = (HRTIY) odyony = (HRTIN) odyony  (17)
— (T}, ® H) 0 x5 o 1,

eopuy =egopugo (Y@ H) = egopuyo(HoIh) =eyopgo (g @ H)  (18)
:£Ho‘uHo(H®ﬁ%{).

Lemma 1. Let H be a weak bimonoid in C. The following identities hold:

ITjy o g o (H @ 1) =TT o gy o (T © H), (19)
(TT; @ H) 0 8 o Ty = (H ® 1) 0 6y 0 Ty, (20)
(H® ) o (H@ 1) 06y 0 Tly) @ H) 0 6y = (T @ H) 0 b, (21)
ur o (Mo pp o (H®TI)) @ H) o (H® by) = up o (T ® H). (22)

Proof. The proof for (19) is the following:
ﬁﬁo‘uHo (H®H%I)
= ((egopn) @ H) o (H®cpp) o ((HRTIN) 0dy) ® H) (oy () and the naturality of )
= ((egopun) ®H) o (ﬂH ® CHH) (H® (6 onu) @ H) by (16))
= ((‘C-HOFH)®H ( H®H)O(H@CH,H)O((éHOﬂH)(@H)))(byassociativity
of )
= ((emopn) ® ) o (H® by) by (10)
= 1Tk 0 pgr o (TIfy @ H) oy 1),
On the other hand,
(TI; ® H) 0 6y o ITL;
(H® ppr) o ((6m 0 pr) @ TTy) oy (15)
(H® (((egopn) @ H)o (H®cyn) o (6p ® H))) o (0 o) @ H) by o)
= (
(

H® (SH o ]/lH) ® H) ((SH ® CH,H) o ((‘SH o 77H) & H) (by coassociativity of dy;)
(o (H®TIR)) @ H) o (H® cpgp) o (0 0 ) @ H) oy (14)

= (H X H%—I) ody o HI[:I (by the naturality of ¢ and (10)),
and (20) holds.

The proof for (21) is the following:

—L
(H® pp) o (H@ ) 0dy oIlf) @ H) 0 by

= (H ® ,uH) o (((]/lH & ]/lH) o 5H®H o (71H ® ﬂH)) X H) (by (10), (15) and associativity of jp)

= (H®pup)o (duopuno (1y ®np)) @ H) by (al) of Definition 1)

= (ﬁLH ® H) o 8y by (15)).
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Finally, the proof for (22) can be obtained as the previous one by reversing arrows. [J
If H is a weak Hopf monoid in C, the antipode Ay is unique, antimultiplicative,
anticomultiplicative and leaves the unit and the counit invariant:

Aoy =ppo (AH®Ag)ocyn, OHOAH =cHHO (AH®AR) 0 dH, (23)

AHOﬂH:ﬂH, SHO)\HZSH. (24)
Also, it is straightforward to show the equalities
1L = idy « Ay, TIR = Ay xidy, (25)

[k idy = idy = idy 11X, TIR %Ay = Ay = Ag +I1k,

Ik « 11k =11k, TR « 118 = 11§ (26)

and

T = Ay olly =TIgoAy, IR =TIf oAy = Ay oIlp. (27)
If H and B are weak bimonoids in C, the tensor product H ® B so is. In this case, the
monoid-comonoid structure is the one of H ® B and

kg = I @115, TR,z =115 @ T15.

Then, if H and B are weak Hopf monoids in C, the tensor product H ® Bso is with
AHsB = Ag ® Ap. Please note that

(H® B)p = HL ® B.

Finally, for any weak bimonoid H, we can define the opposite and coopposite weak
bimonoids as H? = (H, 1y, pp © cuu,€m,0n) and HP = (H,ny, g, €4, CH,H © 0H),
respectively. If H is a weak Hopf monoid and the antipode is an isomorphism, H? =
(H,ny, ty © CHH, €H, (SH,/\;) and H°? = (H, ny, kH, €H, CH,H © (SH,/\;), are weak Hopf
monoids.

In the end of this section, we summarize some properties about left modules and left
comodules over a weak Hopf monoid. The complete details can be found in [18-20].

Definition 2. Let H be a weak Hopf monoid in C. We say that (M, @) is a left H-module if M is
an object in Cand @p : H® M — M is a morphism in C such that

pmo (Mg @ M) =idy, omo (H® om) = gmo (hg @ M). (28)

Given two left H-modules (M, @) and (N, o), a morphism f : M — N in Cis a morphism
of left H-modules if
pno(H® f) = foom. (29)

If (M, @) and (N, on ) are left H-modules we define the morphism ¢pen : HO M & N —
M® N as
pmaN = (pM @ ¢n) o (H@ cym @ N) o (0 @ M@ N). (30)

It is easy to show that @pjeN Satisfies

¢MaN © (H® oman) = ¢men © (kg @ M ® N) (31)

and the morphism

VmeN = ¢meN© (@ M@N): M®N - M@ N (32)
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is an idempotent. If we denote by M 1N the image of Vygn and by ppgn : MO N —
MON, iygn : MON — M ® N the morphisms such that iyjgn © PmeN = VMmeN and
PMeN © iMeN = idyan, it is not difficult to see that the object M [N is a left H-module
with action

PMEN = PMaN © ¢MeN © (H®iyen) : HO MEN — MEN
and the equalities
¢MeN © (H® VigN) = ¢MoN = VMeN © PMaN, (33)
hold. Moreover, if (M, p), (N, ¢n) and (P, ¢p) are left H-modules, we have that
(M®VNop) o (Vmen ® P) = (VMen ©® P) o (M ® VNgp) (34)
also holds.
Iff: (M, opm) — (M, o) and g : (N, on) — (N', o) are morphisms of left H-

modules, then,
fOg=pwen o (f®g)oimen : MON - M'EN'

is a morphism of left H-modules between (M I N, opan) and (M’ DN, ¢ prane ). Moreover,
(f®8) o Vman = Viren © (f ®8). (35)

Definition 3. We say that (M, pp) is a left H-comodule in C if M is an object in C and pp :
M — H ® M is a morphism in C such that

(eg@M)opy =idy, (H®pm)opm = (0 @ M) oppm. (36)

Given two left H-comodules (M, ppr) and (N, pn), a morphism f : M — N in Cisa
morphism of left H-comodules if

pnof=(H®f)opum. (37)

If (M, ppy) and (N, pn) are left H-comodules we define the morphism ppon : M@ N —
H®M® N as

pmeN = (pH @ M@N) o (H®cmu @ N) o (om ® pN)- (38)
It is easy to show that ppeN satisfies
(H® pmeN) © pmen = (65 @ M® N) © ppen (39)
and the morphism
Vien = EH®@MON)oppyen : MON - M®N (40)
is an idempotent. If we denote by M © N the image of Vi .n and by pyony : MO N —
MON, iyon * MON — M® N the morphisms such that iy © Pyony = Vien 414
Puen © ivMen = idmon, it is not difficult to see that the object M ® N is a left H-comodule
with coaction
pmoN = (H® Pyen) 0 PMoN 0 iyey - MON - H® (MO N)

and the equality

(H® Vion) © PMeN = PMeN = PMeN © Vigen, (41)
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holds. Moreover, as in the case of left modules, if (M,ppm), (N,pn) and (P,pp) are left H-
comodules, we have that

(M® Vigp) © (Vinen @ P) = (Vigen ® P) o (M® Vigp) (42)

also holds.
Iff: (Mpm) — (M,ppp) and g = (N,pon) — (N, pnr) are morphisms of left H-
comodules, then,

fOg=pPuweno(f®g oiyn: MON M &N

is a morphism of left H-comodules between (M ® N, ppen) and (M’ © N', pppenr). Moreover,

(f®8)oVien = Viwan © (f @ 8). (43)

3. The Category of Long Dimodules Over Weak Hopf Monoids

In this section, we generalize the notion of Long dimodule to the weak Hopf
monoid setting.

Definition 4. Let H and B be weak Hopf monoids in C. A left-left H-B-Long dimodule (M, ¢, o)
is both a left H-module with action ¢p : H® M — M and a left B-comodule with coaction
oM : M — B ® M such that the equality

oMo om = (B® @) o (cgp®@M)o (H® pu) (44)

holds.

A morphism between two left-left H-B-Long dimodules (M, a1, pp) and (N, on, pN) is a
morphism f : M — N of left H-modules and left B-comodules. Left-left H-B-Long dimodules and
morphism of left-left H-B-Long dimodules form a category, denoted as B Long.

In a similar way we can define left-right, right-left and right-right H-B-Long dimodules and
we have the categories yLong®, BLongyy and Long®,, respectively.

Below we will give examples of left-left H-B-Long dimodules. We want to highlight
that if the antipodes of H and B are isomorphisms, it is possible to give many more
considering opposite and coopposite weak Hopf monoids.

Example 1. Let H and B be weak Hopf monoids in C. The triple

(H® B, ¢Hep = 1tH ® B,pHgp = (cH,p © B) o (H® )
isin gLong.
Similarly, if Hy and By are the images of the target morphisms with the corresponding

structure of monoid—comonoid, by the properties of y and eg, (5) for H, (7) for B, the associativity
of up, the coassociativity of 6g and the naturality of c, we have that

(HL ® BL, o108, = (P o pro (H®if)) ® B, pr e, = (ch,,8 ® pp) o (HL ® (65 0ip))

belongs to B Long.
Finally, let (M, ) be a left H-module. Then, it is easy to show that

(BOM, ¢pom = (B® ¢um) o (c,p © M), ppom = 0B @ M)
is an example of left-left H-B-Long dimodule. Moreover, if (M, par) be a left B-comodule,
(H®M, oM = pH @ M, pHem = (cHp @ M) o (H® pum))

belongs to the category % Long.
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Example 2. Let H and B be weak Hopf monoids in C. A skew pairing between H and B over K is
a morphism T : H® B — K such that the equalities

(1) To(up®B)=(1®7)0o (H®cyp®B)o (H®H®Jp),
(b2) To(H® VB) (t®T)o0 (H@CH,B ®B)o ((CH,H 0dy) ® B® B),
(b3) To(yy ® B) = e,
() To(H®1yp) = €p,
hold.
Let (M, par) be a left B-comodule and let T : H® B — K be a skew pairing between H and B
over K such that

(T®@B)o(H®dp) = (BOT)o (chp®B)o(H®dp). (45)

Then, the triple
(M, pm = (t®@ M) o (Al @ pm), pm)

is in B Long. Indeed, by (24), (b3) and the B-comodule condition for M, we have that ¢ o (175 ®
M) = idy;. Moreover, using that M is a left B-comodule, the naturality of ¢, (b1) and (23),

pmo (H® oum)
=((t®@7)o(H®cup®B)o (HOH®dp)) ® M) o ((chno (An®An)) ®pm)
= ((to(up®B)) @ M) o ((cy,Ho (An ® An)) ® pm)
= ¢mo (h ® M),
holds and, consequently, (M, @) is a left H-module. Finally, using that M is a left B-comodule
and (45), condition (44) holds because

PM© PM
= (((t®B)o(H®dp)) ® M) o (Ag ® pm)
= (((B®T)o(cup®B)o(H®dp))®M)o(Ay®pom)
= (B ® (pM) o (CH,B ®M) o (H®pM).

In particular, if H = B, py = dg and 7 : H ® H — K is a skew pairing between H and H
over K such that

(T@H)O(H@é[{):(H®T)O(CH,H®H>O(H®5H) (46)

we obtain that (H, oy = (T ® M) o (A ® 8y), 0 is in HLong. Moreover, if Ay is an isomor-
phism, the triple (H, o1, 61) belongs to HLong if and only if (46) holds.

