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Abstract: Given a continuous Cournot map F(x, y) = ( f2(y), f1(x)) defined from I2 = [0, 1]× [0, 1]
into itself, we give a full description of its ω-limit sets with non-empty interior. Additionally,
we present some partial results for the empty interior case. The distribution of the ω-limits with
non-empty interior gives information about the dynamics and the possible outputs of each firm in a
Cournot model. We present some economic models to illustrate, with examples, the type of ω-limits
that appear.

Keywords: ω-limit set; Cournot map; non-empty interior; Cournot duopoly model; topological
mixing map
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1. Introduction

Topological structure and classification of ω-limits for general compact metric spaces
remain an important problem and, in many aspects, an unknown subject. In order to better
understand the main goal pursued in this paper in relation to the description of certain
ω-limit sets for Cournot maps, and their presence in the numeric simulations of several
economic models, let us first present the needed notions and their associated notation.

Given a compact metric space X, let C(X, X) denote the set of continuous maps from
X into itself. The interior of a subset Y ⊂ X is denoted by Int(Y). We say that Y ⊂ X
is a nowhere dense set whenever the interior of its closure is empty. Let ϕ ∈ C(X, X).
For n ∈ N we put ϕn = ϕ ◦ ϕn−1, with ϕ0 = Identity. The orbit of a point x ∈ X through ϕ
is Orbϕ(x) = {ϕn(x)}∞

n=0. We say that Y ⊂ X is n-periodic if ϕn(Y) = Y and ϕk(Y) 6= Y for
0 < k < n; in this case, Orbϕ(Y) = Y ∪ ϕ(Y) ∪ ...∪ ϕn−1(Y) is the orbit of Y. If Y = {x} we
say that it is a n-periodic point. The period of x is denoted by ordϕ(x). When X = I := [0, 1]
is the unit interval and Y is a subinterval of I, we have an n-periodic subinterval. If X = I2,
and Y = J1 × J2, with Ji subintervals of I, i = 1, 2, we have an n-periodic rectangle.

The set of limit points of Orbϕ(x) (i.e., its accumulation points or elements y in X, for
which there exists an infinite subsequence n1 < n2 < . . . < nj < . . . of positive integers
such that ϕnj(x) converges to y), is called the ω-limit set of x by ϕ, and we denote it by ωϕ(x).
For any x ∈ X, ωϕ(x) is non-empty, closed and strongly invariant (ϕ(ωϕ(x)) = ωϕ(x))
(see [1]). Moreover, for any n ∈ N

ωϕ(x) =
n−1⋃
j=0

ωϕn(ϕj(x)). (1)

We say that ϕ is transitive if, given two non-empty open sets U, V ⊂ X, there is n0 ∈ N
such that ϕn0(U)∩V 6= ∅. If there is k0 ∈ N such that ϕn(U)∩V 6= ∅ for all n ≥ k0, then ϕ
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is called a (topologically) mixing map. Observe that topologically mixing implies transitivity
(see [2] for a detailed explanation on properties of these types of maps). Moreover, ϕ is
transitive if and only if there exists a point x ∈ X with ωϕ(x) = X (see [1]).

The pair (X, ϕ) is called a discrete dynamical system. Given such a system, the main
objective is to know the asymptotic behavior of the orbits Orbϕ(x) for all x ∈ X and to
analyze the topological structure of their ω-limit sets. This is a difficult problem, and we
restrict our attention to a particular class of continuous two-dimensional maps.

Given f ∈ C(I, I), I = [0, 1], the topological structure of an ω-limit set L of f is well
known: either L is a nowhere dense set or L =

⋃n
i=1 Ji, where Ji are non-degenerate closed

subintervals of I such that f (Ji) = Ji+1(mod n) and Ji ∩ Jk = ∅ if i 6= k (for a proof, see [1]).
Conversely, any set of the above forms can be realized as an ω-limit set for a suitable
continuous interval map (see [3] or [4]).

Nevertheless, the description of ω-limit sets for continuous maps f : In → In,
with n ≥ 2, is an open problem. In this direction, only a few results are known (see
for instance, [5–9]). It seems to be more reasonable to focus our attention on special classes
of two-dimensional continuous maps.

Following [10], we are interested in describing the topological structure of ω-limit sets
of a particular class of C(I2, I2) called antitriangular maps or Cournot maps. We say that
F ∈ C(I2, I2) is an antitriangular map (or Cournot map) if

F(x, y) = ( f2(y), f1(x)),

with fi ∈ C(I, I), i = 1, 2. It is immediate to see that for any n ≥ 0 it holds

F2n(x, y) = (( f2 ◦ f1)
n(x), ( f1 ◦ f2)

n(y)), (2)

F2n+1(x, y) = (( f2 ◦ ( f1 ◦ f2)
n)(y), ( f1 ◦ ( f2 ◦ f1)

n)(x)). (3)

The set of antitriangular maps on I2 will be denoted by CA(I2, I2).
This type of two-dimensional map appears closely related to an economical process

called the Cournot duopoly (see [11]), in which two firms produce an identical good, and in
each step they try to obtain the maximum profit according to the decision of the opposite
firm in the last step. This economical process has been profusely studied in the literature
(for instance, see [12–17],...).

The following result gives a description of ω-limit sets of antitriangular maps.

Theorem 1 ([10] Theorem 2). Let F ∈ CA(I2, I2) and let L = ωF(x, y), (x, y) ∈ I2. Then L
can be one of the following types:

1. A finite set (periodic orbit).
2. An infinite nowhere dense set.
3. L is a finite union

⋃p
i=1 Ri , where Ri = Ii × Ji ⊂ I2 are non-degenerate periodic rectangles

of F such that Ri ∪ Rj is not a rectangle and Int(Ri) ∩ Int(Rj) = ∅ for 1 ≤ i < j ≤ p.

But, as it was highlighted in [10], not every distribution of rectangles in the square can
be realized as an ω-limit of a suitable antitriangular map. In this paper, our main goal is to
give a full description of ω-limit sets with non-empty interior, and consider some questions
about ω-limit sets with empty interior.

This paper is organized as follows. After some preliminary results stated in Section 2,
we proceed to develop in Section 3 a full description for the ω-limit sets of Cournot
maps F(x, y) = ( f2(y), f1(x)) that have a non-empty interior. It is worth mentioning that
this study is strongly related to the nature of the ω-limit sets associated with the one-
dimensional maps f2 ◦ f1 and f1 ◦ f2, in connection with the property of either being or not
being a mixing ω-limit set, see Definition 2. Our analysis will be applied and illustrated
with several economic models, such as Puu’s duopoly or Matsumoto-Nonaka’s model,
among others, in Section 4. Next, in Section 5, on the one hand we present some examples
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of ω-limit sets of Cournot maps having empty interior and we show the existence of
connected limit sets with empty interior; on the other hand, in the non-empty interior case,
we characterize the connected ω-limit sets ωF(x, y) of Cournot maps F by the inspection
of their canonical projections πj(ωF(x, y)), j = 1, 2, and the intersection of the limit sets
ωF2(x, y) and ωF2(F(x, y)). We also state some open problems with the hope of advancing
the comprehension of the empty-interior case of Cournot maps.

2. Auxiliary Results

In this section, some auxiliary results are summed up since they will be used later.

Proposition 1 ([10] Proposition 7). Let F ∈ CA(I2, I2). The following properties hold for all
Z = (z1, z2) ∈ I2.

1. ωF(Z) ⊆ [ω f2◦ f1(z1)×ω f1◦ f2(z2)] ∪ [ω f2◦ f1( f2(z2))×ω f1◦ f2( f1(z1))].
2. πi(ωF(Z)) = ω f j◦ fi

(zi) ∪ω f j◦ fi
( f j(zj)), for i, j ∈ {1, 2}, i 6= j.

3. fi(ω f j◦ fi
(zi)) = ω fi◦ f j

( fi(zi)), for i, j ∈ {1, 2}, i 6= j.

For the next results, recall that by a bitransitive map f we understand a continuous
map for which f and f 2 are transitive.

Lemma 1 ([2] Theorem 6.1.1). Let f ∈ C(I, I) be transitive. Then either f is bitransitive or
there is c ∈ (0, 1) such that f ([0, c]) = [c, 1], f ([c, 1]) = [0, c] and both f 2|[0,c] and f 2|[c,1] are
bitransitive (clearly the point c is the only fixed point of f ).

Lemma 2 ([2] Theorem 6.1.2). Let f ∈ C(I, I). The following statements are equivalent:

1. f is bitransitive.
2. f is topologically mixing.

Remark 1. With respect to the last result, we can stress that in the case of a bitransitive map
f : I → I (therefore, topologically mixing), if x0 ∈ I verifies that ω f (x0) = I, then ω f s(x0) = I
for every positive integer s, see ([1], [Prop. 42, Chapter VI]).

The following result allows us to construct ω-limit sets from mixing sets (we will say
that an invariant closed set Y ⊂ X is mixing for a continuous map ϕ : X → X whenever ϕ|Y
is mixing); it can be easily derived from Theorem 6 in [6] where the property is established
in the frame of mixing compact ω-limit sets in the Euclidean space Rn.

Theorem 2 ([6] Theorem 6). Let f , g ∈ C(I, I) and let x ∈ I such that ω f (x) is mixing. Then for
any y ∈ I there are x1, y1 ∈ I such that ω f×g(x1, y1) = ω f (x)×ωg(y).

The following lemma states the relationship between two ω-limit sets from a continu-
ous map defined in a compact metric space.

Lemma 3 ([10] Lemma 3). Let ϕ ∈ C(X, X) and suppose that Y and Z are ω-limit sets of ϕ with
non-empty interior. Then Int(Y) ∩ Int(Z) = ∅ or Y = Z.

The case in which Int(Y) ∩ Int(Z) = ∅ can be even more specific. The following
result deals with interval maps having two different ω-limits sets with non-empty interiors
sharing periodic points. According to the structure of the ω-limit sets L with non-empty
interior, corresponding to interval maps f ∈ C(I, I), described in Section 1, we know
that L =

⋃p
s=1 Is and f (Is) = Is+1 mod(p), s = 1, . . . , p. Then, we say that L is mixing for

f whenever the transitive restricted map f p|Is is topologically mixing for s = 1, . . . , p.
Otherwise, L is said to be no mixing.



Mathematics 2021, 9, 452 4 of 33

Lemma 4. Let f ∈ C(I, I). Let A =
⋃p

i=1 Ii and B =
⋃q

j=1 Jj be two different ω-limit sets of f
with non-empty interiors. Suppose p ≥ q. Suppose A ∩ B 6= ∅ and Int(A) ∩ B = ∅. Then, either
p = q or p = 2q, in both cases A is mixing, and the number of connected components of A ∪ B is q.

Proof. If A∩ B 6= ∅ and Int(A)∩ B = ∅, then it is easily seen that A and B share endpoints,
which are evidently periodic points of f .

Let (A ∪ B)1 < ... < (A ∪ B)c be the c connected components of A ∪ B (given J, K ⊂ I,
J < K means that x < y for all x ∈ J, y ∈ K; realize that this number c is finite).

Define

ai = Card({1 ≤ j ≤ p : Ij ⊂ (A ∪ B)i}),
bi = Card({1 ≤ t ≤ q : Jt ⊂ (A ∪ B)i}).

