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Abstract: Given a commutative ring R with identity 1 6= 0, let the set Z(R) denote the set of zero-
divisors and let Z∗(R) = Z(R) \ {0} be the set of non-zero zero-divisors of R. The zero-divisor
graph of R, denoted by Γ(R), is a simple graph whose vertex set is Z∗(R) and each pair of vertices
in Z∗(R) are adjacent when their product is 0. In this article, we find the structure and Laplacian
spectrum of the zero-divisor graphs Γ(Zn) for n = pN1 qN2 , where p < q are primes and N1, N2 are
positive integers.

Keywords: Laplacian matrix; zero-divisor graph; integers modulo ring; gaussian integer ring;
Eulers’s totient function

1. Introduction

All graphs considered in the present article are connected, undirected, simple and
finite. A graph is denoted by G = G(V(G), E(G)), where V(G) is the vertex set and E(G)
is the edge set of G. The order and the size of G are the cardinalities of V(G) and E(G),
respectively. The neighborhood of a vertex v, denoted by N(v), is the set of vertices of G
adjacent to v. The degree of v, denoted by dv, is the cardinality of N(v). A graph G is
called r-regular if degree of every vertex is r. The adjacency matrix A(G) = (aij) of G is a
square matrix of order n, whose (i, j)-entry is 1, if vi and vj are adjacent and is 0, otherwise.
Let D(G) = Diag(d1, d2, . . . , dn) be the diagonal matrix, where di are the degrees of the
vertices of G. The matrix L(G) = D(G)− A(G) is the Laplacian matrix and its eigenvalues
with multiplicities is known as the Laplacian spectrum of G. This matrix is real symmetric
and positive semi-definite matrix, so the eigenvalues can be ordered as µ1 ≥ µ2 ≥ · · · ≥ µn.
Also, we note that each row (column) sum is zero, so 0 is the Laplacian eigenvalue of G.
Furthermore, it is well known that the Laplacian eigenvalue µn−1 is positive if and only
if G is connected and is known as the algebraic connectivity of G. More about the matrix
L(G) can be seen in [1,2].

Let R be a commutative ring with non-zero identity. An element x ∈ R, x 6= 0, is
known as the zero-divisor of R if we can find y ∈ R, y 6= 0, such that xy = 0. Beck [3]
introduced the concept of the zero-divisor graphs of commutative rings and included 0 in
the definition. He was mainly interested in colorings of these rings. Later Anderson and
Livingston [4] modified the definition of the zero-divisor graphs by excluding 0 of the ring
in the zero-divisor set and defined the edges between two non-zero zero-divisors if and
only if their product is zero. The adjacency, the Laplacian, the signless Laplacian, distance
Laplacian and the signless Laplacian spectral analysis can be seen in [5–11]. More literature
about zero-divisor graphs can be seen in [4,12–14] and the references therein.

In G, x ∼ y denotes that the vertices x and y are adjacent and xy denotes an edge. We
use the standard notation, for Kn and Ka,b respectively denote the complete graph and the
complete bipartite graph. Other undefined notations and terminology can be seen in [1,15].
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The remaining part of the paper is organized as follows. In Section 2, we present some
preliminaries and investigate the structure of Γ(ZpN1 qN2 ) and discuss some of its graph

invariants. In Section 3, we obtain the Laplacian eigenvalues of Γ(ZpN1 qN2 ), for n = pN1 qN2 ,
where p and q are primes. We deduce several consequences from these results, which
include the determination of the eigenvalues of the graphs Γ(Zp2m), Γ(Z2m [i]) (zero-divisor
graph of Gaussian integers modulo 2m), Γ(Zp2m+1), Γ(Zpq) and Γ(Zpqr). At the end of the
article, we give the conclusion and discussion for possible further work.

2. Structure of the Zero-Divisor Graph Γ(ZpN1 qN2 )

We begin with the following definition.

Definition 1. Let G be a graph of order n with vertex set {1, 2, . . . , k} and Gi be disjoint graphs of
order ni, 1 ≤ i ≤ k. The graph G[G1, G2, . . . , Gn] is formed by taking the graphs G1, G2, . . . , Gn
and joining each vertex of Gi to every vertex of Gj whenever i and j are adjacent in G.

This graph operation is known by different names in the literature, such as G-join,
generalized composition, generalized join, joined union, and here we follow the latter name.

Let n be a positive integer and let τ(n) denote the number of positive factors of n.
Please note that d|n denotes d divides n. The Euler’s totient function or Euler’s phi function,
denoted by φ(n), is the number of positive integers less or equal to n and relatively prime
to n. We say that n is in canonical decomposition if n = pn1

1 pn2
2 . . . pnl

l , where l, n1, n2, . . . , nl
are positive integers and p1, p2, . . . , pl are distinct primes.

The following observations will be used in the sequel.

Lemma 1 ([16]). If n is in canonical decomposition pn1
1 pn2

2 . . . pnr
r , then

τ(n) = (n1 + 1)(n2 + 1) . . . (nr + 1)

Theorem 1 ([16]). The Euler’s totient function φ satisfies the following.