Example 3. Let H and B be weak Hopf monoids in C. We define a skew copairing between H and
B over K as a morphism ¢ : K — H ® B such that the equalities
(c1) p®B)ooc=(HR®H®pup)o(HRcgy®B)o(c®0),
(c2) (H®dg)oo = ((procHu) ®B®B)o (H®cpu®B)o(c®0),
(c3) (eg®B)oo =np,
(c4) (H®ep)oo =ny,
hold.
Now, let (M, ¢pr) be a left H-module and let o : K — H ® B be a skew copairing between H
and B over K such that

(hn®@B) o (H® o) = ((huocpp) ©B)o (HR0). (47)

Then, by a similar proof to the one developed for the example linked to skew pairings we
have that

(M, om,om = (B ¢m) o (e o) © M))
belongs to B Long. Indeed: First note that by the naturality of ¢, (c4) and the condition of lef

H-module for M, we have that (eg ® M) o ppp = idpg. Moreover, using that M is a left H-module,
(c2) and the naturality of c,
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(B® pwm) o pm
=(B@B®@oum)o (BRcyp®@M)o (chp®@B@M)o (((hH o cHH) ® B& B)
o(H®cpgy®@B)o(c®0)) ®M)
= (B®B®¢pm)o(BRcyp®@M)o(cygp®B®@M)o (((H®dp)oo)® M)
= (6p @ M) o pum,
and then, (M, pp) is a left B-comodule. Finally, using (47), the naturality of ¢ and the condition of
left H-module for M, (44) holds because

PM © PM
= (B@om)o(enp®M)o((((npocnu)®@B)o(HR o)) ®M)
= (B@gm) o (cup®@M)o (((pp@B)o (H®0)) © M)
= (B® ¢m) o (cH,p ® M) o (H® pm).
In particular, if H = B, o = pug and 0 : K — H ® H is a skew copairing between H and
H over K such that

(hp @ H) o (H® o) = ((hp o cuu) @ H) o (HO0) (48)

we obtain that (H, up, pp = (H® pg) o ((cyp o o) ® H)) is in HLong. Moreover, if Ay is an
isomorphism, the triple (H, py, prr) belongs to ELong if and only if (48) holds.

Example 4. Let H and B be weak Hopf monoids in C. Let T: H® B — Kando : K - H® B
be morphisms in C. It is easy to show that (B, ¢p = (B® T) o (cyp ® B) o (H® dp)) is a left
H-module if and only if (b1) and (b3) of Example 2 hold. Similarly, (H, g = (B® pug) o ((cup o
o) ® H) is a left B-comodule if and only if (c2) and (c3) of Example 3 hold. In any case, (B, ¢p, ép)
and (H, jup, ppr) are objects in the category ¥ Long.

Remark 1. Please note that in the weak Hopf monoid setting, an object M with the trivial mor-
phisms @y = ey ® M and pp = 175 ® M is not an object in 5 Long because in this case neither
(M, @) is a left H-module nor (M, pp) a left B-comodule.

Lemma 2. Let H and B be weak Hopf monoids and let (M, o1, 0m) and (N, ¢, pN) be in
B Long. Then, the idempotent morphisms ¥ pe N and Vvien- defined in (32) and (40) (for H = B),
satisfy that

Vmen © VmeN = Vmen © Viggn- (49)

As a consequence, the morphism

Omen = Viien © VMeN (50)

is idempotent and there exist two morphisms jyen : M X N = M ® N and gpegn : M@ N —
M x N such that gpenN © jMeN = idpxN and jmeN © IMeN = QmeN where M x N is the
image of QpeN-
Moreover, the following identities hold:
Vmen © Omen = Qmen, dMaN © VMen © OMeN = MeN, VMeN ©jmen = jMeNn,  (51)
Vien © OmeN = OmeN,  MeN © Viten © Qmen = dmeN,  Vien © jMeN = jmeN,  (52)
Qumen © VMen = Qmen, QMan © VMenN © jMeN = jMeN, dMeN © VMen = qmen,  (53)

Ouman © Vigen = Omen,  QuMon © Vijen ©iMeN = jMoN,  GMeN © Viien = dMon-  (54)

Proof. Indeed, let (M, ¢, M) and (N, ¢y, pn) be in % Long. Then,

Vivien © VMeN

= ((epopug) ®M®N)o (BRcpyp® N)
o((B®pm)o(cgp@M)o(H®pm)) @ ((B®on)o (chp®@N)o(H®pN)))
o(H®cym®@N)o ((0gong) @ M® N) by @4)
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= VMmN © VM®N (by the naturality of c).

Finally, (51)—(54) follows easily from (49) and the properties of jyen and gpgn. O

Lemma 3. Let H and B be weak Hopf monoids and let (M, ¢p1,0pm) and (N, ¢n, pn) be in
IB{Long. Then, the idempotent morphisms V peN, VQ\@N and QpeN, defined in (32), (40) and

(50), satisfy that

pmen © (H® Vien)

/
= VM@)N O PM®N/

(B® VMeN) © PMeN = PMaN © VMaN,

pman © (H® Qpen)

= OQpeN © PMeN,

(B® OMmeN) © PMaN = PMaN © QMeN,

where pmeN and ppeN are the morphisms defined in (30) and (38) respectively.

Proof. Let (M, g1, 0m) and (N, ¢n, pn) be in B Long. First we have that

¢man © (H® Viygy)

= ((((epopup) ® pm) o (B®cpp @ M) o
o(HRBRIM® ((B®¢n)o(cyp®@N)o(H®pn)))o (((H®B®cym)

(cHB®cmp)) ®N)

H® CH,B & M) (5H X PM)) & N)(by the naturality of c)

((epoup) @ pm) o (B®cpp®@M)o

O ® pm)) @ N) by (44) for N)

(cHB®cMmB)) ®N)

((epoup) ®M®@N)o (B@cy,p®@M)) @ N)

o
4
OEH@’B@M@ (pnopn)) o ((H®B®chm)o (H®chp® M)
= ((
of

(B®¢m) o (crp®@M)o(H®pm)) ®

o (5H RM®® N) (by the naturality of c)
= VM®N O PMeN (by (44) for M)
and (55) holds. Secondly,

(B® VMeN) © PMeN
=(up@M®@N)o (BRcpyp®N)

o(((B®@om)o(cup®@®M)o(HRpMm)) ®

O(H RCcgM R N) o ((5H o 77H) QM®® N) (by the naturality of c)

= PMaN © VMeN by (44) for Mand N)
and therefore (56) holds.

On the other hand, (57) and (58) holds because by (33), (41), (55) and (56):

Omen © PmeN = Viien © PMaN = ¢men © (H® Vijen)

(pnopn)) o (H®cym @ N)

(B@¢n)o(cup@N)o(H@pN)))

(55)
(56)
(57)
(58)

= ¢man © (H® Qpman),

PmMeN © QmeN = PMaN © Ven = (B® Vyen) © pmen = (B® Open) © pMeN-

O

Lemma4. Let H and B be weak Hopf monoids and let (M, o1, om), (N, ¢n, pn) and (P, ¢p, pp)
be in gLong. Then, the idempotent morphisms V poN, V}/I@N and Qe N, defined in (32), (40)

and (50) , satisfy that

M@Vg\](gp o VM(X)N@P
M® Vngp) 0

M ® Qnep) o (QAmen @ P) =

M® Qngp) o (Vmgn @ P) =

( )o( ) =
( )o(V )
( )o( )
(M® VNgp) © (Qmen ® P)
( )o( )
( )o( ) =

M® Vigp) © (Qmen © P

Men ® P) =

VmeN ® P) o (M@ Vigp),
Vien ® P) o (M® Vyep),
QpmeN @ P) o (M Qngp),
)
)
)

Vmen @ P) o (M ® Qngp),
Opmen @ P) o (M ® Viep),

( ( )
( ( )
( ( )
= (OmaN ® P) o (M® Vgp),
( ( )
( ( )

(59)
(60)
(61)
(62)
(63)
(64)
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(M@QN@p) o (VM(@N@P) = (VM@N@)P) o (M®QN®p). (65)

Proof. The proofs for (61)-(65) follow directly from (59) and (60). The proof for (60) is
similar to the one of (59). Then, we only need to show that (59) holds. Indeed:

(M® Viygp) © (VMen ® P)
= (pm® (epopp) ON®@P)o (HOIM®B®cnp ® P)
o(HIM® ((B@¢N)o (cyp®N)o(H®pN)) ® pp)
o((H®cum)o ((bgonm) @ M)) @ N® P) by (44))
= (VM®N ® P) ¢ (M & V?\]@P) (by the naturality of c).
O

Now we will define a tensor product in the categories of Long dimodules. The proof
follows a similar pattern for each side. Then, we only get the computations for the left-
left side.

Proposition 1. Let H and B be weak Hopf monoids and let (M, o, ppm) and (N, on, pn) be in
B Long. Then, the image of the idempotent morphism Qe N, defined in (50), belongs to B Long
with H-module and B-comodule structures

PMxN = qmMaN © ¢MaN © (H ® jmaN)
and
PMxN = (B® qMeN) © PMaN © JMaN,
respectively. Moreover, if f = (M, pam, pom) — (M, @, 00m7), 85 (N, on, oN) — (N, @nr, oN7)
are morphisms in ﬁLong, then,
fXg:qM/XN/O(f®g)OjMXNIMXN—)M/XN/

is a morphism in B Long between (M X N, @pxn, omxn) and (M' < N', @prsnt, Oar <Nt )-

Proof. Let H and B be weak Hopf monoids and let (M, g1, pp) and (N, ¢n, pn) be in
Blong. Let M x N the image of the idempotent morphism Qpen. Define the action

PMxN by
PMxN = MeN © PmeN © (H ® juen)

and the coaction pp1xn by

pmxN = (B @ 4MeN) © PMeN © jMaN-
The pair (M ® N, ¢p«N) is a left H-module because

PMxN© (MTH @M X N) = gpmeNn © VMaN © JMaN = MeN © jMeN = idpmxN

and

57 , 31
pMxN© (H® ¢rmxN) e aMeN © PMaN © (H® (pmen © (H® jman))) @D PMxN© (g @M X N).

Similarly, by (54) we obtain that (eg ® M ® N) 0 ppr«N = idpx N and, by (39) and (58),
we have that
(PMxN @M@ N) oppxN = (6p @ M@ N) 0 pp1xN-

Therefore, (M ® N, pyprxn) is a left B-comodule.
Also, (M ® N, prmxN, PMxN) is an object in %Long because

(B® @mxN) o (cHp®@M x N)o (H® ppmxn)
= (B® (qmaN © ¢MaN)) © (cyp @ M@ N) o (H® (oMeN © jMaN)) by G7)
= (B ®qmen) © (B®@cp,p @ N)
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o((B@ ¢pm) o (cnp@M)o(H®pm)) @ ((B®@n) o (chp®@N)o(H®pn)))
O(H KM@ N) o] (‘SH ® jM®N) (by the naturality of c)
= (4B @ qman) © (B®emp @ N) o ((om o om) @ (pn o ¢n)) o (H® cpm @ N)
O(5H ®jM®N) (by (44) for M and N)
= PMxN © PMxN (by (57)
On the other hand, if f : (M, op,oMm) — (M, @, o) and g = (N, 9N, oN) —
(N', o1, prv) are morphisms in & Long, by (35) and (43), we have that

(f®8)oOpan = Quregn o (fRQ) (66)

holds. Define f x g : Mx N — M’ x N'as f x g = gprxn' © (f ® g) © jmxnN- Then, f x g
is a morphism in ¥ Long because

Ppmrxn © (H® (f X g))
= (4dM'oN' © PM/oN' © (H® (QM’XN’ ¢} (f@g) OjM®N)) (by definition of f x g)
= qmren © Pmran © (H® ((f® g) o jman)) Gy ©0)
= (4dM'@N' © (f & g) O PMxN © (H & jM®N) (by the condition of morphism of left H-modules for f and g)
= (f X 8) © @MxN by (57)

and

Py o (f % 8) ,

= (B qman') © Pman' © Qumrxn © (f ® §) © jMeN Gy definition)

= (B@qmen) opman © (f @8) © jmoN by (9)

= (B & (‘1M’®N’ o (f & g))) O OPM®N © jM®N (by the condition of morphism of left B-comodules for f
and g)

= (B&(f xg)) ©pmxN by 8.