Obviously, ai1 = ai2 , bj1 = bj2 for all i1, i2 ∈ {1, ..., p} and j1, j2 ∈ {1, ..., q}, since f
maps connected components on connected components and A, B are periodic sets of f .
Moreover, since p ≥ q, either a1 = b1 or a1 = b1 + 1.

If b1 ≥ 2, it is not restrictive to assume that we have in (A ∪ B)1 the disposition
Ii1 ≤ Jj1 ≤ Ii2 ≤ Jj2 ≤ ... for some i` ∈ {1, ..., p}, j` ∈ {1, ..., q}, ` = 1, 2, . . . Notice that c < p
because b1 ≥ 2 and q ≤ p. Since f maps connected components on connected components,
and c is the number of such connected components, we have f c((A ∪ B)1) = (A ∪ B)1.
Therefore, being (A ∪ B)1 a closed interval, there exists a fixed point x of f c in (A ∪ B)1.
Taking into account that b1 ≥ 2 (so, min{p, q} ≥ 2), we deduce that either x ∈ Int(Ii`)
or x ∈ Int(Jj`) for some ` = 1, 2, . . . Consequently, either f c(Ii`) = Ii` or f c(Jj`) = Jj` .
The first case is not allowable because A is a p-periodic orbit and c < p; in the second case,
we distinguish two situations: (i) if Jj` is the endpoint of (A ∪ B)1 necessarily f c(Ii`) = Ii` ,
a new contradiction; (ii) if Jj` is not an endpoint of (A ∪ B)1, since b1 ≥ 2 we have
Jj` ≤ Ii` ≤ Jj`+1

, and due to the fact that f c(Jjs) = Jjs for all s, we deduce that f c(Ii`) = Ii` ,
which again contradicts that c < p.

Therefore, we have proved that b1 = 1. This gives c = q. Notice that the possibility
a1 = b1 + 1 can occur.

Due to the structure of the connected components (A ∪ B)1, . . . , (A ∪ B)q mentioned
above, observe that f p(x) = x for all x ∈ A ∩ B both if p = q (here (A ∪ B)s = Iis ∪ Jjs ) or
p = 2q (where (A ∪ B)s = Iis ∪ Jjs ∪ Iis+1 , with Iis ≤ Jjs ≤ Iis+1 ). This means that each Ii has
an endpoint as a fixed point of f p. Then Lemma 1 and Lemma 2 imply that A is mixing.

Remark 2. Realize that if p = q in the above Lemma 4, we also obtain that B is mixing, but in the
case p = 2q it is not guaranteed that B is mixing, because in this situation we only know that its
endpoints are fixed by f 2q but we have no information about the action of f q on these endpoints.

To describe the ω-limit sets with non-empty interior, we will use the following results,
whose proofs can be consulted in [18]. Among them, we include the characterization of
finite limit sets, that is, periodic orbits of Cournot maps; in fact, the movement of periodic
rectangles realized as ω-limit sets of Cournot maps can be ‘interpreted’ as the evolution of
periodic points, and in this sense the distribution of periodic points can show us in some
cases the possible way to distribute periodic rectangles.

Lemma 5 ([18] Proposition 3.7). Let F ∈ CA(I2, I2). Let M ⊂ I2 be a periodic orbit of F and fix
(x, y) ∈ M. Then the following statements are equivalent:

1. M ⊆ Orb f2◦ f1(x)×Orb f1◦ f2(y).
2. M ∩ (Orb f2◦ f1(x)×Orb f1◦ f2( f1(x))) 6= ∅.
3. f1(x) ∈ Orb f1◦ f2(y).
4. f2(y) ∈ Orb f2◦ f1(x).
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Lemma 6 ([18] Proposition 3.8). Let F ∈ CA(I2, I2). Let M ⊂ I2 be a periodic orbit of F with
f2(y) /∈ Orb f2◦ f1(x) for all (x, y) ∈ M. Then there are d, k1, k2 ∈ N and there are two finite sets
H, V ⊂ I holding the following properties:

1. Card(M) = 2dk1k2, gcd(k1, k2) = 1, lcm(dk1, dk2) = Card(M)/2.
2. For all (x, y) ∈ M, either dk1 = ord f2◦ f1(x) and dk2 = ord f1◦ f2(y), or dk2 = ord f2◦ f1(x)

and dk1 = ord f1◦ f2(y).
3. Card(H) = k1, Card(V) = k2.
4. OrbF(H ×V) = M.
5. For i = 1, 2, πi(Fj(H ×V)) ∩ πi(F`(H ×V)) = ∅ for 0 ≤ j < ` < 2d.

Theorem 3 ([18] Theorem 3.10). Let M = {(xi, yi)}n
i=1 be a periodic orbit for F ∈ CA(I2, I2).

Then

1. If n ∈ {2} ∪ {2m + 1 : m ∈ N ∪ {0}}, xi 6= xj and yi 6= yj for i 6= j, i, j ∈ {1, ..., n}.
See Figure 1.

Figure 1. Case (1) in Theorem 3: Two points or an odd number of points.

2. If n ∈ {2m : m ∈ N, m ≥ 2}, and M satisfies the equivalent conditions of Lemma 5,
for any i ∈ {1, ..., n} there are unique j, k ∈ {1, ..., n}\{i} such that xi = xj and yi = yk.
See Figure 2.

Figure 2. An even number n of points, n ≥ 4, following the distribution stated in Case (2) of
Theorem 3.

3. If n ∈ {2m : m ∈ N, m ≥ 2}, and M does not satisfy the equivalent conditions of Lemma 5,
the distribution of points of M is described by Lemma 6. See Figure 3.
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Figure 3. An even number n of points, n ≥ 4, following the distribution stated in Case (3) of
Theorem 3.

3. Description of the Non-Empty Interior Case

In this section, the starting point for the analysis lies in fixing the type of ω-limit
sets obtained in the one-dimensional case ( f1 ◦ f2 and f2 ◦ f1) and, then, to study the
type of ω-limit sets generated in the two-dimensional case for the antitriangular map
F(x, y) = ( f2(y), f1(x)).

Let F ∈ CA(I2, I2) be an antitriangular map such that F(x, y) = ( f2(y), f1(x)) where
f1, f2 ∈ C(I, I). Let L = ωF(x, y) be an ω-limit with non empty interior. Then, according to
Theorem 1, L = ∪k

i=1Ri, where k is the number of different rectangles in the decomposition.
As general observations, we can assume that

ω f2◦ f1(x) =
p⋃

i=1

Ii = A, ω f1◦ f2( f1(x)) =
p⋃

i=1

f1(Ii) = f1(A),

ω f1◦ f2(y) =
q⋃

j=1

Jj = B, ω f2◦ f1( f2(y)) =
q⋃

j=1

f2(Jj) = f2(B),

where Ii and Jj are closed non-degenerate periodic subintervals of f2 ◦ f1 and f1 ◦ f2
respectively, with periods p and q, respectively. In our next development, we put I′s = f2(Js),
J′t = f1(It), s = 1, . . . , q, t = 1, . . . , p. Moreover, by Proposition 1,

L ⊂ (A× B) ∪ ( f2(B)× f1(A)).

Let π1 and π2 be the projection maps on the first and second coordinate, respectively.
Let J be an interval appearing in A∪B; for j = 1, 2, we define pj(J) =

∣∣{R ⊆ L : πj(R) = J}
∣∣

the number of rectangles R in L, such that πj(R) = J.
In order to simplify the classification of ω-limit sets with non-empty interior, we consider

the following definition.

Definition 1. We say that two ω-limit sets L1 = ∪k1
i=1Ri and L2 = ∪k2

j=1R̃j are equivalent if

1. k1 = k2;
2. there exists a permutation σ of k = k1 = k2 elements such that πj(L1) = πj(L2) and

pj(πj(R̃σ(i))) = pj(πj(Ri)) for each j = 1, 2 and i = 1, . . . , k.

From now we say that two ω-limit sets are different if they are not equivalent (for an
example of equivalent limit sets, see Figure 4).
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Figure 4. Two equivalent limit sets.

Finally, we recall the definition of the mixing ω-limit set.

Definition 2. We say that the ω-limit set A is mixing if ( f2 ◦ f1)
p|Ii is mixing for all i ∈ {1, ..., p}.

In other cases, we say that A is no mixing.

In the next development, the strategy followed describing the ω-limit sets with non-
empty interiors consists in distinguishing the cases in which A, B are or are not mixing.

3.1. A and B Mixing

Let L = ωF(x, y) =
⋃k

i=1 Ri be defined as before. Let ` ∈ N be ` := lcm(p, q). Without
loss of generality, rearranging the indexes if necessary, we can assume that

( f2 ◦ f1)
r(I1) = I1+r (mod p), for r = 1, . . . , p; ( f1 ◦ f2)

s(J1) = J1+s (mod q), for s = 1, . . . , q. (4)

We can distinguish two general subcases:

1. f1(A) ∩ Int(B) 6= ∅ (or equivalently f1(A) = B, Lemma 3). Therefore, f1(A) = B
and f2(B) = A, and there exists a bijective correspondence between the intervals of A
and B and, hence, p = q. If p = 1 the distribution is trivial, we only have a unique
rectangle R = I1 × J1. For p ≥ 2 we reason as follows. Assuming an ordering such
that R1 = I1 × J1, then

f1(I1) = Jt

for some t ∈ {1, . . . , p}. In particular, if f1(I1) = J1 then p2(J1) ≥ 2 since p ≥ 2,
although it is also possible to find examples for which p2(I1) = 1. Observe that under
the previous assumptions, according to (4) the condition f1(I1) = Jt determines the
images of all intervals Ii and Jj for i, j = 1, . . . , p. In fact, f1(Ii) = Ji+t−1 (mod p) and
f2(Ji) = Ii+2−t (mod p) for any i ∈ {1, . . . p}. Thus, two different distributions (except
equivalences) are possible:

(D1) If t 6= 1, there are k = p = q rectangles and there exists an arrangement of the
indexes such that Ri = Ii × Ji for i = 1, . . . , k. It is clear that p1(Ii) = p2(Ji) = 1
for any i = 1, . . . , k. See Figure 5.

(D2) If t = 1, there are k = 2p = 2q rectangles and f1(Ii) = Ji (mod p) and
f2(Ji) = Ii+1 (mod p), where p ≥ 2. Also, it is held that p1(Ii) = k

p = 2 and

p2(Ji) =
k
p = 2 for i = 1, . . . p, see Figure 6.

Observe that if the number of rectangles k is odd, then only Distribution D1 is possible.
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2. f1(A) ∩ Int(B) = ∅. We define

B′ =
p⋃

i=1

f1(Ii) =
p⋃

i=1

J′i and A′ =
q⋃

i=1

f2(Ji) =
q⋃

i=1

I′i .

Notice that B′ = f1(A) and A′ = f2(B). Moreover, B′ ∩ Int(B) = ∅ and A′ ∩
Int(A) = ∅. In this case, the number of rectangles, k, is always even, in particular
k = 2` = 2lcm(p, q) as F2r(I1 × J1) = I1+r (mod p) × J1+r (mod q) and F2r+1(I1 × J1) =

f2

(
J1+r (mod q)

)
× f1

(
I1+r (mod p)

)
= I′1+r (mod q) × J′1+r (mod p) for r ∈ {1, . . . , `}.