(i) φ is multiplicative, i.e., φ(pq) = φ(p)φ(q), whenever p and q are relatively prime.
(ii) ∑

d|n
φ(d) = n.

(iii) For prime p,
l

∑
i=1

φ(pl) = pl − 1.

For positive integer n, Zn represents the set of congruence classes {0, 1, . . . , n− 1} of
integer modulo n. The ring of Gaussian integers modulo n, denoted by Zn[i], is represented
by Zn[i] = {a + ib : a, b ∈ Zn}.

An integer d dividing n is a proper divisor of n if and only if 1 < d < n. Let Υn be
the simple graph with vertex set as the proper divisor set {d1, d2, . . . , dt} of n, where two
vertices are adjacent provided didj is a multiple of n. Evidently, this graph is a connected
graph [5]. If pn1

1 pn2
2 . . . pnr

r is the canonical decomposition of n, by Lemma 1, it follows that
the order of Υn is given by

|V(Υn)| = (n1 + 1)(n2 + 1) . . . (nr + 1)− 2.

For 1 ≤ i ≤ t, let Adi
= {r ∈ Zn : (r, n) = di}, where (r, n) is the greatest common

divisor of r and n. We observe that Adi
∩ Adj

= φ, when i 6= j, so, the sets Ad1 , Ad2 , . . . , Adt

are pairwise disjoint and partitions the vertex set of Γ(Zn) as V(Γ(Zn)) = Ad1 ∪ Ad2 ∪ · · · ∪
Adt . From the definition of Adi

, a vertex of Adi
is adjacent [5] to the vertex of Adj

in Γ(Zn)

provided that n|didj , for i, j ∈ {1, 2, . . . , t} . The cardinality of Adi
is given as follows.

Lemma 2 ([11]). For a divisor d of n, the cardinality of the set Ad is equal to |Ad| = φ
(

n
di

)
.



Mathematics 2021, 9, 482 3 of 17

We note that that the induced subgraphs Γ(Adi
) of Γ(Zn) are either cliques or null

graphs, as can be seen below [5].

Lemma 3. For the positive integer n and its proper di, the following hold.

(i) If i ∈ {1, 2, . . . , t}, then the subgraph Γ(Adi
) of Γ(Zn) on Adi

is either the complete graph
K

φ
(

n
di

) or its complement K
φ
(

n
di

). Also, Γ(Adi
) is K

φ
(

n
di

) provided d2
i is a multiple of n.

(ii) For distinct i, j in {1, 2, . . . , t}, a vertex of Adi
is adjacent to all Adj

or none of the vertices
in Adj

.
(iii) For distinct i, j in {1, 2, . . . , t}, a vertex of Adi

is adjacent to a vertex of Adj
in Γ(Zn) provided

didj is a multiple of n.

The graph formed in part (iii) of Lemma 3 is known as G(A(di)) graph. Clearly, Γ(Zn)
can be expressed as a joined union of complete graphs and empty graphs.

Lemma 4. [5] For the induced subgraph Γ(Adi
) of Γ(Zn) on vertices Adi

for 1 ≤ i ≤ t, the
zero-divisor graph Γ(Zn) = Υn[Γ(Ad1), Γ(Ad2), . . . , Γ(Adt)].

For a commutative ring R with non-zero identity 1 6= 0, and a ∈ R, the annihilator
of a, denoted by ann(a), is the set of those elements of R that annihilates a, and we write
ann(a) = {b ∈ R : ab = 0}. Define a relation on R by a ∼ b whenever ann(a) = ann(b).
Obviously, ann(a) = ann(a) and if ann(a) = ann(b) then ann(b) = ann(a) implying
that ∼ is symmetric relation. Also, if ann(a) = ann(b) and ann(b) = ann(c), then ∼ is
transitive and is an equivalence relation on R which partitions R into equivalence classes.
Furthermore, [a] represents the class of a ∈ R, that is, [a] = {b ∈ R : ann(a) = ann(b)}.

The compressed zero-divisor graph of a commutative ring R, denoted by ΓE(R), is the
undirected, simple graph with the vertex set Z(RE)− {[0]}= RE − {[0], [1]} and is defined
by RE = {[a] : a ∈ R}, where [a] = {b ∈ R : ann(a) = ann(b)} and the two vertices [a]
and [b] are adjacent provided [a][b] = [0] = [ab]. This graph was first defined in [17] and
their properties for Zpn were investigated in [13].

For example, consider Z12 with non-zero zero-divisor set
{

2, 3, 4, 6, 8, 9, 10
}

. The
annihilators of this set are

ann(2) = {6}, ann(3) = {4, 8}, ann(4) = {3, 6, 9}, ann(6) = {2, 4, 6, 8, 10},
ann(8) = {3, 6, 9}, ann(9) = {4, 8}, ann(10) = {6}.

The compressed zero-divisor graph Z12 with the vertex set
{
[2], [3], [4], [6]

}
and the

proper divisor graph of Z12 with the vertex set
{

2, 3, 4, 6
}

are shown in Figure 1.