Therefore, the proof is complete. O

Lemma 5. Let H and B be weak Hopf monoids and let (M, o, pm), (N, on, pN) and (P, ¢p, pp)
be in B Long. Then, the following equalities hold:

(M ® jNep) © QueNxp) © (M ®gnep) = (jMeN @ P) o Quuxnep © (dMen @ P), (67)

(M ® jNep) © Qumenxp) © (M@ gnep) = (Qmen @ P) o (M@ Qngp), (68)
QmxNyer = (dMeN ® P) o (M ® Qnep) © (jMen ® P), (69)
Qpz(nxp) = (M@ gnep) © (Qmen @ P) o (M ® jngp)- (70)

Proof. The proof for the identity (67) is:

(M® jnep) © Que(nvxp) © (M ® gNep)
= ((EBO;MB)(X)M@N@P)O(B®CM,B®QN®p)
o((pm o ¢m) © (oNep ® Onep © PNep)) © (H ® cym @ QOnep)
((5H o ’7H) RMRXIN® P)(bydefinition)
(epopup) SM RN ®P)o (B®cymp @ N® P)
((om 0 om) @ (NP © Onep © Pnep)) © (H® cym @ N ® P)
((bgony) ® M® N ® P) (by (57) and (58) for N and P)
(epoup) @M@ N®P)o (B®cyp®@ N ® P)
((om o ¢m) @ (oNep © Pnep)) © (H® cpm ® N ® P)
((bgony) ® M® N ® P) (by (33) and (41) for N and P)
(epopp) ®M@N®P)o(B&cyp@N®P)o(B@M®cnp® P)
((omeN © emaen) ® (ppo¢p)) o (HR®M @ cyn ® P)
O(H ® CH,M RN® P) o ((KSH o 7’/H) QMRN® P) (by the naturality of ¢, the coassociativity of
oy and the associativity of )
= ((epoup) ®M@N®P)o (BRcpyp@N®P)o(B®M®cnp ® P)
o((omaN © OmaN © PMen) ® (ppo ¢p)) o (HO M@ cyn @ P)



Mathematics 2021, 9, 424

14 of 34

o(H®cym@N®@P)o ((6gony) ®M® N @ P) (by (33) and (41) for M and N)
= ((epopup) ® QMen®P)o (B®cmp®N®P)o (B&M®cNp®P)
o((omaN © OmaN © PMen) ® (ppo ¢p)) o (HOM® cyn ® P)
o(H®cym@N®P) o ((6gong) @ QpmeN @ P) (by (57) and (58) for M and N)
= (jM@N ® P) o Q(MXN)@P o (qM@N ® P) (by definition).

On the other hand, (68) follows by

(M® jnap) © Que(nxp) © (M ® gnep)
= ((epopup) ®MAN®@P)o (BRcyp@N®P)o(B&M®cnp ® P)
o((oMaN © Pmen) @ (ppo ¢p)) o (HOM® cyn @ P) o (H® cym @ N @ P)
o(((SH O]’]H) QMRIN® P) (by the proof of (67))
= ((epoppo(yp®B)) @MRN®@P)o (B&B®cyp® N® P)
o(B&B®M®cN,p® ¢p)o(B@cpp®oNn®cyp®P)
(B® oy @ cHp®@caN®pp)o(cyp®@cynN®cyp@N®P)
(H®cnp®@cum®@pn@P)o(HOH®cyp @M@ NQ P)
((((SH ®H) O(SH [} }’]H) KoM & N® P)(by(44)forM,NandP,thenaturalityofc)
(((epoup)®(epopup)) o (B®IB®B)) @MIN®P)o(B&B®cpyp®N®P)
(BEBIM®cnp® ¢p)o (BRcyp® N @ cpp @ P)
(B® oM@ cHp®cyn®@pp)o (cHp®@cuN @ cap®N® P)
(H®cHp@cum@pN@P)o(HOH®cyp®M®N®P)o ((H®pup® H)
(((SH o 77H) &® (5H o UH))) ®pM QN® P)(by (a2) of Definition 1 for B and (al) of Definition 1 for H)
((eo ) ® oM © o © P) o (B@ ey ® cym © ONep)
(cHB®cHpOMEN®P)o(H®cyp®cmp®N©P)
o ( (5H o 77H) XPM I PN X P) (by the naturality of c, the condition of left H-module for N and the condition)
of left B-comodule for N)
= (QM®N &® P) o (M & QN@P) (by the naturality of c).

Finally, note that by (61), (67) and (68)
(jmeN ® P) o Quxnyer © (GMeN ®@ P) = (Amen ®@ P) o (M ® Qngp) © (Qman ® P)

= ((jMeN ©qmMaN) @ P) o (M ® Qngp) © ((jMeN © dMaeN) @ P).

Therefore, (69) holds because jpgn ® P is a monomorphism and gpygn ® P is an
epimorphism. The proof for (70) is similar and we leave the details to the reader. O

Proposition 2. Let H and B be weak Hopf monoids and let (M, ¢, 0Mm), (N, ¢n, pN) and
(P, ¢p, pp) be in B Long. Then, the morphism

apNp: (MxN)xP—Mx(NxP),
defined by

AMN,P = dMe(NxP) © (M ® qnep) © (jMeN @ P) 0 jimxn)ep
is a natural isomorphism in % Long and satisfies the Pentagon Axiom.

Proof. First, note that the naturality of a follows from (66). Secondly, by (68), it is easy to
show that the inverse of ap n p is

Ayt p = QN © (MoN ® P) o (M ® jNop) © ime(Nxp)-

On the other hand, ap; n p is a morphism in IEEILong because we have
Prmx(nxp) © (H®apN,p)

= dme(NxP) © (@M ® (nxp o PNep)) o (H@cum®N®@P)o (H®H® (M® jnep)
oQug(nxp) © (M ®@qnepr))) © (0n @ ((MaN © P) © jipmxNyzp)) Gy definition)

= qMa(NxP) © (¢M @ (GNxP © ¢Nep)) © (H ® cum ® Qnegp) © (00 @ ((jmen @ P)
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Oj(MxN)@p)) by (1) and (68)

= Qs (nxp) © (P @ (ANxp 0 PNep)) o (H @ cm @ N @ P) o (61 @ ((jmeon ©P)
Oj(MXN)®P)) (by (57) for N and P)

= qma(Nxp) © (M ®qnxp) © (pman ® P) o (H® jmen @ ¢p) o (H® cymxn @ P)
(0 ® j(MxN)@P) (©y the naturality of ¢ and coassociativity of ox)

= AMe(NxP) © (M ®qnxp)° (Opman © eman) @ P) o (H® jpen © ¢p)
o(H® crmxN @ P) 0 (85 ® j(axn)ep) by (7) for Mand N)

= AM,N,P © P(MxN)xP) by (61),(67) and (68))

and

(B®amN,P) © P(MxN)xP
= (1B ® (dme(vxp) © (M@ qnep) © (jMen @ P) o Quxnyep © (dMen @ P)))
o(BRcmp®N®P)o(B&M®cNp®P)o (omen ©pp) © (jMaN ® P) o jimxn)ep
(by definition and naturality of c)
= (1B ® (Gma(nxp) © (M@ qnep) © (QAmeNn ® P))) o (B@cpp ® N® P)
o(B®M®cnp®P)o(pmen ®pep) © (jmeN @ P) o j(mxn)ep ©y (61), (67) and (68))
= (18 ®@ (Ame(nxp) © (M ®@qNep))) o (BRcpup@®N®P)o(B@M®cnp @ P)
o(omeN @ pp) © (jMaN @ P) 0 j(r1x N)yep ©y the naturality of ¢ and (58) for M and N)
= (1B ® dme(nxp)) © (B@cmp ® qnep) © (oM @ pNep) © (jMaN @ P) 0 j(mxn)ep
(by the naturality of ¢ and associativity of jp)
= (1B ® qme(Nxp)) © (B@cmp @ qnep) © (oM ® (NP © QNep)) © (jMeN @ P)
Of(MxN)@P by (58) for N and P)
= PMx(NxP) ©AM,N,p (by (61) and (68)).
Then, consequently, the Pentagon Axiom holds because, if (M, a1, om), (N, ¢N,0N),
(P, ¢p,op) and (Q, g, pg) are in ELong,
Apin prg © (idn X anp.) 0 anNxp,Q © (amN,p X idQ)
= AN pr0 © IMa(Nx(PxQ)) © (M ® (anp.0 © d(NxP)20))
O((jM@(NxP) oamN,p)®Q)oj ((MxN)xP)®Q by (66) for the morphisms au,y,p and an,p,0)
= “X/fl,N,pr o GMa(Nx (PxQ)) © (M® (dNe(Pxq) © (N®qpeg) © (jNep ® Q) © Q(nxp)uo
o((qnep © jNer) ® Q))) o (Que(nxp) © (M @ qnep) © (jMan @ P)
Oj(MxNyzp) ® Q) © j(MxN)xP)@Q (b the identity gyep o jner = idyp)
= q(MxN)@(PxQ) © (dMeN ® (P X Q)) o (N ® jNg(PxQ)) © QMa(Nx(PxQ))
(M ® qng(pxg)) © (M@ N ®gpgg) o (M@ Qpgn ® Q) o (jmen ® P® Q)
o(jmxNyep @ Q) © J(MxN)xP)@Q by (1), (67) and (68)
= 4(MxN)2(PxQ) © (AMaN @ (P X Q)) o (M @ QO otimes(Px)) © (AMaN @ qpeQ)
o(M® Qngp ® Q) o (jmeN ® P®Q) o (jimxnep ® Q) © j(MxN)xP)2Q
(by (61) and (68))
= q(MxN)o(PxQ) © ((M X N) ®gpgq) o (((qmMen @ P) o (M ® Ongp)
o(jmeN ® P)) ® Q) © (jimxNyep @ Q) © j(MxN)x P)oQby (61) and (69)
= AMxN,P,Q (by (69)).

(e]

O

Lemma 6. Let H and B be weak Hopf monoids and let (M, o1, 0m) be in B Long. The following
identities hold:

O, e8y)em = (Ph @ (pho i) @ M) o (HR B® (pm© oum)) o (H®cp,p) o (0n 0 ify) @ ig)) @ M), (71)
Qg e8)em° (HL® (pp@M)opym) = (pf @ ps@M) o (H® (om0 @m)) o (8 0ify) @ M), (72)

Opme(H,28,) (73)
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= (M®pp® (poupo (s ® iE))) o (M®cpp)o(cam®@H)o(B® (pmocmy)® H)
o(pm ® (T ® H) 085 0ik))) @ Br),
Qe (1, 08,) © (PM @ Pi ® pp) (74)

= (M ® (Pl o ) © (P o o (Tl ©B))) o (H® cpym @ c,ar) © (H®TTh) 0 631) @ (e 0 o) © H) © B).

Proof. The proof for (71) is the following:

O, 08,) oM

= ((p® (((epoup) @ pg) o (B@cpp) o (Jp@B))) ® M) o (H®B® (om© ¢um))
o(H®cup®@M)o (((pg®H) o (H®cupn) o ((6n o nm) ®ify)) ® iy @ M)
(by the naturality of c)

= (g ® (pgoppo (BOIIE)) @ M)o (HRB® (oMo ¢m)) o (H® chp @ M)
o(((H®I1L) o dy oik) ® ik ® M) oy ©) and (10)

= ((pf @ (Pgoup) @ M) o (H® B ® (pm© ¢m))
o((H®cpp) o ((6yoik) ®ik)) ® M) ®y () and ).

As a consequence of (71), we have
Q1,08 )om © (HL ® ((p§ ® M) 0 py)

= (P @ pp @ ¢m) o (H @ cup @ M) o ((6y o ify) @ (I * idp) ® M) 0 opmr))
(by the naturality of )

= ((pr®@ps@ M) o (H® (om0 ¢m)) o (65 0 ify) © M) by (25) and (44)

and (72) holds.
On the other hand, (73) follows by

Ope(H, 8;)

= ((egopp) @ pm @ p; @ pg) 0 (B ((cup ® M@ H) o (H® ey p ® H)
o(emu ®@cup)) @ B) o (oM @ (H® pn) o ((6n 0o npr) ®ify)) @ (6 0 ip))
(by the naturality of ¢ and (44))

= ((epopup) ® o @ ph @ p5) o (BR ((cpp®M®@ H) o (H® cpp @ H)
o(ecmu ®cyp)) ®B)o(ppy® (((ﬁ%{ ® H) o éyoik) @ (0 0ik)) by (15)

= (M® pp @ (((ep o pp) ® p) © (B® (Jp 0 i5)))) o (M ® e, © By )
o(cpMm®H®BL)o (B® (pmocmu) ® H® BL)
o(pM X (((ﬁb &® H) ody o lLH) X BL) (by the naturality of c)

= (M@ ph @ (phopgo (T ®ik))) o (M@ cpu) o (cmp @ H)
o(B®(¢mocmpu) ®H) o (opy ® ((ﬁqu ® H)ody oik))) ® BL) by (13).