The ω-limit set L is given by L = L1 ∪ L2, with π1(L1) = A, π2(L1) = B, π1(L2) = A′,
π2(L2) = B′, such that Int(L1) ∩ L2 = ∅. The number of rectangles Ri of L1 is k1 and
the number of rectangles R′i of L2 is k2. Observe also that k1 = k2 = ` = lcm(p, q),
hence k = 2 · k1 = 2 · ` and Ri = Ii (mod p) × Ji (mod q), R′i = I′i (mod q) × J′i (mod p),

i ∈ {1, . . . , `}, with p1(π1(R)) = `
p , p2(π2(R)) = `

q for each R in L1 and p1(π1(R′)) =
`
q , p2(π2(R′)) = `

p for each R′ in L2. Thus, p1(Ii) = p2(J′i ) =
`
p = k

2p for i ∈ {1, . . . , p},
and p2(Ji) = p1(I′i ) = `

q = k
2q for i ∈ {1, . . . , q}. As we have signaled above,

the rectangles of the ω-limit set are described by Ri (mod k) = Ii(mod p) × Ji(mod q) and
R′i (mod k) = I′i(mod q) × J′i(mod p) for i = 1, . . . , k. This case is easily detected when
there exists i 6= j such that p1(π1(Ri)) = p2(π2(R′j)) 6= p1(π1(R′j)) = p2(π2(Ri)).
Additionally, if:

(D3) f1(A) ∩ B = ∅. There are 2` connected components, since the number of
connected components of A ∪ A′ is p + q. See Figure 7.

(D4) f1(A)∩ B 6= ∅. The number of connected components depends on the number
of connected components of A ∪ A′ and B ∪ B′ which is less than or equal to
p and q, respectively, see Lemma 4. Consequently, rectangles can be disjoint,
have a common vertex or two common vertices, see Figures 8–11. Notice that
the case for two common vertices can only be realized by a unique distribution,
given precisely by Figure 10; moreover, observe that Ri ∩ R′j 6= ∅ if and only if
Ii ∩ I′j 6= ∅ and Ji ∩ J′j 6= ∅.

Figure 5. Mixing-mixing. Distribution D1. k = 5; f1(A) = B, A and B contain 5 disjoint intervals,
that is, p = q = 5; k = ` = lcm(5, 5) = 5. Observe that p1(I) = 1 and p2(J) = 1 for each rectangle
R = I × J.
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Figure 6. Mixing-mixing. Distribution D2. f1(A) ∩ Int(B) 6= ∅. In the left side: p = q = 3, ` = 3
and k = 2 · ` = 6; p1(π1(R)) = 2 and p2(π2(R)) = 2 for each rectangle R in L. In the right side:
p = q = 2, ` = 2, k = 2` = 4; again p1(π1(R)) = 2 and p2(π2(R)) = 2.

Figure 7. A and B mixing. Distribution D3. We define L1 as the set of rectangles R such that
p1(π1(R)) = 3 and p2(π2(R)) = 2. The contrary occurs for rectangles R′ in L2, for which p1(R′) = 2
and p2(R′) = 3. Thus, |L1| = |L2| = 12 and |L| = |L1 ∪ L2| = 24; A contains 4 disjoint intervals, B is
made of 6 disjoint intervals and f1(A) ∩ B = ∅. Observe that ` = lcm(4, 6) = 12.

Figure 8. A and B mixing. Distribution D4. |L| = 8. Observe that pi(πi(R)) = 1 for any R in L
and i = 1, 2. Thus, |L1| = 4 and |L2| = 4. The cardinality of A and B is equal to 4, thus ` = 4;
f1(A) ∩ Int(B) = ∅ and f1(A) ∩ B 6= ∅, for this reason projections of rectangles have common
vertices. Observe that rectangles do not have common points.
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Figure 9. A and B mixing. Distribution D4. |L| = 6. A contains 3 disjoint intervals and f1(A) ∩
Int(B) = ∅ but f1(A) ∩ B 6= ∅; B has 3 disjoint intervals. |L1| = |L2| = 3 and rectangles of both sets
have a common vertex.

Figure 10. A and B mixing. Distribution D4. |L| = 4. A contains 1 interval and f1(A) ∩ Int(B) = ∅
but f1(A) ∩ B 6= ∅; in this case, the intersection are two points; B has 2 intervals; |L1| = |L2| = 2.
Rectangles from L1 have two vertices in common with rectangles from L2 and the same for rectangles
from L2.

Figure 11. A and B mixing. Distribution D4. |L| = 12; A contains 3 intervals and f1(A) ∩ Int(B) = ∅
but f1(A) ∩ B 6= ∅; in this case, the intersection are two points but rectangles have no common
points; B has 6 intervals; |L1| = |L2| = 6.

3.2. A Mixing and B No Mixing

Since B is no mixing and by Definition 2, Lemma 1 and Lemma 2, there are closed
intervals J1

i and J2
i whose intersection is a fixed point of ( f1 ◦ f2)

q and such that Ji = J1
i ∪ J2

i ,

( f1 ◦ f2)
q(J1

i ) = J2
i , ( f1 ◦ f2)

q(J2
i ) = J1

i , and ( f1 ◦ f2)
2q
∣∣

J j
i

is mixing on J j
i for i = 1, 2, . . . , q
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and j = 1, 2. Now, it is not possible that f1(A) ∩ Int(B) 6= ∅ due to Lemma 3 and the
different mixing character of the intervals.

Assume that L = L1 ∪ L2 and that the rectangles of L1 and L2 are of type Ii × Jr
j and

type (I′)r
j × J′i (with i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, r = 1, 2), respectively, where we have

implicitly used Proposition 1 as well as the notation

f1(A) = f1

( p⋃
i=1

Ii

)
=

p⋃
i=1

f1(Ii) =:
p⋃

i=1

J′i ,

and

f2(B) = f2

( q⋃
i=1

(
J1
j ∪ J2

j

))
=

q⋃
j=1

(
f2(J1

j ) ∪ f2(J2
j )
)
=:

q⋃
j=1

(
(I′)1

j ∪ (I′)2
j

)
.

Next, by assuming that R1 = I1 × J1
1 , we have:

• If `
q is odd, ` = rq, r odd, then ( f1 ◦ f2)

rq(Js
j ) = Jt

j , for all j = 1, . . . , q and s, t ∈ {1, 2},
s 6= t, due to the fact that B is not mixing; then both rectangles Ii × J1

j and Ii × J2
j

belong to L1 (realize that F2`(Ii × J1
j ) = ( f2 ◦ f1)

`(Ii)× ( f1 ◦ f2)
`(J1

j ) = Ii × J2
j ), that is,

Ii × Jj belongs to L1; similarly, both rectangles (I′)1
j × Ji and (I′)2

j × Ji belong to L2

and, therefore, the distribution of L = L1 ∪ L2 is reduced to the case A and B mixing
with f1(A) ∩ B = ∅ (distribution D3).

• If `
q is even, ` = mq, m even, now each rectangle of the ω-limit L is the half part of a

rectangle Ii × Jk or I′j × J′i , and the number of rectangles of Ln is equal to `, n = 1, 2,

so |L| = 2` (notice that, as a consequence of the parity of `, F2`(I1 × J1
1 ) = ( f2 ◦

f1)
`(I1)× ( f1 ◦ f2)

`(J1
1 ) = I1× J1

1 and consider that Ft(I1× J1
1 ) /∈ {I1× J1

1 , I1× J1
2} for

0 < t < 2`).

Thus, we assume that `
q is even. The number of rectangles of L must be a multiple of

4. Since L1 has an even number of rectangles, the following cases sum up the possibilities.

(D5) f1(A) ∩ B = ∅. In this case, the ω-limit is a set L which is the union of L1 and L2
both with the same number of rectangles. We also have that Li has an even number
of rectangles for i = 1, 2. Observe that: p1(π1(R)) = `

p and p2(π2(R)) = `
q for each

entire rectangle R having the form Ii × Jj = Ii ×
(

J1
j ∪ J2

j

)
and each projection of a

rectangle of L1 must have a common point with the projection of another rectangle;
similarly, p2(π2(R)) = `

p and p1(π1(R)) = `
q for each entire rectangle R ∈ L2 (having

the form (I′)j × (J′)i =
(
(I′)1

j ∪ (I′)2
j

)
× ((J′)i)) and each projection of a rectangle

must have a common point with the projection of another rectangle. See Figure 12.

Figure 12. A mixing and B no mixing. Distribution D5. Here, p = 2, q = 3, ` = 6; each ‘entire’
rectangle R in L1 verifies p1(π1(R)) = 3 = `

p and p2(π2(R)) = 2 = `
q , whereas each ‘entire’ rectangle

R′ in L2 holds p2(π2(R′)) = 3 = `
p and p1(π1(R′)) = 2 = `

q .
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(D6) f1(A) ∩ Int(B) = ∅ and f1(A) ∩ B 6= ∅. By Lemma 4 and Remark 2, we know that
each connected component of A ∪ f2(B) has the form Ii ∪ I′i ∪ Ii+1, where Ii = [ai, bi],
I′i = [bi, ai+i], Ii+1 = [ai+1, bi+1], for some values ai < bi < ai+1 < bi+1. Notice that
p = 2q, ` = p, `

q = 2; moreover, the number of rectangles in L = L1 ∪ L2 is just 4q.

Here, the ‘entire’ rectangles R in L1 have the form Ii × Jj = Ii ×
(

J1
j ∪ J2

j

)
, and we

have p1(π1(R)) = `
p = 1 and p2(π2(R)) = `

q = 2. For rectangles R′ in L2, having

type
(
(I′)1

i ∪ (I′)2
i
)
× J′j , instead we find p1(π1(R′)) = `

q = 2 and p2(π2(R)) = `
p = 1.

See Figure 13.

Figure 13. A mixing and B no mixing. Distribution D6. In the first examples, p = 2, q = 1,
and p = 4, q = 2; in the last one, p = 6, q = 3.

3.3. A and B No Mixing

Realize that if A and B are no mixing, then f1(A) and f2(B) are also no mixing. We can
assume that, except for equivalences, there are closed intervals I1

i and I2
i , whose intersection

is a fixed point of ( f2 ◦ f1)
p and such that Ii = I1

i ∪ I2
i , ( f2 ◦ f1)

p(I1
i ) = I2

i , ( f2 ◦ f1)
p(I2

i ) = I1
i

and ( f2 ◦ f1)
2p|

I j
i

is mixing on I j
i for i = 1, 2, . . . , p and j = 1, 2. A similar situation occurs

for B, with Jj = J1
j ∪ J2

j , j = 1, . . . , q. We also assume that R1 = I1
1 × J1

1 . Let us assume

also that I1
i < I2

i and J1
i < J2

i , where I < J means that x < y for each x ∈ I and y ∈ J.
Now, according to Lemma 4, only the cases f1(A) ∩ B = ∅ and f1(A) ∩ Int(B) 6= ∅ are
admissible (notice that the last one is equivalent to f1(A) = B). Recall that ` = lcm(p, q),
p and q being the number of intervals in A and B, respectively. Moreover, thanks to the
equivalence relation given in Definition 1, we can assume without loss of generality that
( f2 ◦ f1)(Ii) = Ii+1 (mod p) and ( f1 ◦ f2)(Jj) = Jj+1 (mod q).