Figure 1. The Compressed zero-divisor graph, the graph G(A(di)) and the proper divisor graph of Z12.

In case of R = Zn, we observe that the vertex sets of RE, G(A(di)) and Υn are in
one-one correspondence.

Proposition 1. If Zn is the finite commutative ring, then ΓE(R) ∼= G(A(di)) ∼= Υn.

Now, we find the structure of Γ(Zn), for n = pN1 qN2 , where p and q, p < q, are primes.
This generalizes the results obtained in [13]. We prove the cases when N1 and N2, N1 ≤ N2,
are positive even integers, N1 and N2 are positive odd integers and the other possible cases
can be similarly proved.
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Theorem 2. Let Γ(Zn) be the zero-divisor graph of order N, where n = pN1 qN2 and N1 = 2m1 ≤
2m2 = N2. Then

Γ(Zn) = Υn

[
Kφ(pN1−1qN2 ), . . . , Kφ(pm1 qN2 ), . . . , Kφ(qN2 ), Kφ(pN1 qN2−1), . . . , Kφ(pN1 qm2 ),

. . . , Kφ(pN1 ), Kφ(pN1−1qN2−1), . . . , Kφ(pN1−1qm2 ), . . . , Kφ(pN1−1), . . . ,

Kφ(pm1 qN2−1), . . . , Kφ(pm1 qm2−1), Kφ(pm1 qm2 ), . . . , Kφ(pm1 ), . . . , Kφ(qN2−1), . . . ,

Kφ(qm2−1), Kφ(qm2 ), . . . , Kφ(q)

]
.

(1)

Proof. Let n = pN1 qN2 , where p and q, 2 < p < q, are primes and N1 and N2, 2 ≤ N1 =
2m1 ≤ 2m2 = N2, are positive even integers. The proper divisors of n are{

p, p2, . . . ,pm1 , . . . , pN1 , q, q2, . . . , qm2 , . . . , qN2 , pq, pq2, . . . , pqm2 , . . . , pqN2 , . . . , pm1 q, pm1 q2, . . . ,

pm1 qm2−1, pm1 qm2 , . . . , pm1 qN2 , . . . , pN1 q, pN1 q2, . . . , pN1 qm2−1, pN1 qm2 , . . . , pN1 qN2−1
}

.

By Lemma 1, order of Υn is (N1 + 1)(N2 + 1)− 2 = N1N2 + N1 + N2 − 1. From the
definition of Υn, we have

p ∼ pN1−1qN2 , p2 ∼ pN1−2qN2 , pN1−1qN2 , . . . , pm1 ∼ pm1 qN2 , pm1+1qN2 , . . . , pN1−1qN2 ,

. . . pN1 ∼ qN2 , pqN2 , p2qN2 , . . . , pm1 qN2 , . . . , pN1−1qN2 ,

which in iteration form can be read as

pi ∼ pjqN2 , i + j ≥ N1, for i = 1, 2, . . . , N1.

Arguing as above, other adjacency relations are

qi ∼ pN1 qj, i + j ≥ N2, for i = 1, 2, . . . , N2,

pqi ∼ pkqj, i + j ≥ N2, for i = 1, 2, . . . , N2 and k ≥ 2m1 − 1,
...

pm1 qi ∼ pkqj, i + j ≥ N2, for i = 1, 2, . . . , N2 and k ≥ m1,
...

pN1 qi ∼ pkqj, i + j ≥ N2, for i = 1, 2, . . . , N2 − 1 and k ≥ 0.

For i = 1, 2, . . . , N1, j = 1, 2, . . . , N2 and k = 1, 2, . . . , N2 − 1, by Lemma 2, the
cardinalities of Adi

are

|Api | = φ(pN1−iqN2), |Aqj | = φ(pN1 qN2−j),|Apqj | = φ(pN1−1qN2−j), . . . , |Apm1 qj | = φ(pm1 qN2−j),

. . . , |ApN1−1qj | = φ(pqN2−j), |ApN1 qk | = φ(qN2−k).

Also, by Lemma 3, the induced graphs Γ
(

Adpi

)
are

Gi =



Γ
(

Adpi

)
= Kφ(pN1−iqN2 ), 1 ≤ i ≤ N1,

Γ
(

Ad
qj

)
= Kφ(pN1 qN2−j), 1 ≤ j ≤ N2,

Γ
(

Ad
piqj

)
= Kφ(pN1−iqN2−j), 1 ≤ i ≤ m1 − 1 and 1 ≤ j ≤ N2

or m1 ≤ i ≤ N1 and 1 ≤ j ≤ m2 − 1,
Γ
(

Ad
piqj

)
= Kφ(pN1−iqN2−j), m1 ≤ i ≤ N1 and m2 ≤ j ≤ N2,

(2)



Mathematics 2021, 9, 482 5 of 17

where we avoid Γ
(

Ad
pN1 qN2

)
corresponding to the proper divisor pN1 qN2 . Lastly, by Lemma 4,

the structure of the zero-divisor graph of Γ(Zn) is as in Equation (1). This completes
the proof.

In Theorem 2, taking N2 = 0, we have the following consequence.