Finally,
Opie(HeB,) © (9M @ P © pp)

= ((epopp) @M@ py @ pg) o (BRcymp ® H® B)
o((omo ¢m) ® (cpo (4 ® B)) @ B) o (H® cym @ H® (8p0115)) o (((uy © H)
O(H &® CH,H) o ((5H o 1’]H) & H)) QMOH® B) (by the naturality of ¢, (5) and the condition of left
H-module for M)

= ((epopp) @M@ pl @ pf) o (B&cpp®H®@B) o (((B® @um) o (cHp® M)
o(H® pm)) @ (cn,p o (pn © B)) ® B) o (H @ cym @ H® (65 0 I1))
o((H®IIk) ody) ® M ® H ® B) (by (10) and (44))

= (oM ® (P o ur) ® p) o (H® cym ® H® B)
o((H® 1) o d0u) @ (((epopp) @M@ H®B) o (B@cmp® H @ B)
O(B OM®EcHp® B) o (pM QH® (53 o Hlé)))) (by the naturality of c)

= (g @ (P o prr) @ (P o g o (T @ B))) o ((H @ cpam @ o)
O((((H@ HII:I) o 5H) ® (CB,M OPM) & H) X B)(bythenaturalityofcand 13y

and (74) holds. O
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Proposition 3. Let H and B be weak Hopf monoids and let (M, 1, om) be in B Long. The morphisms
ZM:(HL®BL) XM—=>M, ry:MXx (HL®BL) — M
defined by

Im = ((ep o pp) ® M) o (B® (om0 ¢m)) © (e o (ify ©1i5)) © M) © 0f(py, o, yem
and
= ((9amocmp) @ (€50 jp)) © (M® e @ B) o (cp a0 pu) © (T o i) @ i) © [M& (H,®By),
are natural isomorphisms in ¥ Long and satisfy the Triangle Axiom.

Proof. First note that it is easy to show that I and ry; are natural morphisms because (66)
holds. The morphisms /) is an isomorphism with inverse

I = AMe (08, © (P @ P @ M) o (H® (om0 ¢um)) o (8 © 71) @ M).

Indeed, on one hand,
lM o l;\/I
= gmo (H® (egopp) ® M) o (if @ iy © pum) © Qpy, w8, em
O(HL ® ((pé ® M) OpM) ) (pIL—I X q)M) o ((5H o 77H> ® M) (by the naturality of ¢ and (44))
= gmo (I @ (((ep o pp o (I © B)) @ M) o (B® pum) © pwm)) © (H @ )
o((6p o I1E) ® @) o (6 0 ) ® M) by (72))
= gmo (I @ ((((ep o (15 *idp)) @ M) o ppm)) o (H® gum) © (8 0 I1y) ® pm)
O(((s HOT H) &® M)(by the condition of left B-comodule for M)
= ¢mo (Il @ gum) © (6 0 ITy) ® @) © (6 0 711) ® M) by (25)
= QMO ((VH o ((HLH * ldH) & H) o (HIL{ & H) odyo 77H) ® M) (by the condition of left H-module
for M and the associativity of )
=id M (by (25) and the condition of left H-module for M )
and, on the other hand,
l;\/I 9] ZM
= q(HL(X)BL)@M o (pLH & p% ® M) o (H ® (pM o q)M))
o((6ronn) @ (pmo (H® (ep o pp) ® M) o (ify ® i ® par) © f(1, 8, )em) )by the nat-
urality of c and (44))
= Q(,08,)em © (P ® Pp @ ¢m) o (H® e p ® M)
o(((H® pp) o ((6n 0 1) © H)) @ pm) © (H @ (e o up) @ M) o (ify ® iy @ pi)
o ] (H.®BL)®M (by the naturality of c, (44) and the condition of left H-module for M)
=L
= (08, )om © (P o Tly) ® ph ® om) o (H ® cpyp @ M)
o(6r @ (((ep o pp) @ B) 0 (B®dp)) ® M) o (ify ® if @ pum) © (1, 08,)@m (by (15 and
the condition of left B-comodule for M)
= Q)M © (PE ® P§© gum) © (H® cpp @ M) o (65 @ pp @ M) o (ify @ ify @ p)
Oj(HL®BL)®M (by (2) and (13))
q(HL®BL)®M o Q(HL®BL)®M Oj(HL®BL)®M (by the naturality of ¢, (44) and (71))
= id(HL(X)BL) « M (by the properties of the idempotent Q(HLZ‘BL)@M)'

The morphism [} is a morphism of left H-modules because

I o P(H,®B)xM
= Q(e8)em © (PRopn o (H®ig)) @ BL® om) o (H® ((HL ® e p, )
(¢, ®BL)) @ M) o (65 ® ((Qp, 08, )om © (PE @ P§ © ¢um) o (H @ cpp © M)
((6ronn) ®pom)))) by t4)
= qyep)em © (Phopn o (HRTIE)) © pg @ gm) o (HR H® cHp @ ¢um)

[¢]

[¢]
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O(H ®cgH®cyp & M)) o (51_] ® (5H o 77H) ® pM)(by (57) and naturality of c)

= q(r08,)om © (PE o) @ pp @ (pmo (pr @ M))) o (H® H® cpyp © H® M)
O(H @ CHH QCHB, & M)) o (5H ® (5H o] 77H) ® PM) (by (5) and the condition of left H-module
for M)

= q(H,eB)eM © (P ® PE @ ¢m) o (H @ cHp @ M)
O((]/lH X "l/lH) 0dggH © (H X UH)) X PM) (by the naturality of ¢ and the associativity of yiy)

= q(H,®By)oM °© (PLH (24 P% (24 M) o (H K (PM o (PM)) o ((SH ® M) (by (al) of Definition 1, proper-
(ties of 7y and (44))

—=L

= q(ryp;)eom © (P o TTy) ® p @ M) o (H® (o © @m)) © (0 @ M) ®y (1)

= q(HL(X)BL)@M o (pLH ® p% ® M) ° (H ® (pM o q)M))
o((H®pp) o ((0n o 11) ® H)) @ M) by 15)

= l;\/I O @M (by the condition of left H-module for M).

Therefore, I); is a morphism of left H-modules. Moreover, [)s is a morphism of left
B-comodules because,

(B®@Im) © P (H, 0B, )x M
= (B@ (((epopup) ® pm) 0 (B®cup®M)o ((cn,po (i @ i) @ pm) © Qe w8,)0m))
O0(H,®B;)oM © J(Hy©B; )oM by (4)
= (s @ (((eg o) @ pm) o (B® cyp ® M) o (cygopm))) o (B@cpp @ B® M)
O(CH,B QcCpB® M) o (ZIH ® ((B ® HIE‘;) odgo Zé) ®pM) oj(HL®BL)®M (by (58) and naturality
of ¢)
= (s @ (((ep o pp) ® pm) o (B® cyp ® M) o (cypopm))) o (B@cpp®B® M)
o(cr,p ®cpp @ M) o (ify ® (8 0if) @ Om) © j(H, @By )oM Gy O)
= (,‘l/lB & QDM) o (B X cH,B ®M)o (CH,B ®((B® (ego “l/lB)) o (CB,B ®B)o(B®dg))® M)
O(lIL{ & (53 o Zé) & PM) o j(HL®BL)®M (by the naturality of c and the condition of left B-comodule for M)
= (4B ® ¢m) 0 (B@cyg @ M) o (crp® (up o (TI§ ® B)) @ M) o (if; @ (6p 0 i) @ pm)
OJ(H B )oM by (11)
= (B® ¢m) o (cup @ M) o (H® (pp o ((idp * I15) ® B)) ® M) o (ify ® i @ pwmr)
O]( H;®Bp)®M (by the naturality of ¢ and the associativity of yip)
= (B® ¢m) o (cr,p ® M) o (H® pp ® M) o (ify ® iy ® pum) © (1,08, )em by C5)
) =R . .
= (B®gm) o (cup@M) o (H®pp®@ M) o (ify ® (TTg 0 i5) © pam) © j(p1, 08,)0m ©y @)
= (B ¢m) o (cup @ M) o (H® (((egopup) ® B) o (B®Jp)) ® M) o (ify ® iy @ pm)
o](HL(X)BL)(X)M(by (13))
= ((epoup) ® B gm) o (B@B®@cup®M)o (BRcyp®B®M)
O((CH,B o (I%I & ll[_i)) & ((53 (9 M) OPM)) Oj(HL®BL)®M (by the naturality of c)
=pPMO© [ M (by the left B-comodule condition for M and (44)).
Thus, Iy is a morphism in ¥ Long.
The morphisms 7, is an isomorphism with inverse
"M = G(H,0B)oM © (PM @ p][i{ @ p§) o (H® cym © B)
o((6monu) ® (cpm o (I1p ® M) © ppm)).
Indeed: On one hand
MO Ty
=L . )
= ((pmocmu) ® (epopp)) o (M®cppu @ B) o ((cgamopm) ® (I oify) @ if)
Qe (H,o8,) © (Pm © Pl © p§) o (H® cym © B)

o(((sH o 77H) ® (CB,M ¢} (ﬁg ® M) OpM)) (by definition)
= ((pmocmu) @ (epoup)) o (M®@cpn ® B)
— —R
o((cpmopmo om) ® (I oIk o ) ® (115 o pp o (IIy ® B)))
o(H® cpm ® gy @ 1Tg) o (H @ T) 0 0p) @ (cpm 0 pm) ® H @ B)
o(H & ® B) o (851 0 111) ® (e © (T © M) 0 pag)) oy (79
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= ((
=L —R
o((cgmopmo om) ® (g o pp) @ (upo (Ilp ® B))) o (H® c,m @ cpa @ B)
o((H®TIf) 0 dn) @ (cmopm) @ H@ B) o (H® cym @ B)
o((8r1 0 1711) ® (e p1 0 (T ® M) © pay)) (by (1), () and (15)
—L =R

= ((pmo ((pao (Mg @ H)) @ M) o (ugp ® H@® M)) @ (ep o pip o ((pp o (B @ I1p)

ocppodp) ®B))) o (H®cp,y®cpm®B)o((((cpno (H®IY)ody)® H)

O(SH o UH) ® ((B (024 CB,M) o (((CB,B o (ﬁg ® B) 053) X M) OpM)>) (by the naturality of ¢, the

conditions of left H-module and left B-comodule for M and the associativity of jp).

—L

= ((pmo (o (Il ® H)) @ M) o (up ® H® M)) ® (eg o pip))

o(H@cuu @cpm®B) o ((((enuo (HTI) 0dy) @ H) 0 by onu) @ ((B@cpm)

—R x
o(((cp o (Ily ® B) 065) @ M) © pp1))) (by (25) for B ([T = Ty )
=L
=¢mo ((po (@ H)o (py @ H) o (H®chu) o ((chu o (H@I)0dy) @ H)
=R
ody o 77H) ® (((SB O UB O (B X HB) oCppo 53) & M) o PM)) (by the naturality of ¢)
=L

=¢mo ((po (g @ H)o (uy @ H) o (H®cyu) o ((chu o (H@ 1) 0dy) @ H)

05H o 77H) %9} M) (by (25) for Bo¥ (ﬁ§ = ngw) and the condition of left B-comodule for M)
=@MpmoO ((VH o (ﬁlﬁl X H) OCH,H© (H® (HLH * ldH)) o 5H o 77H) ® M) (by the naturality of c)
= g0 ((ur o (T ® H) 0 ¢y 11 0 031 0 1) @ M) (by 05)

= omo (g @ M) by (25) for HP (TT}; = T c00p))
=1id M (by the condition of left H-module for M)

pmocpmu) ® (epopp)) o (M®cpn ® B)

and, on the other hand,
oM
—=R
= qMe(H 28, © (9m @ p @ (ppollg)) o (H® camo (((ep o up) © B) o (B cpp)
o(6p®B))) o ((pp® H) o (H® cp,p) © ((dm o nn) ® H)) ® cpm @ B)
—L . . .
O(CB,H MR B) o (B X CM,H X B) o (pM & (HH o ZII:I> & Zé) O]M@(HL®BL) (by (44), the
naturality of ¢ and the conditions of left H-module and left B-comodule for M)
—=R
= qMe(H,eB,) © (M @ ply ® (pgollg opgo (B@11f))) o (H ® cym ® B® B)
o((H® ) 0dy) @cpm ®B) o (cpy @ M®B) o (B&cpy ® B)
O(pM & (ﬁi[ o 1%) X 1%) o jM®(HL®BL) (by (9), (10) and the naturality of c)
—R
= qme(H,o8,) © (9M © pE @ (poppo (Tl ® B))) o (H® H®cpm ® B)
o(H®cggy@®M®B)o(cpy®M®H®B)o(BRcyy®H®B)
—L . . .
o(om @ ((TIf; ® H) 0 8p 0ify) @ i) © jre(HyeB,) by (19) and (20)
= qMe(H,®B.) © UMe (H @B,) © IMe (H,@B,) ®Y 73)
= idMX(HL®BL) (by the properties of QM‘XJ(HL&BL))‘