1. Case f1(A) ∩ B = ∅. Firstly, we claim that the number of rectangles in the orbit
of I1 × J1, OrbF(I1 × J1) = {I1 × J1, f2(J1)× f1(I1), ( f2 ◦ f1)(I1)× ( f1 ◦ f2)(J1), . . .},
is equal to 2`. To see it, let {a} = I1

1 ∩ I2
1 , {b} = J1

1 ∩ J2
1 ; we know that a (b) is a

periodic point of f2 ◦ f1 ( f1 ◦ f2) of period p (q). We assert that (a, b) is a periodic
point of F of period 2`. Let m be the order of (a, b) for the map F. Since F2`(a, b) =
(( f2 ◦ f1)

`(a), ( f1 ◦ f2)
`(b)) = (a, b), on the one hand we have m|2`. Thus, F2m(a, b) =

(( f2 ◦ f1)
m(a), ( f1 ◦ f2)

m(b)) = (a, b); on the other hand, we also deduce that p|m and
q|m, and consequently `|m. From the above reasoning, either m = ` or m = 2`. If it
were m = `, with ` even, ` = 2

(
`
2

)
, then F`(a, b) = (( f2 ◦ f1)

`
2 (a), ( f1 ◦ f2)

`
2 (b)) =

(a, b) and p| `2 , q| `2 , in contradiction with the definition of the lowest common multiple.
If it were m = `, with ` odd, ` = 2s + 1, now F2s+1(a, b) = (a, b) would give us
( f2 ◦ f1)

s( f2(b)) = a, ( f1 ◦ f2)
s( f1(a)) = b, so (a, b) ∈ (A × B) ∩ ( f2(B) × f1(A)),

that is, a ∈ A ∩ f2(B), contrary to our hypothesis. Therefore, (a, b) is F-periodic and
its period is 2`. As a consequence, OrbF(I1 × J1) has 2` different rectangles (maybe
with common vertexes). Since F2`(I1 × J1) = I1 × J1, and ` is the first time s in which
( f2 ◦ f1)

s(I1) × ( f1 ◦ f2)
s(J1) = I1 × J1, we have that OrbF(I1 × J1) has either ` or

2` elements. But the case ` is forbidden because then F`(a, b) = (a, b) due to the
fact that (a, b), F(a, b), . . . , are the ‘middle points’ of I1 × J1 and its respective images.
This ends the claim.
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The last claim does not imply necessarily that the number k of rectangles in the ω-limit
L = ωF(x, y) = OrbF(I1

1 × J1
1 ) must be 2`. It will depend on the parity of k1 := `

p and

k2 := `
q . Realize that k1 and k2 cannot be even simultaneously, at least some of them

are odd.
If k1 is odd and k2 is even (the case k1 even and k2 odd is analogous), then F2`(I1

1 ×
J1
1 ) = ( f2 ◦ f1)

`(I1
1 )× ( f1 ◦ f2)

`(J1
1 ) = I2

1 × J1
1 , and really we have 2` different rect-

angles in L because the parts I1
1 × J1

1 and I2
1 × J1

1 gives rise to the union of I1 × J1
1 .

The distribution that appears is equal to the case mixing–no mixing previously con-
sidered, distribution D5.
If k1 and k2 are both odd integers, then ` = pk1 = qk2 and F2`(I1

1 × J1
1 ) = ( f2 ◦

f1)
`(I1

1 ) × ( f1 ◦ f2)
`(J1

1 ) = I2
1 × J2

1 , and in this case we find 4` different rectangles
(notice that F2j(I1

1 × J1
1 ) 6= I1

1 × J1
1 for j = 1, . . . , ` − 1); moreover, the rectangles

in the ω-limit L are distributed in two groups of rectangles, namely L1 and L2,
with |L1| = |L2| = 2`. The distribution of L2 mimics the distribution of L1, shifting
the position of the axes. See Figure 14.

Figure 14. A and B no mixing. Observe that f (A)∩ B = ∅ and under the theoretical assumptions we
should obtain 7 (2 times in each) changes of sign, but shifting J2, J4 and I2 the result is as it is shown.

Thus, let us assume k1 and k2 are odd numbers. Then, structures that are made up of
two rectangles with a common point appear, which allows us to consider different
orientations, namely, (+) and (−) see Figure 15.

Figure 15. Distributions with two different orientations for the case no mixing-no mixing. Positive
orientation is shown in the left and negative one is in the right.

For this case, there must coexist these types of structures with both orientations,
but, how many of them?
In order to describe and count the structures with negative orientation, we proceed
as follows. Recall that we assume A = ∪p

i=1 Ii, B = ∪q
j=1 Jj, and both ( f2 ◦ f1)

p|Ii and
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( f1 ◦ f2)
q|Jj are no mixing. We put Ii = I1

i ∪ I2
i , Jj = J1

j ∪ J2
j , with I1

i ≤ I2
i , J1

j ≤ J2
j .

Moreover, p ≥ q, ` = lcm(p, q) and k1 = `
p , k2 = `

q are odd integers. If the ω-limit
set L is written as L = L1 ∪ L2, take into account that we are going to describe
the structures with negative orientation in L1, for subrectangles contained in bigger
rectangles of type Ii × Jj, and that we start to iterate with the subrectangle I1

1 × J1
1 .

For i = 1, . . . , p define σ(j) ∈ {1, 2} as the value for which

( f2 ◦ f1)
i(I1

1 ) = Iσ(i)
1+i (mod(p)).

Notice that σ(p) = 2.
Similarly, for j = 1, . . . , q, define τ(j) ∈ {1, 2} to be value holding

( f1 ◦ f2)
j(J1

1 ) = Jτ(j)
1+j (mod(q)).

From the mixing property of f1 ◦ f2, we have τ(q) = 2. In short,(
1 2 . . . p− 1 p

σ(1) σ(2) . . . σ(p− 1) 2

)
,
(

1 2 . . . q− 1 q
τ(1) τ(2) . . . τ(q− 1) 2

)
.

We can extend the definition to two sequences

σ : N→ {1, 2}N,

τ : N→ {1, 2}N,

in this manner: from the mixing properties of f2 ◦ f1 and f1 ◦ f2, we know, for instance,

that ( f2 ◦ f1)
p+1(I1

1 ) = ( f2 ◦ f1)(I2
1 ) = Iσ(1)

1 , where we use the notation r to denote
the value

r = 1 + r (mod(2)) ∈ {1, 2};

therefore, we can define σ(p + j) = σ(j) for j = 1, . . . , p. Similarly, ( f2 ◦ f1)
2p+1(I1

1 ) =

( f2 ◦ f1)(I1
1 ) = Iσ(1)

1 , and we can define σ(2p + j) = σ(j) for j = 1, . . . , p. Thus,

σ(n) =


σ(r), if n = (2j)p + r, for some j ≥ 0, r ∈ {1, . . . , p},

σ(r), if n = (2j + 1)p + r, for some j ≥ 0, r ∈ {1, . . . , p}.

Notice that ( f2 ◦ f1)
n(I1

1 ) = Iσ(n)
1+n (mod(p)). Similarly, we extend τ as

τ(n) =


σ(s), if n = (2j)q + s, for some j ≥ 0, s ∈ {1, . . . , q},

σ(s), if n = (2j + 1)q + s, for some j ≥ 0, s ∈ {1, . . . , q}.

Here, ( f1 ◦ f2)
n(I1

1 ) = Iτ(n)
1+n (mod(q)).

Notice that F2`(I1
1 × J1

1 ) = ( f2 ◦ f1)
`(I1

1 )× ( f1 ◦ f2)
`(J1

1 ) = Iσ(`)
1 × Jτ(`)

1 , and the same
time F2`(I1

1 × J1
1 ) = (( f2 ◦ f1)

p)k1(I1
1 )× (( f1 ◦ f2)

q)k2(J1
1 ) = I2

1 × J2
1 . This implies that

σ(`) = τ(`) = 2 because k1 and k2 are odd integers, and we can observe that from
this point the values of the orbit of I1

1 × J1
1 belong to the same structure.

Notice also that if i ∈ {1, . . . , `} then

F2(`+i)(I1
1 × J1

1 ) = F2i(I2
1 × J2

1 ) = Iσ(i)
1+i (mod(p)) × Jτ(i)

1+i (mod(q)), (5)

whenever F2i(I1
1 × J1

1 ) = Iσ(i)
1+i (mod(p)) × Jτ(i)

1+i (mod(q)). As we see, this again guarantees

that our extensions, σ, τ : N→ {1, 2}N are well defined.



Mathematics 2021, 9, 452 15 of 33

Additionally, in order to check if the structure has positive or negative orientation,
it suffices, according to (5), to analyze the pairs (σ(i), τ(i)), with i ∈ {1, . . . , `}. To this
regard, define

O(i) = (σ(i), τ(i)), i = 1, . . . , `.

If O(i) = (r, r) for some r ∈ {1, 2}, we say that Iσ(i)
1+i (mod(p)) × Jτ(i)

1+i (mod(q)) has positive
orientation; if, on the contrary, O(i) = (r, r), for r ∈ {1, 2}, we say that the structure
has negative orientation.
Consequently, if we try to count the positive and negative orientations, we only need
to see the character of the pairs O(i) = (σ(i), τ(i)), i = 1, . . . , `.
For instance, if p = 5 and q = 3, with(

1 2 3 4 5
1 2 2 1 2

)
,
(

1 2 3
2 1 2

)
,

we obtain:

(1, 1) → (σ(1), τ(1)) = (1, 2) → (σ(2), τ(2)) = (2, 1) →
(σ(3), τ(3)) = (2, 2) → (σ(4), τ(1)) = (1, 1) → (σ(5), τ(2)) = (2, 2) →
(σ(1), τ(3)) = (2, 1) → (σ(2), τ(1)) = (1, 2) → (σ(3), τ(2)) = (1, 1) →
(σ(4), τ(3)) = (2, 2) → (σ(5), τ(1)) = (1, 1) → (σ(1), τ(2)) = (1, 1) →
(σ(2), τ(3)) = (2, 1) → (σ(3), τ(1)) = (2, 2) → (σ(4), τ(2)) = (1, 1) →
(σ(5), τ(3)) = (2, 2) → (σ(1), τ(1)) = (2, 2),

and from this point we will obtain the opposite orbit to the last ` = 15 iterates. In this
case, the number of negative orientations is 5.
Once we have described how to count the orientations in L1, for the set L2 that has
subrectangles of type (I′)s

i (mod(q)) × (J′)t
i (mod(p)), with s, t ∈ {1, 2}, we proceed in a

similar way to that described for L1. Since we have assumed that f1(Ii) = J′i and

f2(Ji) = I′i , we write f2(J1
1 ) × f1(I1

1 ) = (I′)µ(0)
1 × (J′)ρ(0)

1 , for suitable µ(0), ρ(0) ∈
{1, 2}. Now, we have to define µ(s), s = 1, . . . , q as the value in {1, 2} for which
( f2 ◦ f1)

s((I′)µ(0)
1 ) = (I′)µ(s)

1+s (mod(q)), and, similarly, ρ(t) ∈ {1, 2}will be characterized

by ( f1 ◦ f2)
t((J′)ρ(0)

1 ) = (J′)ρ(t)
1+t (mod(p)), for t = 1, . . . , p. Notice that µ(q) = µ(0) and

ρ(p) = ρ(0). By extending µ and ρ to all positive integers, for counting the negative
orientations we will have to pick the pairs (µ(i), ρ(i)) with µ(i) 6= ρ(i), for i = 1, . . . , `.