Corollary 1. If Γ(Zn) is the zero-divisor graph of order N, where n = p2m, then

Γ(Zn) =Υn
[
Kφ(p2m−1), Kφ(p2m−2), . . . , Kφ(pm+1), Kφ(pm), Kφ(pm−1), . . . , Kφ(p2), Kφ(p)

]
. (3)

Proof. The proper divisors of n = p2m are {p, p2, . . . , pm−1, pm, pm+1, . . . , p2m−1}. In Υp2m ,
vertex pi is adjacent to vertex pj if and only if i + j ≥ 2m with 1 ≤ i ≤ 2m − 1 and
to avoid loops, we assume i 6= j. Also, n does not divide (pi)2, for i = 1, 2, . . . , m − 1,
so Gi = Kφ(p2m−i) and n divides (pi)2, for i = m, m + 1, . . . , 2m − 2, 2m − 1, and thus
Gi = Kφ(p2m−i). Thus, Equation (3) follows.

Another consequence gives the diameter of Γ(Zp2m1 q2m2 ).

Corollary 2. The diameter of Γ(Zn) is 3 for n = p2m1 q2m2 , and is 2 if m2 = 0.

Proof. In the proof of Theorem 2, we observe that pi ∼ qi if and only if i = j = n, otherwise
pi ∼ pkqn, i + k ≥ n and qj ∼ pnqh, j + h ≥ n. Lastly, pkqn ∼ pnqh, k ≥ 1, h ≥ 1. This
implies that d(pi, qj) = 3, if 1 ≤ i, j ≤ n− 1 in Υn. Similarly, from Corollary 1, distance in
Υp2m is at most 2.

The following consequence gives the clique number of Γ(Zp2m1 q2m2 ).

Corollary 3. The clique number of Γ(Zn) is

ω(Γ(Zn)) =

{
pm1 qm2 − 1 if n = p2m1 q2m2

pm1 − 1 i f n = p2m.

Proof. By the definition of Υp2m1 q2m2 , we can easily see that piqj, i ≥ m1, j ≥ m2 are the
vertices of the clique of Υp2m1 q2m2 and the number of such vertices is

m2 + 1 + m2 + 1 + · · ·+ m2 + 1︸ ︷︷ ︸
m1

+m2 = m1(m2 + 1) + m2.

By Lemma 3, Γ(Adi
) is Kφ( n

di
) if and only if n divides d2

i , so that the clique number of

Γ(ZpN1 qN2 ) is
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|Γ(Apm1 qm2 )|+ |Γ(Apm1 qm2−1)|+ · · ·+ |Γ(Apm1 q)|+ |Γ(Apm1 )|

+ |Γ(Apm1−1qm2 )|+ |Γ(Apm1−1qm2−1)|+ · · ·+ |Γ(Apm1−1q)|+ |Γ(Apm1−1)|
...

+ |Γ(Apqm2 )|+ |Γ(Apqm2−1)|+ · · ·+ |Γ(Apq2)|+ |Γ(Apq)|

+ |Γ(Aqm2 )|+ |Γ(Aqm2−1)|+ · · ·+ |Γ(Aq2)|+ |Γ(Aq)|

= φ(pm1 qm2) + φ(pm1 qm2−1) + · · ·+ φ(pm1 q) + φ(pm1)

+ φ(pm1−1qm2) + φ(pm1−1qm2−1) + · · ·+ φ(pm1−1q) + φ(pm1−1)

...

+ φ(pqm2) + φ(pqm2−1) + · · ·+ φ(pq) + φ(p)

+ φ(qm2) + φ(qm2−1) + · · ·+ φ(q2) + φ(q)

= φ(pm1)qm2 + φ(pm1−1)qm2 + · · ·+ φ(p)qm2 + qm2 − 1 = pm1 qm2 − 1.

If m2 = 0, then by definition of Υp2m , the vertices pi, i ≥ m, form the clique in it and
its size is m. Thus, the sum cardinality of the cardinalities Γ(Api ), i ≥ m, is the clique size
of Γ(Zp2m). Using Lemma 1, we have

cl(Γ(Api )) =|Γ(Apm)|+ |Γ(Apm+1)|+ · · ·+ |Γ(Ap2m−1)|

=φ(pm) + φ(pm−1) + · · ·+ φ(p) = pm − 1.

The following result gives the structure of Γ(ZpN1 qN2 ), where N1 and N2 are both odd.

Theorem 3. Let Γ(Zn) be the zero-divisor graph of order N where n = pN1 qN2 and N1 =
2m1 + 1 ≤ 2m2 + 1 = N2. Then

Γ(Zn) = Υn

[
Kφ(p2m1 qN2 ), . . . , Kφ(pm1 qN2 ), . . . , Kφ(qN2 ), Kφ(pN1 q2m2 ), . . . , Kφ(pN1 qm2 ),

. . . , Kφ(pN1 ), Kφ(p2m1 q2m2 ), . . . , Kφ(p2m1 qm2 ), . . . , Kφ(p2m1 ), . . . ,

Kφ(pm1 q2m2 ), . . . , Kφ(pm1 qm2 ), Kφ(pm1 qm2−1), . . . , Kφ(pm1 ), . . . , Kφ(q2m2 ), . . . ,

Kφ(qm2 ), Kφ(qm2−1), . . . , Kφ(q)

]
.