The morphism r;/} is a morphism of left H-modules because

PMx (H @B, © (H® )
= Ame (o8, © (PM @ (Phoun) ® B) o (H @ cym ®if; ® Br) o (0 @ (Qums (1, 08,
—R
o(pm @ pl @ pk) o (H @ cpm ® B) o (6 o) @ (cpmo (TTy @ M) 0 pyr))))) Gy

definition)
= qMe(H,eB,) © (9M @ (Pf o pH) ® BL) o (H ®cym ® H® BL)
o(6r @ ((pm @ (I o ppr) ® (pg o pg o (T3 ©B))) o (H® CH,M ® CB,H)
o((((H®ITy) 0 dy) ® (CBMOPM)®H))) B))o (H® cym ® B)
o((811 0 1111) ® (gm0 (TTg @ M) 0 pp)))) by () and(72)
= qMe(H,eB,) © (M ® (Ph o nm) © (p§ oTTy oppocpp)) o (H® cpum®H®B® B)
oHRH®cym®B®B)o (uy® H® (I1k *idy) @ cpm ® B)
o H®cecyy®H® ((ﬁﬁ ®@cpm)o (6 @M)oppm))o (6 ® (6 onm) ® M) by the
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naturality of ¢, (1) and (19))

—=R —R
= qme(H,o8,) © (OM © (plropr) @ (pg ol o pg o (B TIg) ocppodp))
o(hr ®cum @ H®@B) o (H®chu ®cum®B) o (0n ® (0nonn) @ (camopm))
(by the naturality of ¢ and (25))

= qme(H.e8,) © (M @ PR @ pp) o (H@ cym @ B) o ((hu @ pu) © duson
O(H X UH)) [ (CB,M o (ﬁg ® M) o PM)) (by the naturality of ¢ and (25) for B<°? (ﬁg = H‘;mp))
—R
= Ame(H,e8,) © (9M © PE @ pp) o (H® cym ® B) o (65 @ (cpm o (T © M) 0 pur))
(by (al) of Definition 1 and the properties of )
= qme(H.e8,) © (9M © PR @ pp) o (H @ cym ® B)
O(((H ® HIL-I) o 5H) ® (CB,M o (ﬁg ® M) o pM))(bythe idempotent condition for I1k;)
= GMe(H,eB,) © (9M @ ph @ pp) o (H@ cpym © B) o (g ® H) o (H® ey p)
=R
o((0m o 17n) ® H)) ® (cpm o (I1g @ M) 0 pa)) (oy (10))
—R
= Ame(H,e8,) © (9M © PE @ pp) o (H® cm ® B) o ((6g 0 11) @ (g o (T @ M)
O(B & ¢M) o (CH,B & M) o (H & pM)))(by the naturality of c and the condition of left H-module for
M)
= T’X/Il O @M (by (44) and the naturality of c).
Therefore, r)s is a morphism of left H-modules. Moreover, 7y is a morphism of left
B-comodules because:

(B®TM) © Onrx(H2B,)
= (B&rm) o (B® Uy (H,8,)) © PMe(HL@By) © IMe(H,@B;) ©y definition)
= (up ® (((pmocmu) ® (egopp)) o (M®cppy @ B)
—L .
o((camopm) ® (Tl oify) © B))) o (B® cpp © HL @ B) o (o © cpy,,3 @ B)
o(M® Hy ® (65 0ik)) © jMe(Hy@By,) ®Y (68)and (7)
= (s ® (pmocmm)) o (B®emp ® H) o (B® M® cp,p)
o(BOM®H® ((B® (epopup))o(cpp®B)o(B® (dpoig))))o((B&M&cpn)
=L . )
o(((B® CB,M) o (dp @ M) OpM)) ® (ITg o lIL{)) ® Br) O JM(Hy @By ) by the naturality of c)
= (@ (pmocmn)) o (B®cyp @ H) o (B®M®cpy,p)
o(BO@M®H® (upo (I ®ig))) o (B®M®cpu)o ((B®cpm)o (0p®M)
=L . .
oom)) @ (g 0if7)) ® BL) © g (Hy By ®y (1)
. =L . ,
= (s ® (pmocmn)) o ((idp *T1R) @ cpp @ H) o (om @ (cp,p o (T 0 ify) @ iF)))
ojM@(HL@)BL ) ( by the naturality of c)
=L . . ,
= (B ® (pmocmmu)) o (B@emp@H) o (om @ (chpo (T oify) ®1F))) © jme (1, 0B,)
(by (25))
= (up@H) o (B®cpmp)o ((B®(pmocmu)) o (om ® H)) ® B)o
=L . . )
(M X (HH e} ZI[:I) (24 lé) o]M®(HL®BL)(bY the naturality of c)
= ((upo (B®IIR)) @ M) o (B@cmp) o ((om o Mo cmu) © B)
O(M ® (ﬁI[:I o lLH) ® Z[é) o ]M®( H;®By) (by (44) and the naturality of ¢ and the idempotent condition for
IT5))
= (((epopp) ® B) o (B®cp,p) © (05 ® B)) ® M) o (B®@ cpm,p)
=L . ) .
o((om o parocmp) ® B) o (M@ (TTg 0ify) ® if) © e (my@p,) (by O)
=L . .
= ((egopp) @pm) o (B&cmp) o (oMo ¢mocmu) @ B) o (M@ (I oify) @ i)
Oj M®(H; ®BL) ( by the naturality of ¢ and the condition of left B-comodule for M)
= PM O T'M (by (44) and the naturality of c).
Thus, s is a morphism in gLong.
Finally, the Triangle Axiom follows from:
(ZdM X ZN) O ApM,H, ®B;,N © (1’;/11 X ZdN)
= qmaN © (M ®IN) © Qe ((H,2B,)xN) © (M ® (1, 08,)oN) © (IMe(H,2B,) © N)
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o Mx (H, @B, )N © (’”1?/11 ® N) 0 jpeN (by definition)

= qman © (M ® (In 04, 08,)0n)) © ((me(mep,) ©Tar) @ N) © iMan Gy 66)

= qmeN© (M® (pno (H® (((epoupo (I ® B)) @ N)
o((s o (TTy @ B)) ® (pn 0 o)) © (cp, @ B H&N))) o (cm© (B (g
ocmn))) ® HOB@H®N) o (om0 gu) @ (TT ® H) 08y 0 T1fy) @ jip & H® N)
o(HIM® (H®B®cpp)o (HRcyp®B)o (dy ®BR®B)) ®N)
o(H® cm ®B®B®N) o (65 077) ® (cgm o (T @ M) 0 1) @ pn) © jmen
(by the naturality of ¢, (17), (1), (5), (7) and (44))

= qmen © (M@ (pno (H® (((epoppo (up @ B) o (BRI ® B)) ® ¢n)
o(B&B®cpp®N)o(B®cyp®pn)o(B®HS (upo (Tl ®B)) @ N)
o(B&H®B®pN)))o (((pm®@cpu)o(H®cpm®@H)o (cgy®M® H)
o(B®cymu @ H)o (B® gy ® (H®TIh) 08y oTlg)) @ H) o (cup © M dy)
o(Hepm®@H)o(H®cum)) ®BRN) o ((6gonm) @ (cpm o pm) ® N) 0 jmen
(by the naturality of ¢, (19), (20), (18) and (44))

= qmaN © ((¢m o (hp @ M)) @ (¢pn o (H® (ep o pp) ® N)))
o(H®H®@cum®B@B®B®N)o (((chu ® pn)o (H® (He 1) ody
oTTj7) @ H) o (H © 8p1) 0 0y @ 111) @ ((cp, @ (g © (T @ B)) @ N)
o(B@cgm®@pn)o ((((cppodp) @ M)opp) ®N) o jrmeN)) by the naturality of ¢, (19), (22)

and the conditions of left B-comodule and left H-module for M and N)

= qmen © ((pmo (@ M)) @ on) o (H® H®cym @ N) o (((cp,u ® pa)
o(H® ((H®TIY) 0 by oTly) ® H) o (H® dy) 08y @ 711) @ ((H @ (ep o up) @ N)
o((cum o ((up o (BOTIR) 0 cpp0d5) ® M) o pu) © pn) © juten) (by the naturality of o

= e © ((9ar 0 (o (T © H) o cpg g 0.65) © M) ® o) o (H @ e @ N)
o((6m o) ® (Ve © iMaN)) Gy the naturality of c, (19), the coassociativity of 6y, (40) and (25) for
BEoP (T = 1ep))

= qMaN © VMaN © Vign © IMaN by @5) for H ([T = M)

= gMeN © OQMeN © jMeN by (32) and the definition of Q)

= ldM x N (by the properties of Qpen)
O

Theorem 1. Let H and B be weak Hopf monoids. The category % Long is monoidal.

Proof. The proof is a direct consequence of Propositions 2 and 3. O

4. Quasitriangular Weak Hopf Monoids and Long Dimodules

In the first part of this section, we give a summary about quasitriangular and co-
quasitriangular weak Hopf monoids in a monoidal setting. The complete details for the
quasitriangular context can be found in [21]. By reversing arrows, it is easy to get the
corresponding results for coquasitriangular Hopf monoids.

Let H be a weak Hopf monoid in C. By [21] [Lemma 3.1] we have that the morphisms

Q}_]:],{H®HO((CH,H05H017H)®H®H)3H®H—>H®H/ (75)
0% = ppepo (HRH® (0yony)) : H®H — H® H, (76)
Q?{Z#H®HO(H®H®(CH,HO5HO77H)):H®H_>H®Hr (77)
O = ppepo ((dgony) ®H®H) : H®H — H® H, (78)

are idempotent and O}, 0 Q% = 02,0 O}, O3 0 O}, = OF, 0 Q3. Also, by ([21], Remark
3.2), we have that the following identities

QY = (H® pug) o ((cup o (T ® H) 0 5y) @ H) (79)
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=cypo(H® (upo (Il @ H))) o (65 ® H) o cpy u,
O} = (un® H) o (H® ((TT§ © H) 0 6y) (80)
—R
= (H® (ppocymo(Illg®H)))o (dy @ H),
Q) = (uy ® H) o (H® (cpr 0 (H @ TIyy) 0 61)) (81)
=cypo ((pao (HRTIIF)) @ H) o (H® 6p) o ey u,
O} = (H® (pu o (T ® H)) o (6 @ H) (82)
—
= ((pgocppo (H®II))® H) o (H® o)
hold. Moreover, if we define Qy and O}, by
Oy =0%00}, Qf=0}003,. (83)

we have that Qp and Q)}; are idempotent morphisms and, if « : A — H ® H is a morphism
in C,
OQpoa=a & Qhoa=aand Q% oa =g, (84)
and
hoa=a & OFoax=aand Qfona =a. (85)

Similarly, the morphisms

r}_I:((gHO‘L[HOCH’H)®H®H)O(SH®H:H®H4>H®H/ (86)
F%_I:(H@H@(SHOVH))O(SH@HIH®H—)H®H, (87)
% =(HH® (egougocyy))odysy: HOH — H® H, (88)
I = ((egopun) ®H®H) odyey: HOH — H® H, (89)

are idempotent and T'}; oT%, = I3 0T}, I}, 0}, = T} oT3. Also, the following
identities hold:

I = ((upr o (T ® H) o cpr ) © H) o (H® 6y) (90)
= e o (o (H®TI)) ® H) o (H® 0py) o crpp,
% = (H® (o (I} ® H))) o (05 @ H) 1)
= (uy ® H) o (H® (Tl ® H) o cpy 1 0 0p1)),
% = (H® (uo (HTIE) o)) o (0 @ H) (92)
= e o (H® (up o (1§ @ H))) o (65 ® H) o cpyp,
Ty = (up® H) o (H® (1T @ H) 0 6y)) (93)

—R
= (H®pup) o ((H®Iy)ocyyody) ® H).
Moreover, if we define I'y and I'}; by
Ty =T%0lk, Th =T%oI?, (94)

we have that 'y and I'}; are idempotent morphisms and, if § : H® H — A is a morphism
in C,
BoTy=pB < Polh=pandBol? =P (95)

and
BoTly =B < Poly =pandBoll =p (96)
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hold.
The following definition is the categorical monoidal version of the definition of quasi-
triangular weak Hopf monoid introduced by Nikshych, Turaev and Vainerman in [22].