2. Case f1(A) ∩ Int(B) 6= ∅. This means that p = q = `, in fact f1(A) = B and
f2(B) = A. Firstly, let us show that the point (a, b) ∈ I1 × J1, given by a = I1

1 ∩ I2
1 , b =

J1
1 ∩ J2

1 , is F-periodic and its (minimal) period m can be ` or 2`. Indeed, it is clear
that F2`(a, b) = (( f2 ◦ f1)

`(a), ( f1 ◦ f2)
`(b)) = (a, b) because a and b are fixed points

of ( f2 ◦ f1)
` and ( f1 ◦ f2)

`, respectively, as a consequence of the no mixing property
satisfied by A and B, and the fact that ` = p = q. On the other hand, if n < ` were
the order of (a, b), then (a, b) = F2n(a, b) = (( f2 ◦ f1)

n(a), ( f1 ◦ f2)
n(b)) would imply

that `|n, a contradiction. Therefore, m is either ` or 2`.
Consequently, we must distinguish two cases according to whether the order m of the
aforementioned F-periodic (a, b) is ` or 2` :

(i.O) If m = `, we affirm that the number k of rectangles in L = ωF(x, y) is k =
`, and in fact ωF(x, y) is composed of ` rectangles of type Ii × Jj. To prove
it, recall that we are assuming that (x, y) ∈ R1 = I1

1 × J1
1 ⊂ I1 × J1. Notice

that F`(a, b) = (a, b) ∈ I1 × J1, so F`(I1
1 × J1

1 ) = Ii
1 × J j

1 for some i, j ∈ {1, 2}.
If i = j = 1, then we would have F2`(I1

1 × J1
1 ) = F`(I1

1 × J1
1 ) = I1

1 × J1
1 , but at

the same time, for the decomposition of A and B obtained for their no mixing
property, F2`(I1

1 × J1
1 ) = ( f2 ◦ f1)

`(I1
1 )× ( f1 ◦ f2)

`(J1
1 ) = I2

1 × J2
1 , it is impossible.
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If i = j = 2, now F`(I1
1 × J1

1 ) = I2
1 × J2

1 and since also F2`(I1
1 × J1

1 ) = I2
1 × J2

1 ,
we would obtain Fs`(I2

1 × J2
1 ) = I2

1 × J2
1 for all s ≥ 1, a new contradiction (at

least, F2`(I2
1 × J2

1 ) = I1
1 × J1

1 ). Therefore, i 6= j, which implies that either F`(I1
1 ×

J1
1 ) = I1

1 × J2
1 or F`(I1

1 × J1
1 ) = I2

1 × J1
1 . For instance, if F`(I1

1 × J1
1 ) = I1

1 × J2
1 ,

then F3`(I1
1 × J1

1 ) = F2`(I1
1 × J2

1 ) = I2
1 × J1

1 , and thus all the rectangle I1 × J1 is
included in OrbF(I1

1 × J1
1 ). From here, and taking into account that an entire

rectangle only contains at most a unique point of OrbF(a, b), we deduce that
|L| = `, and ωF(x, y) is composed of k = ` rectangles of type Ii × Jj. Even more,
its distribution follows the pattern of Distribution D1, and with equivalence
we can reorder the intervals in such a way that f1(Ii) = Ji+1(modp) and f2(Ji) =
Ii+1(modp) for i = 1, . . . , p. See Figure 16.

Figure 16. Case (i.O) corresponding to ` = 1 and ` = 3, whenever f1(A) ∩ Int(B) 6= ∅, A and B
no mixing.

Finally, notice that only the case ` odd is permitted here, since if ` is even,

we would have (a, b) = F`(a, b) and then ( f2 ◦ f1)
`
2 (a) = a, ( f1 ◦ f2)

`
2 (b) =

b, impossible (realize that a and b are `-periodic points of f2 ◦ f1 and f1 ◦ f2,
respectively).

(ii.E) If m = 2`, we assert that |L| = 4` and, to be more precise, L = ωF(x, y) is
composed of 4` rectangles having type Iu

i , Jv
j for some i, j ∈ {1, . . . , 2`}, u, v ∈

{1, 2}, such that each of them are included in Ii × Jj, with a common vertex
given by a point of the orbit of (a, b). To prove it, first notice that OrbF(a, b) =:
{(xi, yi) : i = 1, . . . , 2`} ⊆ Orb( f2◦ f1)

(a)×Orb( f1◦ f2)
(b), so from Lemma 5 and

Theorem 3-(2) we deduce that for any i ∈ {1, . . . , 2`} there exist r, s ∈ {1, . . . , 2`},
r 6= s, such that xi = xr, yi = ys. This implies that the F-orbit of (a, b) is
included in 2` entire rectangles of type Ir × Js. On the other hand, F2`(I1

1 × J1
1 ) =

( f2 ◦ f1)
`(I1

1 ) × ( f1 ◦ f2)
`(J1

1 ) = I2
1 × J2

1 , and Fj(I1 × J1) ∩ (I1 × J1) = ∅ for
j = 1, . . . , ` because Fj(a, b) 6= (a, b) for j ∈ {1, . . . , `} and, according to the
distribution provided for Theorem 3 to the orbit of (a, b), each entire rectangle
Ii × Jj only contains at most a unique point of OrbF(a, b). All the above details
allow us to conclude that k = |L| = 4` and each rectangle Ii × Jj containing
a point of OrbF(a, b) is divided into two different subintervals with disjoint
interiors and a point in OrbF(a, b) as common vertex, see Figure 17, and therefore
we obtain a structure of the type described in Figure 15.
Observe that if the position of the intervals is shifted, for example if I1

i > I2
i , for

any i, then the orientation of every structure in the column i changes. This case
is the same as that obtained in Distribution D2, but changing the entire rectangle
by two subrectangles of the type given in Figure 15.
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Figure 17. Case (ii.E) corresponding to m = 2` = 4 and m = 2` = 6, whenever f1(A) ∩ Int(B) 6= ∅,
A and B no mixing; here the number of rectangles is k = 4` in each figure.

3.4. The Converse Result for the Non-Empty Interior Case

Until now, we have described the structure of ω-limit sets of Cournot maps with non-
empty interior. Of course, given one of these structures L, up to equivalences, it is natural
to ask whether it is possible or not to find a Cournot map F and a point (x, y) ∈ I2 such
that ωF(x, y) = L. The answer is the affirmative. The general strategy for this construction
relies on the fact that we can take advantage of our knowledge of interval maps f : I → I
exhibiting union of intervals

⋃m
i=1 Ii as ω-limit sets for suitable points x ∈ I. For instance,

for any interval J = [a, b], there is a continuous map f : J → J with f (a) = a and f (b) = b
such that f is topologically mixing (see ([1], [p. 162])).

In order to illustrate it, we do the corresponding converse result for Distributions
D1 (with k odd), with the hope that the other cases can be managed for the reader
without any difficulty.

(D1) Assume that L =
⋃k

i=1(Ii × Ji), k odd, and Ii, Ji verify (D1), that is:

L =
⋃k

i=1 Ri =
⋃k

i=1(Iαi × Jβi ), with Iαi 6= Iαj , Jβi 6= Jβ j , if i 6= j,

π1(L) =
⋃k

i=1 Iαi = A, π2(L) =
⋃k

i=1 Jβi = B.

To simplify the notation, let αi = i and β j = j, that is,

A :=
⋃k

i=1 π1(Ri) =
⋃k

i=1 Ii,

B :=
⋃k

i=1 π2(Ri) =
⋃k

i=1 Ji.

Write Ii =
[

ai(1), ai(2)

]
, Ji =

[
bi(1), bi(2)

]
. We then define f1 ∈ C(I, I) in such a way that

f1({ai(1), ai(2)}) = bi+1(1), fi

( ai(1) + ai(2)

2

)
= bi+1(2),

and linear in the rest of Ii, i = 1, . . . , k. Also, we define a map f2 ∈ C(I, I) holding f2(Ji) =
Ii+1 in a linear way (change of variables) for i = 1, . . . , k. Then, it is straightforward to
see that OrbF(I1 × J1) = L. Moreover, ( f2 ◦ f1)(Ii) = Ii+2 mod(k), ( f1 ◦ f2)(Ji) = Ji+2 mod(k),
i ∈ {1, . . . , k}. Since k is odd, from the definitions of f j we deduce that f2 ◦ f1 is mixing on
A, f1 ◦ f2 is mixing on B, and f1(A) = B, f2(B) = A. According to Theorem 2, there exists
(x, y) ∈ I2 such that ωF2k (x, y) = I1. Then ωF(x, y) = Orb(I1 × J1) = L.

4. Applications to Economic Models

In the seminal paper of Day [19] it was highlighted that complex behavior that can be
described as chaotic can emerge from simple economic structures. This fact has had as a
consequence for the increasing interest in economic dynamics, which is supported by the
large amount of related literature published since then.

In this frame, oligopoly structure plays an important role. The assumption that only
a few firms can compete makes sense in some markets in which the goods are perfectly
substitutable [20]. In the decision process, each firm adjusts its output (product decision)
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based on the expectation over the other firm’s output decisions. Under this premise, firms
take their decisions simultaneously. In an oligopoly the supply side is (not perfectly)
competitive—as we often say “Cournot competition”. A duopoly is an oligopoly in which
the number of firms is equal to two. Following Friedman [21], “a duopoly is a market in which
two firms sell a product to a large number of consumers. Each consumer is too small to affect the
market price for the product, that is, on the buyers’ side, the market is competitive."

Different theoretical models of duopoly have been considered [21]. In 1838, Cournot [22]
proposed a non-collusive duopoly model. In this duopoly model, firms decide their output
levels simultaneously, that is, firms compete in quantities and it is assumed that price
is given by the market. Moreover, each firm seeks to maximize the profit taking into
account the decision of the competitor. Cournot duopoly was considered in [17], where the
complexity of the dynamics was established. Later, Dana and Montrucchio [13] gave more
details about the dynamical properties of the Cournot model. More recently, Pražák and
Kovárník have considered in [15] a nonlinear inverse demand function and have shown
bifurcation diagrams of the duopoly model.

Antitriangular maps are closely related to Cournot duopoly models. In this section
we deal with the type of ω-limits of several Cournot duopoly models in which dynamics is
led by antitriangular maps.

Let us notice the relevance of this topic by highlighting its possible interest in implica-
tions for strategic decisions. In this direction, cyclical phenomena have an important role
in economics in the analysis of the dynamics and fluctuations of the economic activity in
a model. A cycle of length n is the orbit of a periodic point. In the matter at hand, that is,
ω-limits of non-empty interior of Cournot maps, the full description of the structure is
useful in the sense that it provides information about chaotic orbits (realize that ω-limits
with non-empty interior appear when the Cournot map F is chaotic). A cyclical movement
appears if, in the definition of cycle, we replace points by rectangles, since in each step the
point of the chaotic orbit belongs to the corresponding rectangle and this turns on the fact
that in each step we have boundaries (restrictions) for the values of the outputs because the
boundaries of the rectangles limit the output values of the production firms when initial
conditions have been fixed. In this way, the restriction of the regions of ω-limits in Cournot
duopolies plays an important role in the analysis of dynamics. Therefore, the distribution
of the ω-limits gives us information about the possible layouts in the rectangles giving the
feasible region in which both firms take their output values, the rectangles being covered
following a “cyclical process”.