(4)

Proof. Let n = pN1 qN2 , where p and q, 2 < p < q, are primes and N1 and N2, 2 ≤ N1 =
2m1 + 1 ≤ 2m2 + 1 = N2, are positive even integers. Then the proper divisors of n are{

p, p2, . . . ,pm1+1, . . . , p2m1+1, q, q2, . . . , qm2+1, . . . , q2m2+, pq, pq2, . . . , pqm2+1, . . . , pq2m2+1, . . . ,

pm1+1q, pm1+1q2, . . . , pm1+1qm2 , pm1+1qm2+1, . . . , pm1+1q2m2+1, . . . , p2m1+1q, p2m1+1q2, . . . ,

p2m1+1qm2 , p2m1+1qm2+1, . . . , p2m1+1q2m2
}

.
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Therefore, by the definition of Υn, we have

pi ∼ pjq2m2+1, i + j ≥ 2m1 + 1, for i = 1, 2, . . . , 2m1 + 1,

qi ∼ p2m1 qj, i + j ≥ 2m2 + 1, for i = 1, 2, . . . , 2m2 + 1,

pqi ∼ pkqj, i + j ≥ 2m2 + 1, for i = 1, 2, . . . , 2m2 + 1 and k ≥ 2m1,
...

pm1+1qi ∼ pkqj, i + j ≥ 2m2 + 1, for i = 1, 2, . . . , 2m2 + 1 and k ≥ m1,
...

p2m1+1qi ∼ pkqj, i + j ≥ 2m2 + 1, for i = 1, 2, . . . , 2m2 and k ≥ 0.

By Lemma 2, for i = 1, 2, . . . , 2m1 + 1, j = 1, 2, . . . , 2m2 + 1 and k = 1, 2, . . . , 2m2, the
cardinalities of Adi

are

|Api | = φ(p2m1+1−iq2m2+1), |Aqj | = φ(p2m1+1q2m2+1−j), |Apqj | = φ(p2m1 q2m2+1−j), . . . ,

|Apm1+1qj | = φ(pm1 q2m2+1−j), . . . , |Ap2m1 qj | = φ(pq2m2+1−j), |Ap2m1+1qk | = φ(q2m2+1−k).

Also, by Lemma 3, the induced graphs Γ
(

Adpi

)
are

Gi =



Γ
(

Adpi

)
= Kφ(p2m1+1−iq2m2+1), 1 ≤ i ≤ 2m1 + 1,

Γ
(

Ad
qj

)
= Kφ(p2m1+1q2m2+1−j), 1 ≤ j ≤ 2m2 + 1,

Γ
(

Ad
piqj

)
= Kφ(p2m1+1−iq2m2+1−j), 1 ≤ i ≤ m1 and 1 ≤ j ≤ 2m2 + 1

or 1 ≤ i ≤ 2m1 + 1 and 1 ≤ j ≤ m2,
Γ
(

Ad
piqj

)
= Kφ(p2m1+1−iq2m2+1−j), m1 + 1 ≤ i ≤ 2m1 + 1 and m2 + 1 ≤ j ≤ N2,

(5)

where we avoid Γ
(

Ad
p2m1+1q2m2+1

)
corresponding to proper divisor p2m1+1q2m2+1. Therefore,

by Lemma 4, the structure of zero-divisor graph of Γ(Zn) is

Γ(Zn) = Υn

[
Kφ(p2m1 qN2 ), . . . , Kφ(pm1 qN2 ), . . . , Kφ(qN2 ), Kφ(pN1 q2m2 ), . . . , Kφ(pN1 qm2 ),

. . . , Kφ(pN1 ), Kφ(p2m1 q2m2 ), . . . , Kφ(p2m1 qm2 ), . . . , Kφ(p2m1 ), . . . ,

Kφ(pm1 q2m2 ), . . . , Kφ(pm1 qm2 ), Kφ(pm1 qm2−1), . . . , Kφ(pm1 ), . . . , Kφ(q2m2 ), . . . ,

Kφ(qm2 ), Kφ(qm2−1), . . . , Kφ(q)

]
.

If N2 = 0, in Theorem 3, we have the following consequence.

Corollary 4. Let Γ(Zn) be the zero-divisor graph of order N, where n = p2m+1. Then

Γ(Zn) =Υn
[
Kφ(p2m), Kφ(p2m−1), . . . , Kφ(pm+1), Kφ(pm), Kφ(pm−1), . . . , Kφ(p2), Kφ(p)

]
.

Proof. The proper divisors of n = p2m+1 are {p, p2, . . . , pm, pm+1, pm+2, . . . , p2m}. In the
graph Υp2m+1 , the vertex pi is adjacent to the vertex pj if and only if i + j ≥ 2m + 1 with 1 ≤
i ≤ 2m and to avoid loops we assume i 6= j. Also, n does not divide (pi)2, for i = 1, 2, . . . , m,
this implies that Gi = Kφ(p2m+1−i) and n divides (pi)2, for i = m + 1, m + 2, . . . , 2m− 1, 2m,
so that Gi = Kφ(p2m+1−i). Now result follows.