Definition 5. Let H be a weak Hopf monoid. Let Qp and QY be the idempotent morphisms
defined in (83). We will say that H is a quasitriangular weak Hopf algebra if there exists a morphism
o : K — H® H in C satisfying the following conditions:
(dl) Qoo =o0.
(d2) (bp®H)oor=(H®up)o(H®cyn®@H)o(c®0).
(d3) (H®dy)oo = (pp@cyp)o (HRcgu @ H)o (c®0).
(@4) pron o (0 ®0n) = puen © ((ch,H © 0n) ©0).
(d5) There exists a morphism ¢ : K — H ® H such that:
(d5.1) Qo7 =0.
(d5.2) oxo = CH,H©0H ©1]H.
(d53) Tx0 = 5H oHH-

We will say that a quasitriangular weak Hopf monoid H is triangular if moreover ¢ =
CHHOO.

For any quasitriangular weak Hopf monoid the morphism ¢ is unique and by [21]
[Lemma 3.5] the equalities

OxT*x0 =0, Ox0%0 =0, 97)
(eg®@H)oo = (H®ey)oo =g, (98)
yHocHHo(H@@HL)oa_qH_yHo(HH®H)oa, (99)
o (HoTIR) oo =y = ppocyo (M ® H) oo, (100)
ppo(H®TIY) 0T =y = procyno (IR @ H) o7, (101)
oIk ®@ Hyoo =y = pocypy o (HeTy) o7, (102)

hold.
Lemma 7. Let H be a quasitriangular weak Hopf monoid in C. Then,
MR @H)oo = (HoTly) oo = (HoTlh) oo = (@ H) oo =dyony,  (103)
(M @ Hyoo = (H®TIh) oo = (HRTIR) 07 = (T ® H) 07 = cpy 1y 0 6y 0 . (104)

Proof. We will prove (103). The proof for (104) is similar and we lend the details to the
reader. First note that the identities
(1§ @ H) o ppgn o (0 ® o)
= ((I§opn o (N @ H)) @ pp) o (H® ey ® H) o (0 ® dpr) by 6)
= ((TT§ @ (eg o pm)) o (cpp @ H) o (H®0y)) @ py) o (H@ ey @ H) 0 (0 @ bpy)
(by (11))
= (M{ @ (((emopn) ® (puocnu)) o (H®6x @ H) o (H® cyu) o (¢ © H))) o 0y
(by the naturality of ¢ and the coassociativity of Jy;)
—R
= (M{ @ (procnuo ((pao (M@ H)) @ H))) o (H® chu) o (0@ H))) 0 dx by 13)
= (Hﬁ & (,UH o ((VH OCH,HO© (ﬁg & H) o 0') o} H))) o (SH(by the naturality of c and the associativity
of up)
= (Hﬁ & H) o 5H (by (100) and the properties of 17y),
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hold. Then, we obtain the identity

(I} ® H) o ppen o (0 ® oy) = (11§ @ H) 0 oy (105)
and, as a consequence,

oy

(IR @ H) o R @ H) 0 0 00 "2 (IR © H) 0 631 0 1y = 631 0 1.

Also,
(H @I )OVH®H°(U®5H)
(MH®(HHoyHo(HH®H))) (H®cyy®H) o (0 ®6y) by (1)and (6))
= (ur @ (((eg o pn) @IIR) 06)) o (H® ey @ H) o (0 ® 8p) by 13)
= (up ®TR) o (HR (H® (egopun)) o (cuu®H)o (HR6y)) @ H) o (0 ®dy)
(
= (

by the coassociativity of d)

HH ® IRYo ) ((VH o (H & Hﬁ) o 0') ® (SH) (by (11) and the associativity of jig)
(H & HR ) o 51_] (by (100) and the properties of 77p),

hold. Then, we obtain the identity

(HRIIK) o ppen o (0 ® o) = (HRIIN) o oy (106)

and, as a consequence,

(HoM)or 2 (HeTR)o(HoTR) oo & (HoTR) o (HoTIR) 00} or ') (HoTIR) o (HOTIR) 0 64 0 11
2 —R 17
2 HTI) ooy onn = 6y om.
On the other hand,
(I ® H) o prsm © (5H ®70)
= (1T 0 py o (H @ Tg)) @ i) © (H @ ey @ H) 0 (85 @ F) oy () and ()
= (I ® (eg o)) © (6 © H))) @ ) © (H @ e @ H) © (6 @ F) oy (14)
(HIH ® (((EH o ‘MH) ® VH) (H QCHH® H) o (5H ®5))) 0 4 (by the coassociativity of 5)
(HLH & (,uH o (H & (]lH o (HLH & H) o U)))) ody (by (9) and the associativity of )
(HLH & H) @) 5H (by (102) and the properties of 17y),
hold. Then, we obtain the identity

(M ® H) 0 ppep o 0y ©7) = (T ® H) 0 0y (107)
and, consequently,

() o H) oo 2 (L 0 H) o Iy @ H) o7 =2 (T4 © H) o (T © H) 0 Q4 05 'L (T4 © H) o (1T ® H) 0 6y 0 711

@D [T @ H) 0 6m o i 2 551 0 1.

Finally,
(H®HIL—])OVH®HO(5H ®0)

= (e @ (I opgo (HRIIE))) o (H® cyu ® H) o (65 ©T) by )

= (ua @ (((egoup) ®1I1k) o (H@ cyp) o (g @ H))) o (H® ey ® H) o (65 ®7)
(by (9))

= (((procpu) ® (egoun)) o (HR® oy @H)o (cyy ®H)o (H®7)) @ 11kL) 0 oy

(by the naturality of ¢ and the coassociativity of dy)
—L —
= ((nuocupo (H®up) o (cyn ®Ty) o (H® 7)) @T1) 0 8y @y (4)

= ((]/lH o (H & (‘Z/lH OCH,H© (H &® ﬁIL_I) O?))) & HLH) 0 8 (by the naturality of c and the associa-
tivity of pp)
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= (H ® HIL-I) o 5]_] (by (102) and the properties of 7p),
hold. Then, we obtain the identity

(H@TI) 0 pen © (0n ©7) = (H@ Ip) 0 5y (108)
and, consequently,

7 (108

(HoTIk) o (8:)(H®HL)OQ H®HH)O§HO11H(_)5HO17H

O

By reversing arrows in Definition 5 we get the definition of coquasitriangular weak
Hopf monoid.

Definition 6. Let B be a weak Hopf monoid. Let I'g and T'y be the idempotent morphisms defined
in (94). We will say that B is a coquasitriangular weak Hopf algebra if there exists a morphism
w : B® B — Kin C satisfying the following conditions:
(el) wolp = w.
(e2) wo(up®B) =(wRw)o(BRcpp®B)o(B®BRIg).
(e3) wo(BRup)=(w®w)o(BRcpp®B)o(dg®cpp).
(e4) (w @ pp) o dpep = ((1B 0 CB,B) ® W) © Ipp.
(e5) There exists a morphism & : B ® B — such that:
(e5.1) woll =w.
(e5.2) w*w =¢epoupocCpp.
(€5.3) W+ w =epoug.

As a consequence of this definition, we obtain that w is unique and the equalities
WkW*xWw =W, W*xW*xwW=w, (109)

hold.
We will say that a coquasitriangular weak Hopf monoid B is cotriangular if moreover & =
W O CBB.

Lemma 8. For any coquasitriangular weak Hopf monoid B, the following equalities

o(np®B) =wo (B®np) = ¢, (110)

wo (B&TTh)ocppody =ep =wo (TI ® B) odp, (111)
wo(B®HR)o§B = wo (Tl ®B)ocppodp, (112)

w o (B®HB) (HB ® B) ocpp oI, (113)
WO(H%;@B)WSB:EB @o (B®Tly)ocppods (114)
oa$®3w:ww3®ﬁb:w'w®nb wo (M @B)=egops,  (115)

oa$®m:wow®ﬁ®:wow®n@:wo¢&®m:@OWO%a<n®
hold.

Proof. The proof is the same that the one given for the quasitriangular setting by reversing
arrows. [

Example 5. Basic examples of quasitriangular weak Hopf monoids are cocommutative weak Hopf
monoids because, if H is cocommutative (i.e., cy g © g = On), the morphisms ¢ = 0 = dy oy
satisfy the conditions of Definition 5. Similarly, commutative weak Hopf monoids (i.e., ypyocy g =
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up) provide examples of coquasitriangular weak Hopf monoids with w = @ = ey o pp.

The groupoid algebra of a finite groupoid is the main example of a cocommutative weak Hopf
monoid. Recall that a finite groupoid G is simply a category with a finite number of objects in
which every morphism is an isomorphism. The set of objects of G will be denoted by Gy, the set of
morphisms by Gy, the identity morphism on x € Gg by idy and, for a morphism g : x — y in Gy,
we write s(g) and t(g) for the source and the target of g, respectively.

Let G be a finite groupoid, and let R be a commutative ring. The groupoid algebra is the direct
product R[G] = Dgec, Rg where the product of two morphisms is their composition if the latter
is defined and 0 otherwise, i.e., jgic)(§ @r h) = gohifs(g) = t(h) and pgig (g ®r ) =0
if s(g) # t(h). The unit element is 1gg) = Yrcg, idx. The algebra R[G] is a cocommutative
weak Hopf monoid in the symmetric monoidal category R-Mod, with coproduct ér(g), counit eg(g)

and antipode Ag(g) given by or(c)(8) = § ®Rr & €rig)(8) = 1 and Agig)(g) = ¢~ 1, respectively.
Moreover, the target and source morphisms are HIL{[G] (8) = idyy), Hﬁ[G] (8) = idy(q) and the
morphism o that provides the quasitriangular structure is the linear extension of

o(1) = Y idy ®g idy.

x€Gy

If Gy is finite, R[G] is free of a finite rank as a R-module. Hence R[G] is finite as object in
the category R-Mod and R[G|* = Homg(R[G], R) = @gcq, Rf;g is a commutative weak Hopf
monoid. The weak Hopf monoid structure of R[G]* is given by the formulas

1R[G]* = 2 fer P‘H*(fg ®R fn) = g,hfg/

8€Gy
ere) (fg) = ' o e = X fi®r feart
0 if g#idy s(g)=s(l)

and
/\R[G]* (fg) = fg*l'

Then, by the general theory, R[G|* is an example of coquasitriangular weak Hopf monoid in
R-Mod where w is defined by

1 if g=h=id,

0 otherwise

w((fg ®r fn)) = {

On the other hand, the construction of a weak Hopf monoid K(G,H) in the symmetric
monoidal category of vector spaces over a field K using a matched pair of finite groupoids (G, H)
was introduced in [23]. In [24] we can find a result that asserts the following: A matched pair of
rotations gives rise to a quasitriangular structure for the associated weak Hopf monoid K(G, H).
Also, by [24] [Theorem 5.10] we know that there is an isomorphism of quasitriangular weak Hopf
monoids between the Drinfeld double of K(G, H) and the weak Hopf monoid of a suitable matched
pair of groupoids.

Finally, in [22], for a weak Hopf monoid H in the symmetric monoidal category of vector
spaces over an algebraically closed field, Nikshych, Turaev and Vainerman defined the Drinfeld
double D(H) of H and they proved that D(H) is a quasitriangular weak Hopf monoid (see [22]
[Proposition 6.2]).

Now we recall the notion of left-left Yetter—Drinfeld module in the weak Hopf
monoid setting.
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Definition 7. Let H be a weak Hopf monoid. We shall denote by YD the category of left-left
Yetter-Drinfeld modules over H, i.e., M = (M, 1, ym) is an object in BYD if (M, ¢p) is a left
H-module, (M, ) is a left H-comodule and

() (g @M)o(H®emp)o ((ymoypm) ® H) o (H® cpm) o 0y @ M)

= (tr @ Ym) o (H @ cpp @ M) 0 (65 @ Ym)-
f2)  (pn@¢m) o (H®cuu @ M) o ((0n o 11n) @ M) = Tm-

Let (M, ¥m, vm), (N, N, yN) be objects in HYD. A morphism f : M — N in Cisa
morphism of left-left Yetter—Drinfeld modules over H if it is a morphism of left H-modules and left
H-comodules.