4.1. Puu’s Duopoly

The following duopoly model was proposed by Puu [23]. In this model, the goods
produced for both firms are equivalent and the demand function is isoelastic. It is assumed
that the price is given by

p =
1

x + y
,

where x and y are the outputs of firms X and Y respectively. The costs are assumed to
be linear with the form c1(x) = c1x and c2(y) = c2y, where c1 and c2, the marginal costs,
will be the model parameters. Obviously, now profits are given by

Π1 =
x

x + y
− c1x,

Π2 =
y

x + y
− c2y.

Considering that the objective of the firms is to maximize their own profits, the equations
∂Π1
∂x = 0 and ∂Π2

∂y = 0 give us

x =

√
y
c1
− y,
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y =

√
x
c2
− x.

Finally, the reaction map is

F(x, y) = ( f2(y), f1(x)) =
(

max{
√

y
c1
− y, 0}, max{

√
x
c2
− x, 0}

)
,

which is an antitriangular map in which has been introduced the max function due to
the fact that productions cannot be negative. It is assumed without loss of generality that
c1 ≥ c2, and we can compute ω-limit sets, see some examples in Figure 18 (we have used
the software Mathematica for generating Figures 18–23). More details about the dynamics
of the model can be found in [24].

Figure 18. ω-limit sets for Cournot Puu’s model for c2 = 1 and c1 = 6.194 (left), c1 = 6.243 (center)
and c1 = 6.25 (right) taking as initial conditions (x0, y0) = (0.01, 0.0011). We have computed orbits
of length equal to 200,000 and we have drawn the last 100,000 points.

(a) (b) (c)

(d) (e) (f)

Figure 19. ω-limit sets for Kopel’s model for λ1 = λ2 = 1. We have computed orbits or length equal to 200000 and we
have plotted the last 100000. (x0, y0) are the initial conditions. The parameter values for each figure follows. (a) µ1 = 3.6,
µ2 = 3.95, x0 = 0.539815 and y0 = 0.933646; (b) µ1 = 3.65, µ2 = 3.65, x0 = 0.539815, y0 = 0.933646; (c) µ1 = 3.85, µ = 3.6,
x0 = 0.539815, y0 = 0.933646; (d) µ1 = 3.6, µ2 = 3.55, x0 = 0.539815, y0 = 0.933646; (e) µ1 = 3.6, µ2 = 3.65, x0 = 0.539815
and y0 = 0.933646; (f) µ1 = 3.65, µ2 = 3.55, x0 = 0.539815, y0 = 0.933646.
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(a) (b) (c)

(d) (e) (f)

Figure 20. ω-limit sets for Matsumoto-Nonaka’s model. The value of the parameter α is α = 1.7. (a) β = 0.59, x0 = 0.4 and y0 = 1.2; (b)
β = 0.605, x0 = 0.4 and y0 = 0.1; (c) µ = 0.635, x0 = 0.4 and y0 = 0.2; (d) β = 0.65, x0 = 0.4 and y0 = 0.1; (e) β = 0.695, x0 = 0.4 and
y0 = 0.2; (f) β = 0.71, x0 = 0.4 and y0 = 0.7. We have computed orbits of length 200,000 and we have drawn the last 100,000 points.

(a) (b) (c)

Figure 21. ω-limit sets for Cournot duopoly when the competitors operate under capacity constraints.
Initial conditions x0 = 0.2 and y0 = 0.3. The longitude orbit is equal to 200000 and the last 100000
points have been plotted. (a) u = 1 and v = 8.137; (b) u = 1 and v = 8.151; (c) u = 1 and v = 8.193.
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Figure 22. ω-limit sets for µ = 1.56, µ = 1.58 and µ = 1.66 (left, center and right respectively) and
initial conditions x0 = −0.5 and y0 = −0.3.

Figure 23. ω-limit sets with empty interior for µ = 1.56, x0 = −0.5 and y0 = −0.895647 (left);
µ = 1.58, x0 = −0.5 and y0 = −0.911129 (center); µ = 1.66, x0 = −0.5 and y0 = −0.973056 (right).

4.2. Kopel’s Duopoly

M. Kopel introduced in [14] a general Cournot duopoly model in which two firms,
X and Y, plan their productions, xt, yt, at time t, following the system of difference equations:

xt+1 = max{0, (1− λ1)xt + λ1 µ1yt (1− yt)},
yt+1 = max{0, (1− λ2)yt + λ2 µ2xt (1− xt)},

(6)

where λi ∈ [0, 1] and µi > 0 for i = 1, 2. The positive parameters µi measure the intensity
of the effect that one firm’s action has on the other firm, see also [25] for more details. Then,
the two-dimensional map

Rλ1,λ2,µ1,µ2(x, y) := (max{0, (1− λ1)x + λ1 µ1y (1− y)}, max{0, (1− λ2)y + λ2 µ2x (1− x)}),

describes the simultaneous choices of both firms.
Observe that taking λ1 = λ2 = 1, a Cournot duopoly model is obtained, given as

F(x, y) = (max{0, µ1y(1− y)}, max{0, µ2x(1− x)}). (7)

In Figure 19, we have shown some ω-limits for the map (7). We have selected some of
them. To get it, we have used random initial conditions, with 6 decimal digits by default.

4.3. Matsumoto-Nonaka’s Model

In [26] a two–market model consisting of two firms that produce differentiated goods
is introduced, see also [27]. The first firm produces good x in the first market and the
second one produces good y in the second market. In this model, different externalities
affect the dynamics.

As in the previous subsection, in [26] a more general model is introduced. Nevertheless,
we are interested in the particular case in which inverse demand functions are given by

p1(x, y) = (α− 1)2 − x
2
+ (αy)2,

p2(x, y) = 1− y
2
+ (βx)2,
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where p1 and p2 are the market prices of goods x and y, respectively, and α ∈ [1, 2] ⊂ R
and β ∈ [0, 2] ⊂ R. Each firm decides future production depending on the other firm’s
choice and production externalities. Cost functions are given by

C1(x, y) = 2(α− 1)α x y,

C2(x, y) = 2β x y,

and the profit function of each firm is given by

Π1(x, y) = p1(x, y)x− C1(x, y) =
(
(α− 1)2 − x

2
+ α2 y2

)
x− 2(α− 1) α x y,

Π2(x, y) = p2(x, y)y− C2(x, y) =
(

1− y
2
+ β2 x2

)
y− 2β x y.

(8)

As assumed above, each firm tends to maximize its profit. In order to do this the firms
can choose their production levels, which would affect to the other firm. The first firm
maximizes the profit with respect to x and the same occurs for the second firm with respect
to y. The reaction functions of the firms are given by

fα(y) = (αy− α + 1)2,

gβ(x) = (βx− 1)2.

Now, the function

Rα,β(x, y) = ( fα(y), gβ(x)) = ((αy− α + 1)2, (βx− 1)2),

is the reaction function for the outcome (x, y). The iterations are given by

xt+1 = fα(yt) = (αyt − α + 1)2,

yt+1 = gβ(xt) = (βxt − 1)2,

that is,
(xt+1, yt+1) = Fα,β(xt, yt) = ( fα(yt), gβ(xt)),

where α ∈ [1, 2] ⊂ R and β ∈ [0, 2] ⊂ R. Thus, the reaction map Fα,β is a Cournot map
from [0, 1]× [0, 1] into [0, 1]× [0, 1]. In this situation, we obtain some ω-limits, the results
are shown in Figure 20.

4.4. Cournot Duopoly When the Competitors Operate under Capacity Constraints

In [28] A. Norin and T. Puu introduced a Cournot duopoly where the competitors
have capacity constraints. The production cost of the firms are given by

TC1(x) = − log
(

1− x
u

)
,

TC2(y) = − log
(

1− y
v

)
,

(9)

where u and v denote the capacity limits and x and y denote the supplies of the two
competitors. Observe that when x = y = 0 then the total costs are zero and tend to infinity
when production approaches capacity limits. The price p is given by p = 1

x+y and the
profits are

∏X(x, y) = p · x− TC1(x) =
x

x + y
+ log

(
1− x

u

)
,

∏Y(x, y) = p · y− TC2(y) =
y

x + y
+ log

(
1− y

u

)
.

(10)
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To maximize the profits (10) we get the following equations

∂ ∏X
∂x

(x, y) =
y

(x + y)2 −
1

u− x
= 0,

∂ ∏Y
∂y

(x, y) =
x

(x + y)2 −
1

v− y
= 0.

(11)

From the previous system of Equation (11), solving the first for x and the second for y
(see [28] for details), the following reaction functions are obtained

fu(y) = max
{

0,
1
2

√
4uy + 5y2 − 3

2
y
}

fv(x) = max
{

0,
1
2

√
4vx + 5x2 − 3

2
x
}

,
(12)

since clearly productions cannot be negative. Hence, the reaction map we construct is a
Cournot map

Fu,v(x, y) = ( fu(y), fv(x)).

Different ω-limits for the model are shown in Figure 21, where the initial conditions are
x0 = 0.2 and y0 = 0.3. We have computed orbits of length equal to 200,000 and we have
drawn the last 100,000 points.

4.5. A Recurrent Class of Two-Dimensional Endomorphisms

The class of maps given by F(x, y) = (y, h(x)), where h(x) is a continuous function,
piecewise continuously differentiable, has been considered among others in [29], and in
this framework this kind of map provides us another different example to which we can
apply this analysis.

Observe that F2(x, y) = (h(x), h(y)). Following [29] we consider the map h(x) =
−αx + βg(γx), where

g(x) =

{
4µx(1− x) if 0 < x < 1 (µ > 0),
0 otherwise.

The parameters satisfy 0 < α < 1, −1 < β < 0 and γ < 0. In our particular case,
the parameters will use in the simulations are fixed, namely α = 0.62386015, β = −0.790837347
and γ = −0.85446789. See results in Figures 22 and 23.

5. Some Advances in the Empty-Interior Case

For a Cournot map, we already know the topological structure of an ω-limit set with
empty interior, see Theorem 1. Essentially, the situation is similar to the interval case,
the ω-limit set is a nowhere dense set. In the interval case this means that the set is totally
disconnected. This changes for Cournot maps, we can find ω-limit sets with empty interior
and locally connected, even connected.

Our first example shows an ω-limit set of empty interior homeomorphic to the circle
S1 = {z ∈ C : |z| = 1}. Consider a transitive map f1 : [0, 1] → [0, 1] with f1(0) = 1 and
f1(1) = 0; for instance, take

f1(x) =
{

1− 2x, if x ∈ [0, 1
2 ],

T(2(x− 1
2 )), if x ∈ [ 1

2 , 1],

where T is the well-known tent map T(x) = 1− |1− 2x|, x ∈ [0, 1].
f1 being (totally) transitive, let x0 ∈ [0, 1] be a transitive point, that is, a point with

orbit dense. Consider the map F1(x, y) = (y, f1(x)). In this case, it is easily seen that

ωF1((0, x0)) = ({0} × I)
⋃
(I × {1})

⋃
({1} × I)

⋃
(I × {0}).
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Therefore, ωF1((0, x0)) is homeomorphic to the unit circle. See Figure 24.