Other graph invariants of Γ(ZpN1 qN2 ), like automorphism group, chromatic number,
domination number, independence number, matching number can similarly be investigated.
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3. Laplacian Eigenvalues of the Zero-Divisor Graph Γ(Zn)

Consider an n× n matrix

M =


A1,1 A1,2 · · · A1,l
A2,1 A2,2 · · · A2,l

...
... · · ·

...
Al,1 Al,2 · · · Al,l

,

whose rows and columns are partitioned according to a partition P = {P1, P2, . . . , Pl} of
the set X = {1, 2, . . . , n}. The quotient matrix Q is a matrix of order l whose (i, j)th entry is
the average row sums of the blocks Ai,j of M. If each block Ai,j has constant row (column)
sum, then the partition P is called equitable and the matrix Q is known as equitable quotient
matrix. In general, the spectrum of Q is interlaced by the spectrum of M, equality holds in
case of the equitable partition [1].

The following lemma gives a different method of finding determinant (det) of a matrix.

Lemma 5 ([18]). Let A1, A2, A3 and A4 be respectively p× p, p× q, q× p and q× q matrices
with A1 and A4 invertible. Then

det
(

A1 A2
A3 A4

)
= det(A1)det(A4 − A3 A−1

1 A2)

= det(A4)det(A1 − A2 A−1
4 A3),

where A4 − A3 A−1
1 A2 and A1 − A2 A−1

4 A3 are known as the Schur complement of A1 and A4,
respectively.

The following result gives the Laplacian spectrum of G[G1, . . . , Gn] in terms of the
Laplacian spectrum of Gi’s and the eigenvalues of the quotient matrix.

Theorem 4. Let G be a graph of order n and let Gi be regular graphs of order ni with Laplacian
eigenvalues µi1 ≥ µi2 ≥ . . . ≥ µini , where i = 1, 2, . . . , n. Then the Laplacian eigenvalues
of G[G1, . . . , Gn] are the eigenvalues αi + µik(Gi) for i = 1, . . . , n and k = 2, 3, . . . , ni, where
αi = ∑

vj∈NG(vi)
ni is the sum of the cardinalities of the graphs Gj, j 6= i, which corresponds to the

neighbors of vertex vi ∈ G and n eigenvalues of the following matrix

Q =


α1 −ψ12 . . . −ψ1n
−ψ21 α2 . . . −ψ2n

...
...

. . .
...

−ψn1 −ψn2 . . . αn

, (6)

where for i 6= j, ψij = nj, if vi ∼ vj, while as ψij = 0, if vi � vj.

An equivalent statement of Theorem 4 can be seen in [19], so we omit the proof here.
Usually it is difficult to obtain the Laplacian eigenvalues of graphs in general. So,

researchers attempt to get the Laplacian eigenvalues of particular class of graphs. It is
important to mention that the structure of the zero-graphs associated with Zn for n =
pN1 qN2 has not been obtained earlier. Therefore, it becomes essential to write graphs in
some known structure and obtain their Laplacian spectrum.

Now, we will find the Laplacian eigenvalues of Γ(Zn), for n = pN1 qN2 , where p and q,
p < q, are primes. This generalizes the results obtained in [5] and that too by using different
technique. We prove the case when N1 and N2, N1 ≤ N2, are positive even integers and
the odd case can be similarly proved.
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Theorem 5. Let Γ(Zn) be the zero-divisor graph of order N, where n = pN1 qN2 and N1 = 2m1 ≤
2m2 = N2. The Laplacian spectrum of Γ(Zn) consists of the eigenvalues{

(pi − 1)[φ(pN1−iqN2 )−1], (qj − 1)[φ(pN1 qN2−j)−1], (pqj − 1)[φ(pN1−1qN2−j)−1], . . . , (pm1 qk − 1)[φ(pm1 qN2−k)−1]

(pm1 ql − 1)[φ(pm1 qN2−l)−1], . . . , (p2m1 qk − 1)[φ(q
N2−k)−1], (p2m1 qt − 1)[φ(q

N2−t)−1],
}

where i = 1, 2, . . . , m1, . . . , N1, j = 1, 2, . . . , N2, k = 1, 2, . . . , m2 − 1, l = m2, . . . , 2m2 and
t = m2, . . . , 2m2 − 1. The remaining Laplacian eigenvalues of Γ(Zn) are the eigenvalues of the
matrix given in (6).

Proof. By using Theorems 1 and 4, the value of αi’s are

α1 = φ(p) = p− 1, α2 = φ(p) + φ(p2) = p2 − 1,
...

αm1 = φ(pm1) + φ(pm1−1) + · · ·+ φ(p) = pm1 − 1,
...

αN1 = φ(pN1) + φ(pN1−1) + · · ·+ φ(p) = pN1 − 1,

that is,

αi = pi − 1, for i = 1, 2, . . . , N1.