Please note that if (M, Yp1, ym) is a left-left Yetter—Drinfeld module, (f2) is equivalent to

((em o pr) ® par) o (H® ey @ M) o (3 @ vm) = Y (117)
and we have the following identity:
Yo (T @ M) 0y = id . (118)

The conditions (f1) and (f2) of the last definition can also be restated (see [11] [Proposition 2.2])
in the following way: suppose that (M, Pay) is a left H-module and (M, ypp) is a right H-comodule,
then, (M, ¥, ym) is in BYD if and only if

MmO Ym = (hH ® M) o (H® cp i )0
((her ©@ ) © (H@ cpp @ M) o (0 @ Ym)) @ Ap) o (HR cpm) © (0p @ M), (119)

It is a well-known fact that if the antipode of H is an isomorphism, the category HYD
is a non-strict braided monoidal category. We expose briefly its braided monoidal structure.

For a pair of left-left Yetter—Drinfeld modules over H (M, a1, vam) and (N, ¥, YN),
there exist two idempotent morphisms V psen and V?V@ y defined as in (32) and (40) (for
H = B) respectively. By (iii) of [25] [Proposition 1.12] we have that

Vmaen = Vivien- (120)

Then, the tensor productin HYD for (M, ¢, vm) and (N, N, yn) is introduced as
the image of the idempotent morphism V p1gn, denoted by M LI N. The object M1 N is a
left-left Yetter—Drinfeld module over H with the following action and coaction:

PumeN = PMaN © PrmeN © (H®iven), YMoN = (H® pmen) © YMan © iven.  (121)

The base object is H} , which is a left-left Yetter-Drinfeld module over H with (co)module
structure

Y, = proune (H®iy), yu, = (H®pf)odyoif. (122)

The unit constrains are:
v = Ym0 (i @ M) oig,om: HL x M — M, (123)

tm = pocamp o (M® (T oik)) oinen, : M x HL — M (124)

and the associativity constrains are defined by

aMN,P = Prmenap) © (M® pnep) © (imen ® P) o iymN)ap (125)
. (MEN)EP - ME(NEP).
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If f: M - M and g : N — N’ are morphisms in the category of left-left Yet-
ter-Drinfeld modules over H,

ng:pM/DN/O<f®g)OiM®N2MDN—)M/DN/ (126)
is a morphism in YD and

(fEg)o(fHg) = (fof)B(g 0g), (127)

where f': M’ — M" and ¢’ : N’ — N"" are morphisms in HEYD.
Finally, the braiding is

tMN = PNeM © TMN ©iMegN : MON — NHM, (128)

where
TN = (N @M)o(H@cpyn)o (yM@N): M&N — N @ M. (129)

Now we establish a connection between Long dimodules and Yetter-Drinfeld mod-
ules.

Theorem 2. Let H be a quasitriangular weak Hopf monoid with morphism o : H® H — K and
let B be a coquasitriangular weak Hopf monoid with morphism w : K — B ® B. There exists
a functor

L: %long — gggYD

defined on objects by
L((M’ (/)M/pM)) = (M/ 4)M/ QM)/

where
oM =¢mo(H® (wocpgp)@M)o(HRB®pnm), om = (H® (omo¢m))o ((cayoo) @ M),

and by the identity on morphisms. Moreover, the functor L is injective on objects and, consequently,
B Long can be identified with a subcategory ofgggYD.

Proof. We begin by showing that (M, ¢p1) is a left H ® B-module. Indeed, taking into
account that (M, @) is a left H-module, (M, pyr) a left B-comodule, the naturality of ¢
and (110), we get that s o (§gep ® M) = id). Moreover,

¢m o0 (H QX B® 471\/[)
=¢mo (H® (wocpp)®em)o (HR®B®cyp®M)
o(H® B&H® (((wocpp)®pm)o (B®pm)) by @)
=omo ((pgo(H® (wocpp)®H)) ®@M)o(HRB®cyp®@ M)
O(H ®B®H® ((((U o CB,B) ®B® M) o (B & ((53 & M) OPM)))) (by the conditions of left
H-module and a left B-comodule for M)
= ¢mo (pr ® (W@ w) o (BRcpp @ B)o (dp@cpp) o (cpp®B)o(BRcpp)) ®M)
O(H ®cpH@®B® PM) (by the naturality of c)
= ¢mo (@ (wo (B&@pup)o(cpp®B)o(B®cpp)) ®M)o (H®cpn®B®pm)
(by (e3) of Definition 6)
=¢Mmo (,MH(X)B X M) (by the naturality of c),
and (M, ¢p) is a left H ® B-module. In a similar way, we can prove that (M, o) is a
left H ® B-comodule. Indeed: By (98), the conditions of left H-module and left B-comodule
for M and the naturality of c we have that (eggp @ M) 0 op1 = idy. Also,
(em ® M) oom
=(H®B®(H®B® (pmo (H® ¢pm))) o (HRcyp® H® M)
o((cppoo)®@cyp®@M)))o(H®cyp®@B@M)o ((chuoo)®@ ((B®pm)opm))
(by (44))
= (H®B®H®BR@p)o(H® (BRH®B®uy)o(BH®cyp® H)
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o(B® (cuuoo)®@chp)o (chp®B)o(H®Jp)) @ M)o ((cyno0o)®pm)

(by the conditions of left H-module and a left B-comodule for M)
= (H®B®H®B®(pM)O(H@CH,B(X)CH/B@M)O(H@H@CH,B(X)B@M)
o((H®cyp)o(cgg®@H)o (g ®@cyy)o (H®cyy @ H)
O(O’® 0')) ® ((53 & M) OpM)) (by the naturality of ¢)
(H®B®H®B®@pm)o (HR®cgp®@cup®@®M)o(HRH®cyp®B® M)
o((H®cyp)o(cuuy ®@H) o (H®dy) o0) ® ((0g ® M) o pp)) (by (d3) of Definition 5)
= (5H®B ® q)M) o (H KCcHB® M) o ((CH,H o (T) ®PM) (by the naturality of c)
= (OHeB ® M) 0 oM (by (44)).
To get (f1) of Definition 7, note that on one hand,

(HHeB ® ¢M) © (H® B® cHepHoB ® M) o (dHep ©® 0M)
= (@B @ (¢mo (hp @ M))) o (HO H @ cyp ® H® M)
o(H®chu® ((4p @ (wocpp)) 0dpep) ® HO M) o (dy ® cpn @ cyp @ M)
O(H ®B® (C HHCO ) &® 1Y M) (by (44), the conditions of left H-module and a left B-comodule for M and the

naturality of )

= (uH®B® (pmo (hp @ M))) o (H® H® cyp ® H® M)
o(H® e ® (((npocpp) @w)odpgpocpp) @ H®M)o 8y ®cpy ®crp® M)
O(H ®B® (CH,H o (T) ® PM) (by the naturality of c)

= (pH®B® (pmo (pp@M))) o (H® H®cpp® H® M) o (H® cpn ® ((w ® pp)
0dpgpocpp) ®H® M) o (dy ®cpa®@cap®@M)o(HRB® (cyaoo)®pm)
(by (e4) of Definition 6)

= (H® ((((w® pp) 0 dpep) © M) © (B cyp @ M) o (cyp © B® M)))
o((naen o (0n ® (cppo0))) @ ((cpp ® M) o (B®pum)))
(by the naturality of c)

= (H® ((((w ® pp) 0 0pgp) @ pm) o (B® cyp ® M) o (cpp ® B® M)))
O((CH,H O UH®H © ((CH,H o 5H) (9 0')) & ((CB/B ® M) o (B ®pM))) (by the naturality of c)

= (H® ((((w® pp) 0 dpep) ® ¢m) © (B cyp @ M) o (cyp ® B® M)))
o((cguomnsn o (0 @) @ ((cgp ® M) o (B®pm))) (by (d4) of Definition 5)

= (H®B®om)o (H®cpp®M)o ((chu o (HHaH © (0 ®dh))) @ ((w @ up)
o5B®B © CB,B) ® M) o (H QX B® pM) (by the naturality of c),

and on the other hand,

(Mo @ M) o (H® B® cm,Hep) © (oMo ¢m) ® H® B) o (H® B® cHepm)
o(0nep ® M)

= (up@up®M)o(H®cpy®cmu)o(H®B®cyy ®B)o (H® ((B® ¢m)
o(cHB®¢m)o (H@cpp®@M)o(HOH® (((wocpp) ®pm)
o(B®pm)) ®H®B) o ((cpno0)® ((H®B®cym®B)o(H®chp®cpm)
o(6y ® g @ M))) by (44)

=(H®B®em)o (H®cpp®@M)o (((pg @ H) o (H®cpu) ® (H® pp @ H)
o((erp00) @) ® ((wocepp) ®pp) o (B®Ip®B) o (B@cpp)o (05 ® B)) © M)
O(H QX B® 1Y M) (by the conditions of left H-module and a left B-comodule for M and by the naturality of c)

= (H®B®@¢m)o (H@cgp®M)o ((cauo (HHoH © (0 ®0H))) ® ((w ® up) © dpep
OCB,B) ® M) o (H X B® PM) (by the naturality of ¢),

The condition (f2) of Definition 7 follows because, using the previous calculus,

(MH2B @ PM) © (H® B ® cHgp,HoB © M) 0 (SHep ® om) © (111 © 115 @ M)
=(H@B®om)o (H@cpp@M)o ((chuo (hueH© (0 ® (bnonn)))) @ ((w @ up)
053®B o CB,B) & M) o (H & B &® PM) (by identity obtained to prove (f1) of Definition 7)
=(H®B® ¢um) o ((CH,HOQ%JOO')(@ ((wo (B®H§) 00p) ® B) 0o dp) @ M) o pu
(by (12) for B and H and coassociativity of dp)
= (H® B® ([)M) o (H QCHB® M) o ((CH,H o 0’) ®PM) (by (112), (d1) of Definition 5, the properties
of ep and (84))
= M (by (44)).
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Finally, if f : (M, ¢opm,0m) — (N, ¢n,pn) is a morphism in £ Long, by the left H-
linearity and the left B-coliniarity, we have that f : (M, ¢p, 0m) — (N, ¢pum, 0n) is a
morphism in the category gggYD.

As a consequence of the previous facts, there exists a functor

L:f Long — HEEYD

defined on objects by
LM, om,0m)) = (M, pum1, em),

and by the identity on morphisms. Finally, if L((M, ¢p,pom)) = L((N, ¢n,pn)), it is
obvious that M = N and, by (110) and the condition of left B-comodule for M, we have

oM =¢mo(HRnp@M) =¢no(HOnp @ N) = ¢n.
Similarly, by (98) and the condition of left H-module for M, we obtain

oM = (eg®B®M) ooy = (eg ® B M) oon = pN-
Thus, L is injective on objects. [

Lemma 9. Let H be a quasitriangular weak Hopf monoid with morphism o : H® H — K and let
B be a coquasitriangular weak Hopf monoid with morphism w : K — B ® B. Let L be the functor
introduced in Theorem 2. Then, for all (M, ¢, om) and (N, o, pN) in BLong,

Hotmy i ong (M, 9, 0m), (N, ¢, pN)) = Homt nosyy (LM, ¢, pm)), LUN, ¢, oN)))-
Proof. By Theorem 2 we know that
Homsy | ong (M, 9, 0m), (N, ¢, pN)) © Homt neny (L((M, ¢m, o)), LUN, ¢, oN)))-

On the other hand, let ¢ : L((M, opm,om)) — L((N, ¢n,pn)) be a morphism in
gggYD. Then, g is a morphism of left H ® B-modules, i.e., go ¢y = ¢no (H®B® g).
Composing in this equality with H ® 3 ® M, by (110) and the condition of left B-comodule
for M, we have that g o gy = ¢y o (H ® g). Therefore, g is a morphism of lef H-modules.
On the other hand, g is a morphism of left H ® B-comodules, i.e., (H®B® g)oopm = ON©g.
Composing in this equality with ey ® B @ M, by (98) and the condition of left H-module
for M, we have that (B® g) o ppr = pn © g- Thus, ¢ is a morphism of lef B-comodules.
Consequently, we can assure that g is a morphism in % Long between (M, g1, pp) and
(N, PN, pN) and then,

Homt sy (L((M, @1, p20)), LN, 93 ) € Homgy o (M, @aa,pa0), (N, @)
O

Lemma 10. Let H be a quasitriangular weak Hopf monoid with morphism o : H @ H — K and
let B be a coquasitriangular weak Hopf monoid with morphism w : K — B ® B. Let L be the
functor introduced in Theorem 2. Then,

L((HL & BLI ¢HL®BL/ PHL®BL)) = (HL & BL’ lPHL®BL/ ’)/HL@BL)’

where Yy, »p, and 7y, B, are the action and the coaction introduced in (122).