Figure 24. The map f1 and the ω-limit set ωF1 ((0, x0)).

As a second example, consider the transitive map f2 : [0, 1]→ [0, 1] given by

f2(x) =


2(x + 1

4 ), if x ∈ [0, 1
4 ],

1− 2(x− 1
4 ) if x ∈ [ 1

4 , 3
4 ],

2(x− 3
4 ) if x ∈ [ 3

4 , 1].

Notice that f2 is transitive but f 2
2 is not. Consider a point y0 for which ω f2(y0) = I,

and define the antitriangular map F2(x, y) = (y, f2(x)). Now, a direct computation of the
orbit of ( 1

2 , y0) gives the limit set (see Figure 25)

ωF2(
1
2

, y0) =

({
1
2

}
× I
)
∪
(

I ×
{

1
2

})
.

Figure 25. The map f2 and the ω-limit sets ωF2 ((
1
2 , y0)), ωF2 ((y0, y0)).

In view of the last example, we stress that it is possible to find ω-limit sets of antitrian-
gular maps consisting of the union of the diagonal and the graph of an interval map (for
instance, see Figure 26).

Proposition 2. Let f ∈ C(I, I) be a transitive map. Let x0 ∈ I such that ω f (x0) = I. Then,

∆ ∪ Γ f = {(x, x) : x ∈ I} ∪ {(x, f (x)) : x ∈ I}

can be realized as the ω-limit set of the Cournot map F(x, y) = (y, f (x)).

Proof. It suffices to consider the point (x0, x0) to obtain ωF(x0, x0) = ∆ ∪ Γ f .
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Figure 26. The transitive map f (x) = 4(x− 1
2 )

2 originates the ω-limit set ωF((x0, x0)) = ∆ ∪ Γ f .

Remark 3. If in the above result, we choose a map f ∈ C(I, I) and a point x0 such that ω f (x0)
is a Cantor set C; notice that we are able to find totally disconnected ω−limit sets of the form
{(x, x) : x ∈ C} ∪ {(x, f (x)) : x ∈ C}. For instance, if we consider the well-known parabola
f (x) = λ∞x(1− x) of type 2∞ (its set of periods is given by all the powers of 2), where λ∞ =
3.569... is the limit value of the period doubling bifurcation or route to chaos of the unimodal family
of parabolas fλ(x) = λx(1− x), λ ∈ [0, 4] (for instance, see [30] for more information), we
can choose a point x0 in such a way that ω f (x0) = C0 is homeomorphic to the classical ternary
Cantor set and, in this case for F(x, y) = (y, f (x)), we find that ωF(x0, x0) = {(x, x) : x ∈
C0} ∪ {(x, f (x)) : x ∈ C0}, see Figure 27.

Figure 27. The transitive map f (x) = λ∞x(1− x) originates the ω-limit set ωF((x0, x0)) = ∆|C ∪ Γ f |C.

In the same direction, we find the following result on a peculiar type of ω-limit set for
Cournot maps (see Figure 28).

Proposition 3. Let f ∈ C(I, I) be a totally transitive map. Let Γ f be its graph and Γ∗f =

{( f (x), x) : x ∈ I}. Then there exists an antitriangular map F and a point (x, y) ∈ I2 such that
ωF(x, y) = Γ f ∪ Γ∗f .

Proof. Since f is transitive, there is x0 ∈ I such that ω f (x0) = I. Consider the antitri-
angular map F(x, y) = ( f (y), f (x)). Since f is totally transitive, it is easy to check that
ω f (x0, f (x0)) = Γ f ∪ Γ∗f .
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Figure 28. The graphs Γ f and Γ∗f corresponding to f = T2, the second iterate of the tent map.

In our third example we stress the fact that, contrary to the first examples, there exist
ω-limit sets of antitriangular maps which are not connected. To see it, define the map (see
Figure 29)

f3(x) =


1− 3

2 x, if x ∈
[
0, 1

3

]
,

f2(3(x− 1
3 )), if x ∈

[
1
3 , 2

3

]
,

1− 3
2 x, if x ∈

[
1
3 , 2

3

]
,

where f2 was defined in the second example. In this case, there exists z0 ∈ [ 1
3 , 2

3 ] such that

ω f3(z0) =
[

1
3 , 2

3

]
. By defining F3(x, y) = (y, f3(x)), a direct inspection of the orbit of (0, z0)

gives us the limit set

ωF3((0, x0)) =

(
{0} ×

[
1
3

,
2
3

])⋃([1
3

,
2
3

]
× {1}

)⋃(
{1} ×

[
1
3

,
2
3

])⋃([1
3

,
2
3

]
× {0}

)
.

Figure 29. The map f3 and, in red, the ω-limit set ωF3 ((0, z0)).

Our following example exhibits an ω-limit set with empty interior and homeomorphic
to C2 :=

{
(x, y) : x2 + y2 = 1

}
∪
{
(x, y) : (x− 2)2 + y2 = 1

}
, namely C2 is the union of

two circles joined by a point. We define F4(x, y) = (y, f4(x)), where

f4(x) =


3x, if x ∈

[
0, 1

3

]
,

−3x + 2, if x ∈
[

1
3 , 2

3

]
,

3x− 2, if x ∈
[ 2

3 , 1
]
.
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Since f4 is a transitive map, take a point w0 ∈ I such that ω f4(w0) = I. Then by direct
computation we find that

ωF4((w0, w0)) = ∆ ∪ Γ f4 ,

where ∆ is the diagonal of the unit square and Γ f4 = {(x, f4(x)) : x ∈ I} is the graph of f4
(see Figure 30).

Figure 30. The map f4 and the ω-limit set ωF4 ((w0, w0)) homeomorphic to C2.

In fact, we can generalize the above example to find ω-limit sets homeomorphic to the
union of n-circles, n ≥ 2, attach one of them to the other by a point, or

Cn =
{
(x, y) ∈ R2 : (x− 2j)2 + y2 = 1, for some j = 0, 1, . . . , n− 1

}
.

This is a substantial difference of the ω-limit sets of antitriangular maps with respect to
the one dimensional case—the limit sets can be connected and, at the same time, exhibit
empty interior.

Proposition 4. For each n ≥ 1, there exists an antitriangular map Φn such that ωΦn(Xn) is
homeomorphic to Cn for some Xn ∈ I2.

Proof. We distinguish two cases according to the parity of n.
If n = 2k, define (see Figure 31 for n = 6)

ϕn(x) =


(n + 1)

(
x− 2j

n+1

)
, if x ∈

[
2j

n+1 , 2j+1
n+1

]
for j = 0, 1, . . . , n

2 ,

1− (n + 1)
(

x− 2j−1
n+1

)
, if x ∈

[
2j−1
n+1 , 2j

n+1

]
for j = 1, . . . , n

2 .

Since ϕn is transitive, take a point x0 ∈ I for which ωϕn(x0) = I. Define Φn(x, y) =
(y, ϕn(x)). Then, as an immediate consequence of iterating (x0, x0) successively and to
consider the transitivity of the point x0, we obtain

ωΦn((x0, x0)) = ∆ ∪ Γϕn ,

where ∆ is the diagonal of the unit square and Γϕn = {(x, ϕn(x)) : x ∈ I} is the graph of ϕn.

Figure 31. The map ϕ6 and the ω-limit set ωΦ6 ((x0, x0)) homeomorphic to C6.
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For the odd case, first we define (see Figure 32)

ϕ3(x) =



4x, if x ∈
[
0, 1

4

]
,

3
2 − 2x, if x ∈

[
1
4 , 1

2

]
,

4x− 3
2 , if x ∈

[
1
2 , 5

8

]
,

6− 8x, if x ∈
[ 5

8 , 3
4
]
,

4x− 3, if x ∈
[ 3

4 , 1
]
.

With this function, we consider the antitriangular map Φ3(x, y) = (y, ϕ3(x)). Notice that
ϕ3(x) is a transitive map, therefore there exists w0 ∈ I such that ωϕ3(w0) = I. With respect
to Φ3, it is easily seen that ωΦ3(w0, w0) = ∆ ∪ Γϕ3 , where, again, Γϕ3 means the graph of ϕ3.

Figure 32. The map ϕ3 and the ω-limit set ωΦ3 ((w0, w0)) homeomorphic to C3.

In general, for n = 2k + 1, n ≥ 5, we define (see Figure 33 for n = 7)

ϕn(x) =



T
(

2(k− 1)
(

x− j
2(k−1)

))
, if x ∈

[
j

2(k−1) , j+1
2(k−1)

]
, j = 0, . . . , k− 2,

ϕ3(2x− 1), if x ∈
[

1
2 , 5

8

]
∪
[

13
16 , 1

]
,

9
4 − 2x, if x ∈

[ 5
8 , 3

4
]
,

4x− 9
4 , if x ∈

[
3
4 , 13

16

]
,

where T(·) denotes the well-known tent map T(z) = 1 − |1 − 2z|, z ∈ [0, 1]. That is,
the graph of ϕn(x) is composed of k− 2 tent maps placed between 0 and 1

2 , whereas in
[

1
2 , 1
]

we draw the scaled graph of ϕ3 in the zones
[

1
2 , 5

8

]
∪
[

13
16 , 1

]
and try to establish a fixed point

in x = 3
4 . Again, if z0 ∈ I is a transitive point of ϕn, and we put Φn(x, y) = (y, ϕn(x)), it is

straightforward to obtain ωΦn(z0, z0) = ∆ ∪ Γϕn , being Γϕn the graph of ϕn.

Figure 33. The map ϕ7 and the ω-limit set ωΦ7 ((z0, z0)) homeomorphic to C7.
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Now, let us present some other connected ω-limit sets whose interiors are empty, and
where its aspect is similar to a lattice structure.

Example 1. Consider a totally transitive map f : I → I, for instance the tent map. Let x0 ∈ I
such that ω f (x0) = I and define the Cournot map F(x, y) = (y, f (x)). On the other hand, take a
periodic point y0 of period N ≥ 1. Then, if {y0, y1, . . . , yN−1} is the periodic orbit, it is easily seen,
with the help of Remark 1, that

ωF(x0, y0) = (I × {y0, y1, . . . , yN−1}) ∪ ({y0, y1, . . . , yN−1} × I).

In Figure 34 you can see the lattice generated by a periodic point of period 2.

Figure 34. In red, the connected ω-limit set ωF(x0, y0) for a periodic point y0 of period 2.

According to the aspect of the drawn ω-limit sets of a Cournot map with non-empty
interior, we are left the following result concerning the connectivity of such a ω-limit set.
Before we state a topological result (see ([31], p. 27)) which implies, as an easy consequence,
that the union of two closed sets in the interval has an empty interior if each of them has in
turn an empty interior.

Lemma 7. If K is a closed set in a topological space (X, T ), and A ⊂ X is any subset of X,
then Int(K ∪ Int(A)) = Int(K ∪ A).

We present here a characterization for connected ω-limit sets of Cournot maps that
have non-empty interior. Realize that we can justify it in view of our analysis developed in
Section 3, nevertheless we give the corresponding theoretical proof.

Proposition 5. Let F(x, y) = ( f2(y), f1(x)), (x, y) ∈ I2 be a Cournot map. Let ωF(x, y) be an
ω-limit set with non-empty interior. Then, ωF(x, y) is connected if and only if

(1) πj(ωF(x, y)) is connected, where πj is meant the canonical projection to the j-th coordinate,
j = 1, 2.