For i ≥ m2 and j ≥ m2, we note that Γ(Apiqj) as vertex of Υn are adjacent to itself, so
we add and subtract cardinalities of such type of Γ(Apiqj)’s so that αi’s are easy to calculate.
Now, as above other αi’s are given by

αi =qj − 1, for i = N1 + 1, . . . , N1 + N2, and j = 1, 2, . . . , m2, . . . , N1,

αi =pqj − 1 for i = N1 + N2 + 1, . . . , N1 + 2N2 and j = 1, 2, . . . , m2, . . . , N1,
...

αi =pm1 qj − 1, for i = N1 + m1N2 + 1, . . . , N1 + m1N2 + m2 − 1 and j = 1, 2, . . . , m2 − 1,

αi =pm1 qj − 1− φ(pm1 qj), for i = N1 + m1N2, . . . , N1 + (m1 + 1)N2 and j = m2, . . . , N2,
...

αi =pN1 qj − 1, for i = N1 + N1N2 + 1, . . . , N1 + N1N2 + m2 − 1 and j = 1, 2, . . . , m2 − 1,

αi =pN1 qj − 1− φ(qN2−j), for i = N1 + N1N2 + m2, . . . , N1 + N1N2 + N2 − 1

and j = m2, . . . , N2 − 1.

By using Theorem 4, Equation (2) and the fact that Laplacian spectrum of Kω is {0[ω]},
we have

αi + λik(Gi) = αi + λik(Kφ(pN1−iqN2 )) = αi = pi − 1, for i = 1, 2, . . . , N1.

Thus, for i = 1, 2, . . . , N1, we see that pi − 1 is the Laplacian eigenvalue of Γ(Zn) with
multiplicity φ(pN1−iqN2)− 1.

Now, following similar steps, it is easy to see that

(qj − 1)[φ(pN1 qN2−j)−1], (pqj − 1)[φ(pN1−1qN2−j)−1], . . . , (pm1 qk − 1)[φ(pm1 qN2−k)−1]



Mathematics 2021, 9, 482 10 of 17

are also the Laplacian eigenvalues of Γ(Zn). Again, by Equation (2), Gi = Kφ(pN1−iqN2−j),

when i ≥ m1 and j ≥ m2 and Laplacian spectrum of Kω is {0, ωω−1}, so

αi + λik(Gi) = pm1 ql − 1− φ(pm1 ql) + φ(pm1 ql) = pm1 ql − 1

is the Laplacian eigenvalue of Γ(Zn) with multiplicity φ(pm1 ql)− 1, where l = m2, . . . , N2.
Similarly, for k = 1, 2, . . . , m2 − 1 and t = m2, . . . , N2 − 1, we see that pN1 qk − 1 and
pN1 qt − 1 are also the Laplacian eigenvalues of Γ(Zn) with multiplicities φ(qN2−t)− 1 and
φ(qN2−k)− 1, respectively. The other Laplacian eigenvalues of Γ(Zn) are the zeros of the
characteristic polynomial of the quotient matrix (6).

If we put m2 = 0 in Theorem 5, it reduces to the following result [5] with a different
technique.

Corollary 5. If n = p2m for some positive integer m ≥ 2, then the Laplacian eigenvalues of
Γ(Zn) are{

0, (p− 1)[φ(p2m−1)], (p2 − 1)[φ(p2m−2)1], . . . , (pm−1 − 1)[φ(pm+1)], (pm − 1)[φ(pm)−1],

(pm+1 − 1)[φ(pm−1)], . . . , (p2m−2 − 1)[φ(p2)], (p2m−1 − 1)[φ(p)]
}

.

Proof. Using Corollary 1, p ∼ p2m−1 implies that α1 = φ(p). However, in general, we see

that αi = pi− 1, for i = 1, 2, . . . , m− 1, where from Theorem 1, we have used
l

∑
i=1

pi = pl − 1.

As pm ∼ pm, so we add and subtract cardinality of Γ(Apm) and thus αm is given as

αm = φ(pm−1) + φ(pm−2) + · · ·+ φ(p2) + φ(p)

= φ(pm) + φ(pm−1) + φ(pm−2) + · · ·+ φ(p2) + φ(p)− φ(pm)

= pm − 1− φ(pm).

Likewise, for i = m + 1, . . . , 2m− 2, 2m− 1, it is clear that

αi =
i

∑
j=1

φ(pj)− φ(p2m−i) = pi − 1− φ(p2m−i).

For i = 1, 2, . . . , m− 1, clearly αi = pi − 1 are the Laplacian eigenvalue of Γ(Zn) with
multiplicity φ(p2m−i) − 1. Also, from Theorem 4 and for i = m, m + 1, . . . , 2m − 1, we
see that

αi + µik(Gi) = pi − 1− φ(p2m−i) + µik(Kφ(p2m−i)) = pi − 1

are also Laplacian eigenvalues of Γ(Zn) with multiplicities φ(p2m−i)− 1. The remaining
Laplacian eigenvalues of Γ(Zn) are given by the following quotient matrix

Q =

(
Am−1×m−1 Bm−1×m

Cm×m−1 Dm×m

)
where A = diag(p− 1, p2 − 1, . . . , pm−1 − 1),
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B =


0 0 · · · 0 −φ(p)
0 0 · · · −φ(p2) −φ(p)
...