Proof. To prove the Lemma, by the naturality of ¢, we only need to show that the equalities

((wocpp) @ pp) o (B@ (65 o)) = pg o pp o (B® if) (130)
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and
(H® (phoun)) o ((cnuor)®if) = (H® ply) ody oil (131)
hold. Indeed: On one hand

(woess) @ ph) o (B (65 01))

( wocp B) & pB) (B & (((B & Hng) o 53) o lng)) (by the idempotent condition for IT§)
(

(

(
(woeppo(B®up)) ®pp)o (B ((B@cpp)o ((dponp) @ip))) Gy (o)
(w®@w)o(B®cpp®@B)o(B®B®Jp)o(BRcpp)® (cpp®B)) @ pk)
( ((B@CB B) ((5307’]3)®l.]%)))(bythenaturalityofcand(eS)0fDefinition6)
((wo(TT§ @ B)) @ (wo (I ® B))) o (B&cpp © B) o (B® B® Jp)
(
(
(

[¢]

B®cpp) © (cpp®B)) @ pp)o (B ((B@cpp)o ((0ponp) @if))) by (7)
((epoup)® (epoppocpp)))o(B@cpp®B)o(B®B®p)

(
O
(

o(B®cpp)® (cpp®B)) ®@p5)o(B@ ((BRcpp)o ((6ponp) ®ik))) by (115 and (116))
= ((epopp) ® py © (ep o pp)) o (B®cpp ® B® B) ® ((6p 0 17p) ® 0p ® i)

(by the naturality pf )
= ( pB (egoug))o (53 ® ik) (by the idempotent condition for I1}))

= PB opupo (B® (HB ° 13)) (by (14))

= PB opupo (B® (I1j oTTf o i5)) Gy 6)

= PB oupo (B®i B) (by (1) and the idempotent condition for k),

and, on the other hand,

(H® (propn))o ((cnu o) ®ip)
= (H® (piy o pm)) o (e 0 0) ® (I 0 i) by )
= (He (((en o) ® pig) o (H@ cr) © (0 ® H))) o (e 0 0) @ i) Gy )

= (H® (enopn) @ py) o (cuu @ cuu) o (H@ ey @ H) o (65 ® H) 00) @ i)
(by the naturality of c)

=(H® (enopn) @ pg)o(cup @ cun) o (HO® ey @ H) o (H® H @ pp)
o(H®cyy®@H)o (0 ®0)) ®ik) by (d2) of Definition 5)

= (H® (eg o ) ® ply) o (cou ® cap) o (H® ey @ H) o (H® H @ ppr)
o(H®cyu®H)o (IIF®@H)oo)® (1T ®H)or))) ®ik)
(by (18), the idempotent condition for I} and the naturality of c)

= (H® (enopn) @ pg)o(cuu @ cun) o (HR® ey @ H) o (H® H @ pg)
o(H®cp,y ® H) o (8 0 171) ® (ch,p © 01 0 p)) ® k) (103) and (104)

= (H® (emopn) @ piy) o (cnu @ cuu) o ((H® pp © H)
O(((SH o 77H) %9 ((SH o ﬂH))) X IIL{) (by the naturality of c)

= ((((enoun) ® H) o (H® cp,n) © (0 ® H)) @ pi) o (H @ e, @ H)

((5]_] o 77H) X iH>(by (a3) of Definition 1 and naturality of c)
= (o (H@IIg)) @ pyy) o (H @ ey @ H) 0 (0 0 1) @ ify) Gy ©)
( WH &® pH) (H & CHH (%9 H) o ((5H o ﬂH) &® ZIL{) (by the idempotent condition for IT})
= (H® (ph o 11k )) 0 6y o ik by 10))
(H &® p H) 0d H© l gy (by the idempotent condition for I1k).
O

Lemma 11. Let H be a quasitriangular weak Hopf monoid with morphism o : H® H — K and
let B be a coquasitriangular weak Hopf monoid with morphism w : K — B ® B. Let L be the
functor introduced in Theorem 2. Let (M, o, ppm) and (N, ¢n, on) be objects in B, Long and let

(M, pun1, 0m) and (N, pn, oN) are their corresponding images in gggYD by the functor L. The
following equality

VMen = Omaen (132)
holds. As a consequence, M x N = M N and, if (P, pp, pp) is another object in B Long, we
have that

aAM,N,P = GM,N,P,
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where apy N, p is the associative constraint introduced in Proposition 2 and apy n,p the corresponding
one for (M, ¢p1, 0m), (N, ¢n, on) and (P, ¢p, op) in ﬁ%EYD :

Proof. Let (M, ¢y, ppm) and (N, ¢, pn) be objects in 5 Long and let (M, ¢a1, ym) and
(N, ¢N, YN) are their corresponding images in ESEYD by the functor L. Then,

VMeN

= (pm@on) o (H@emm@N) o ((6nonn) @ ((w @ w)o (B®cpp @ B)
o(B@B@(SB) o (B®CB,B) o (CB,B ®B)) ®M®N)) o (17H® ((B@CM,B ®N)
O(pM ® PN))) (by the naturality of c)

= (pm @ ¢n) o (H® cym @ N) o ((6g onn) @ ((wo (up @ B))
o(B®cpp)o(cpp®B)) @M@ N))o (g ® ((B®cmp@N)o (oM ®pn)))
(by (e2) of Definition 6)

= QpmeN by (10).

Finally, the equality for the associative constraints follows (125) and Proposition 2. [

Lemma 12. Let H be a quasitriangular weak Hopf monoid with morphism o : H® H — K and let
B be a coquasitriangular weak Hopf monoid with morphism w : K — B ® B. Let L be the functor
introduced in Theorem 2. Let (M, a1, o) be in B Long and let (M, ¢, om) its corresponding
image in gggYD by the functor L. Then,

(i) If Iy is the left unit constraint introduced in Proposition 3 for (M, ¢y, pam) and Uy is the
corresponding unit constraint defined in (123) for (M, ¢a1, 0n), we have that Iy = [.

(ii) If rpp is the right unit constraint introduced in Proposition 3 for (M, @1, par) and tyy is the
corresponding unit constraint defined in (124) for (M, ¢ar, 0n), we have that vy = tp.

Proof. t (M, g, pum) be in B Long and let (M, ¢, 00) its corresponding image in gggYD
by the functor L. First note that by the previous lemma, we have the following identities:

(HL®BL)><M:(HL®BL)E|M, MX(HL(X)BL)IMB(HL@BL),

P(H @B )oM = 9(H @B )oMs L(H @B )oM = J(H,©B)oM

and
PMe(H.©B;) = IMo(H ©B), Mo (H ©B) = IMo(H ©B,)-
Then,
(M
=gpmo(H® (wocpp) ®M)o (zIL{ ® ig ® pm) © I(H @By )M by (123)
— gmo (H® (wo (BTI)ocpp) ® M) o (ih @ik py) o i(H, 2B, ) oM ©Y @)
= gm0 (H® (ep o pp) @ M) o (ify ® i5 ® pu) © (1, 08, ) by (16)
= ((epo up) ® pum) o (B@cpy @ M) o ((cp,p o (if; ® i) © pm) © i1, 08, )oMm
(by the naturality of ¢)
= I (by (44)
and
t™

= ppmo(H® (wo (B&Tlg)ocgp) ®M)o(H®B®pp)o (H®cpp) o (cpn @ B)
o(M® (ﬁLH 0ify) ®if) 0 ipe(H, @B, ) by (124) and the naturality of c)

=¢mo (H® (epoppocpp) ®M)o(H®B®pm)o (H®cmp) o (cmu ® B)
o(M & (T 0 ify) @ ik) 0 inge (11, 0, oy (115)

= 7'M (by the naturality of c).
O
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In the final result of this paper, we will prove that under the conditions of the previous
theorem, % Long is a braided monoidal category.

Theorem 3. Let H be a quasitriangular weak Hopf monoid with morphism o : H® H — Kand
let B be a coquasitriangular weak Hopf monoid with morphism w : K — B @ B. Then, the category
B Long is a braided monoidal. Furthermore, if H is triangular and B is cotriangular, then, % Long
is symmetric.

Proof. The main assertion of this theorem is a direct consequence of the preceding Lemmas.
Please note that the braiding in /Long is the one defined in (128) for the category gggYD.
Therefore, if (M, ¢, pm) and (N, ¢n, pn) are objects in & Long, by (44) and the naturality
of ¢, the braiding admits the following formulation:

tun = (0 ® pnem) o (B cns @ M) o (oM @ pn) 0 cpn © (oM @ ¢n) o (HR ey ® N) o (0 ®ipan).  (133)

On the other hand, if H is triangular and B is cotriangular, i.e., ¢ = cg gy o 0 and
w = w o cpp, we have that:

EN Mo tMN

= (W@ pman) © (B@cmp @ N)o (oM @ pn) o cnm o (on ® oum) o (H® cpn @ M)
o(c@N®M)o(w®VNem)o (BRcnpg®M)o (on®@pm) o cmno (¢m® oN)
o(H®cym®@N)o(c@M® N) oipgn by (133)

= (W@ pman) o (B cmp @ N)o (om®@pn) oenmo (9N @ ¢m) o (H® cgn @ M)
o((cow)®N®M)o (B®cnpg®M)o(on®pm)ocmN o (Pm @ ¢n)o
(H X cHgm X N) o ((T QM N) 0 ipfeN (by (i) of [20] [Lemma 1.4] and naturality of )

= ((wocpp) ®w @ pman) o (BOB®B®cmp®N)o(BRB®pm®pN)

o(B&cmp®@N)o(pm®pn)o (M@ ¢n) o (cam®@N)o (H® gy @ N)

O(H QRH® (((pM & q)N) o (H® CHM @ N))) o(r®o® iM®N)(bythenaturalityofcand

(44))

((wocpp) *w) @ pmen) o (BRcmp®N)o (oM ®pn) o (oM @ ¢um)

O(H & CH,M ® N) o (((CH,H o 0’) * 0’) ® iM®N) (by the naturality of ¢ and the condition of H-module

and left B-comodule for M and N)

= ((@*w) @ pman) o (BRcmp @ N) o (om @ pn) o (oM @ @m) © (H® cpm @ N)

o ( (E * 0 ) i M® N)(by the triangular condition for H and the cotriangular condition for B)

((epopp) ® pman) © (B@cpmp ®N) o (oM ® pn) o (oM ® ¢m) o (H® cpm ® N)

O(((SH o 77H) ® iM@N)(bY (d5.3) of Definition 5 and (e5.3) of Definition 6)

= PMeN © VMaN © iMeN by (120)

= id N by (132),

and then, %Longis symmetric. [

Example 6. Let G be a finite groupoid such that Gy is finite. Let K be an algebraically closed
field. Let D be a quasitriangular weak Hopf monoid in the category of vector spaces over K. Then,
by Example 5 and the previous theorem, we have that the category BLong, where B = K[G]*, is
braided monoidal. As a consequence, if H is a finite groupoid such that (G, H) is a matched pair
groupoids, the category B Long, where D = K(G, H), is an example of braided monoidal category.
Finally, for a finite weak Hopf monoid H, the category B Long, where D is the Drinfel’d double of H,
is braided monoidal.

5. Discussion

In this paper, we have proven that if H and B are weak Hopf algebras in a symmetric
monoidal category where every idempotent morphism splits, the category of H-B-Long
dimodules, denoted by ¥ Long, is monoidal. Consequently, if H is quasitriangular and B
coquasitriangular, we also prove that ¥ Long is an example of braided monoidal category.
As a consequence of this result, we obtain that Long dimodules associated with weak Hopf
algebras provide new solutions of the Yang—Baxter equation. In this setting the relevant
facts that permit definition of the tensor product in % Long come from the good properties
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of the image of the composition of two suitable idempotent morphisms associated with the
module and comodule structure, respectively.

Finally, as mentioned in the Introduction, the results studied in this paper are strongly
related with the theory developed by G. Militaru in the study of D-equation for Hopf
algebras. The connection of weak Hopf algebras and the problem of to find new solutions
of this equation may be the subject of on-going investigations.
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