(2) ωF2(x, y) ∩ωF2(F(x, y)) 6= ∅.

Proof. Assume that ωF(x, y) is connected. Since πj is continuous, j = 1, 2, we have
(1). On the other hand, if ωF2(x, y) ∩ ωF2(F(x, y)) = ∅, then, taking into account that
ωF(x, y) = ωF2(x, y) ∪ωF2(F(x, y)), we would have a decomposition of ωF(x, y) into two
closed disjoint sets, which contradicts that ωF(x, y) is connected.

Now, we assume that (1) and (2) hold, and we are going to prove that in these cir-
cumstances ωF(x, y) is connected. By Proposition 1 and (1), π1(ωF(x, y)) = ω f2◦ f1(x) ∪
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ω f2◦ f1( f2(y)) is a connected set in the real line, therefore an interval, which is possibly
degenerate. If the interval is degenerate, then both ω f2◦ f1(x) and ω f2◦ f1( f2(y)) are single-
tons (in fact, the same point), and it is easily seen that ωF(x, y) is reduced to a fixed point,
therefore a connected set. So, next we assume that π1(ωF(x, y) is a closed interval with non-
empty interior. According to Lemma 7, either ω f2◦ f1(x) or ω f2◦ f1( f2(y)) has non-empty
interior. Without loss of generality, assume that ω f2◦ f1(x) =

⋃m
i=1 Ii, where each Ii is a non-

degenerate subinterval, Ir ∩ Is = ∅ if r 6= s, and ( f2 ◦ f1)(Ii) = Ii+1 (mod m), i = 1, . . . , m.
Necessarily, either m = 1 or m = 2: if m ≥ 3, then if we denote Ii = [ai, bi], i = 1, . . . , m, the
omega-limit set ω f2◦ f1( f2(y)) must contain the intervals [bi, ai+1] for i = 1, . . . , m− 1, but
this is impossible, as was shown in Lemma 4.

(i) If m = 2, then ω f2◦ f1(x) = A = I1 ∪ I2, and by force ω f2◦ f1( f2(y)) = I′1,
with π1(ωF(x, y)) = I1 ∪ I′1 ∪ I2. Applying the maps f1, f2, we find ω f1◦ f2( f1(x)) =
f1(ω f2◦ f1(x)) = f1(A) = f1(I1) ∪ f1(I2) =: J′1 ∪ J′2, and ω f1◦ f2(y) = ω f1◦ f2(( f1 ◦
f2)(y)) = f1(ω f2◦ f1( f2(y))) = f1(I′1) =: J1. By Lemma 4, A is mixing, so ( f2 ◦ f1)

2|Ii is
topologically mixing, i = 1, 2. Then, by Theorem 2 there exists (x1, y1) ∈ I2 such that:

(i.1) either ωF4(x1, y1) = ω( f2◦ f1)2(x1)× ω( f1◦ f2)2(y1) = I1 × Js
1, for some s ∈ {1, 2}

(in fact, here J1 is not mixing for ( f1 ◦ f2), but we can decompose it as J1
1 ∪ J2

1 and
each ( f1 ◦ f2)

2|
J j
1

is mixing, j = 1, 2): in this case, since ωF(x, y) has non-empty

interior and we can use Lemma 3, it can be noticed that the we obtain Distribution
D6, which contradicts our hypothesis (2) on the intersection of ωF2(x, y) and
ωF2(F(x, y));

(i.2) or ωF4(x1, y1) = ω( f2◦ f1)2(x1)× ω( f1◦ f2)2(y1) = I1 × J1, if ( f1 ◦ f2)|J1 is mixing;
in this case, reasoning as above, we arrive at Distribution D4, see Figure 10,
a connected set with non-empty interior.

(ii) Let m = 1. Notice that if Int(ωF(x, y)) 6= ∅, also ω f1◦ f2(y) has non-empty interior, as a
consequence of Proposition 1 and the fact that in a Cartesian product the connected
components of a set are the product of connected components of each space, see [31].
Here, additionally, we can distinguish two different cases depending on the nature of
ω f1◦ f2(y) = B.

(ii.1) If B = J is an interval with f2(B) = f2(J) = I1, we obtain: either Distribution D1,
with k = 1, if I1 is mixing, therefore a connected ω-limit set holding (1) and (2);
or the Distribution that we have found in case A, B no mixing, two rectangles
tied by the vertex obtained with the ‘middle’ points (fixed points) of I1 and J1.

(ii.2) If B = J is an interval with f1(A) ∩ B 6= ∅, f1(A) ∩ Int(B) = ∅, according to
Lemma 4 both A = I1 and J1 are mixing. Reasoning as in Case (i.2), we can find
(x1, y1) such that ω f2◦ f1(x) = I1 and ω f1◦ f2(y) = J, and it is immediate to see that
ωF will be the union of two rectangles tied by a common vertex, a connected set.

Remark 4. We emphasize that the proof strengthens our study in Section 3, because inside it
we have found the only possible connected ω-limit sets with non-empty interior that appeared
in that section. Moreover, notice that the conditions are always necessary, even in the general
frame of a compact metric space and a continuous map ϕ : X → X that has the form ϕ(x, y) =
(ϕ2(y), ϕ1(x)), with ϕj : X → X, j = 1, 2. It remains for us to study whether, in fact, they are or
are not also sufficient conditions in order to characterize the connectivity of ω-limit sets of Cournot
maps with empty interior.

Remark 5. In the above Proposition, both conditions (1) and (2) are needed in order to attain that
the ω-limit set ωF(x, y) be connected. In this sense, it is possible to find a non-connected ω-limit
set ωF(x, y) holding (1): see Figure 35.
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Figure 35. Here, ωF(x, y) = W1 ∪W2, with W1 = ωF2 (x, y) (in red color) and W2 = ωF2 (F(x, y)) (in
green color); the movement of the orbit by F is 1→ 2→ 3→ 4→ 5→ 6→ 7→ 8; see also Figure 17.

Additionally, we can find another non-connected ω-limit set ωF(x, y) verifying, nevertheless,
the property (1), see Figure 36 for the non-empty interior case. With regards to the empty interior
case, consider the transitive map f : [0, 1] → [0, 1] given by f (x) = 1

2 + 2x if 0 ≤ x ≤ 4,
f (x) = 3

2 − 2x if 1
4 ≤ x ≤ 3

4 , and f (x) = 2x − 3
2 if 3

4 ≤ x ≤ 1. It is easily seen that f is
transitive but not totally transitive. Let {y1, y2} = { 1

6 , 5
6} be a periodic orbit having order two,

and define the Cournot map F(x, y) = (y, f (x)). If x0 has a dense orbit by f , so ω f (x0) = [0, 1],

we find ωF(x0, y1) =
(
[0, 1

2 ]× {y1}
)
∪
(
{y1} × [ 1

2 , 1]
)
∪
(
[ 1

2 , 1]× {y2}
)
∪
(
{y2} × [0, 1

2 ]
)

.
Then ωF(x0, y1) is not connected, however πj(ωF(x0, y1)) = [0, 1] (see Figure 36).

Figure 36. Here, the projections of ωF(x, y) are connected but ωF(x, y) is not.

Finally, realize that, according to our description of ω-limit sets of Cournot maps with non-
empty interior, we are in a position to assert that both conditions are also sufficient in order to
establish the connectivity of ωF(x, y) in the non-empty interior case, which is an open question in
the case of empty interior.

We finish the section by mentioning the notion of minimal set and some associated
results, for the case of Cournot maps, extracted from [18]. A minimal set M ⊂ I2 of a
Cournot map F ∈ CA(I2, I2) is a non-empty, closed and invariant set by F, which does not
contain a proper subset with the same three properties. In [18] it is proved that a minimal
set M of F cannot be of the form C1 × C2, where C1 and C2 are Cantor sets. In the same
paper, it is shown that, nevertheless, given two solenoidal sets Q1 and Q2 having periodic
decompositions that are relatively prime, we can find a Cournot map F(x, y) = (g(y), f (x))
and x, y ∈ I such that ωF(x, y) = (Q1 × f (Q2)) ∪ (Q2 × f (Q1)) is a minimal set of F
(for the notion of solenoidal set—a class of Cantor set—the reader is referred to [18] and
references therein). An interesting question would be to find, if possible, a Cournot map
that has the product C× C as an admissible ω-limit set, where C is a Cantor set.
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6. Conclusions

Despite the difficulty in analyzing ω-limit sets for two-dimensional maps, in the case
of Cournot maps we have been able to completely describe the structure of their omega
limits with non-empty interior. As a complement, we have shown that these structures
arise naturally in some economic models, which can be formulated by Cournot maps,
for instance, the Puu’s duopoly or the Matsumoto-Nonaka’s model. Cyclical phenomena
in economics attract great interest. Following Burns and Mitchell (1946), [32], “business
cycles are a type of fluctuation found in the aggregate economic activity of nations that organize their
work mainly in business enterprises—a cycle consists of expansions occurring at about the same
time in many economic activities, followed by similarly general recessions, contractions, and revivals
which merge into the expansion phase of the next cycle”. In mathematical terms, the orbit of a
periodic point is called a cycle of length n. In the case at hand, we can observe that replacing
points in the orbit by rectangles, a “cyclical movement” applies, in which the rectangle
limits the values in each step, thus, a more general cyclical process can be considered and
the classification of the orbits with non-empty interior that have been studied throughout
this paper contributes to shedding light on economic dynamics.

Obviously, it is an open question to give a complete and detailed description of ω-limit
sets of Cournot maps with empty interior. In this paper, we have provided some interesting
examples showing that the limit set can be homeomorphic to the circle, even to the union of
k circles attached between them by common tangent points; moreover, a difference with the
one-dimensional case appears, now the limit set can be connected even though it itself has
an empty interior. Another task to be carried out is to find in the non-empty interior case a
general formulation for all possible realignments and counting of negative orientations
which have appeared in the case A and B no mixing, to try to obtain a closed expression
for this number of negative orientations.

Realize that Cournot maps can be generalized in the following way: in the n-dimensional
cube In = [0, 1]n, we define

F(x1, x2, . . . , xn) =
(

fσ(1)(xσ(1)), fσ(2)(xσ(2)), . . . , fσ(n)(xσ(n))
)

,

where σ is a (cyclic) permutation of {1, 2, . . . , n}, and each fσ(j) is a continuous function
defined from I into itself. These maps can be named permuted direct product maps (see
for instance, [33] or [34]). Then, an interesting question would be the study of ω-limit sets
with non-empty interior for permuted direct product maps. For instance, for n = 3, we
would have a union of cubes moving in I3 according to specific rules to be determined.

Another interesting question is to prove whether the conditions (1) and (2) in
Proposition 5 are sufficient or not in order to establish that the corresponding omega-
limit is connected. Our conjecture is the affirmative and, even more, we can address the
question to the general frame of a product X1×X2 of compact metric spaces and, if we gen-
eralize the definition of a Cournot map as ϕ : X1×X2 → X1×X2, ϕ(x, y) = (ϕ2(y), ϕ1(x)),
with ϕi : Xi → Xj, i 6= j, to ask for a characterization of connected ω-limit sets in terms of
their projections and the intersection of the omega-limits ωϕ2(x, y) and ωϕ2(ϕ(x, y)).
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