... · · ·
...

...
0 −φ(pm−1) · · · −φ(p2) −φ(p)

, C =


0 0 · · · 0
0 0 · · · −φ(pm+1)
...

... . . .
...

0 −φ(p2m−2) · · · −φ(pm+1)
−φ(p2m−1) −φ(p2m−2) · · · −φ(pm+1)



and D =


pm − 1− φ(pm) −φ(pm−1) · · · −φ(p2) −φ(p)
−φ(pm) pm−1 − 1− φ(pm−1) · · · −φ(p2) −φ(p)

...
...

. . .
...

...
−φ(pm) −φ(pm−1) · · · p2m−2 − 1− φ(p2) −φ(p)
−φ(pm) −φ(pm−1) · · · −φ(p2) p2m−1 − 1− φ(p)

.

Applying Lemma 5, we have

det(xI −Q) = det(xI − A)det((xI − D)− C(xI − A)−1B). (7)

By evaluating Equation (7), we can verify that{
0, p− 1, p2 − 1, . . . , pm−1 − 1, pm+1 − 1, . . . , p2m−2 − 1, p2m−1 − 1

}
are the remaining Laplacian eigenvalues of Γ(Zn). We note that all the Laplacian eigenval-
ues of quotient matrix Q are repeated with the eigenvalues obtained by αi + µik(Gi) except
pm − 1.

As Γ(Z2m [i]) ∼= Γ(Z22m), so for p = 2 in Corollary 5, we get the following.

Corollary 6. The Laplacian eigenvalues of the zero-divisor graph Γ(Z2m [i]) of Gaussian integers
modulo 2m is{

0, 1[φ(2
2m−1)],2[φ(2

2m−2)1], . . . , (2m−1 − 1)[φ(2
m+1)], (2m − 1)[φ(2

m)−1],

(2m+1 − 1)[φ(2
m−1)], . . . , (22m−2 − 1)2, (22m−1 − 1)

}
.

If m1 = 1 and m2 = 0 in Theorem 5, we have Γ(Zp2) = Kφ(p) and its Laplacian
spectrum is given by the following observation.

Corollary 7. If n = p2, then the Laplacian spectrum of Γ(Zn) is

{0, (p− 1)[p−2]}.

The following result gives the Laplacian spectrum of Γ(ZpN1 qN2 ), when both N1 and
N2 are odd. Its proof is similar to that of Theorem 5.

Theorem 6. Let Γ(Zn) be the zero-divisor graph of order N, where n = pN1 qN2 and N1 =
2m1 + 1 ≤ 2m2 + 1 = N2. The Laplacian spectrum of Γ(Zn) consists of the eigenvalues{

(pi − 1)[φ(pN1−iqN2 )−1], (qj − 1)[φ(pN1 qN2−j)−1], (pqj − 1)[φ(pN1−1qN2−j)−1], . . . , (pm1+1qk − 1)[φ(pm1 qN2−j)−1]

, . . . , (p2m1+1qk − 1)[φ(q
N2−k)−1]

}
,

where i = 1, 2, . . . , m1, . . . , N1, j = 1, 2, . . . , N2 and k = 1, 2, . . . , 2m2. The remaining Laplacian
eigenvalues of Γ(Zn) are the eigenvalues of the matrix given in (6).
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In particular, if q = 1 in Theorem 6, we have the following result of [5].

Corollary 8. If n = p2m+1 for some positive integer m ≥ 2, then the Laplacian spectrum of
Γ(Zn) is{

0, (p− 1)[φ(p2m)], (p2 − 1)[φ(p2m−1)1], . . . , (pm−1 − 1)[φ(pm+2)], (pm − 1)[φ(pm+1)−1],

(pm+1 − 1)[φ(pm)], . . . , (p2m−1 − 1)[φ(p2)], (p2m − 1)[φ(p)]
}

.

If m1 = m2 = 0, then n = pq. Therefore, by Lemmas 3 and 4, we have

Γ(Zpq) = Υpq[Γ(Ap), Γ(Aq)] = K2[Kφ(p), Kφ(q)] = Kφ(p)OKφ(q) = Kφ(p),φ(q). (8)

The next consequence of Theorem 6 gives the Laplacian spectrum of the complete
bipartite graph Γ(Zpq).

Corollary 9. The Laplacian spectrum of Γ(Zpq) is{
0, (q− 1)[p−2], (p− 1)[q−2], p + q− 2

}
.

For m = 1 and q = 1 in Theorem 6, we have the following observation for Γ(Zp3).

Corollary 10. If n = p3, then the Laplacian spectrum of Γ(Zn) is{
0, (p− 1)[p

2−p−1], (p2 − 1)[p−2]
}

.

Proof. As the proper divisors of n are p and p2, so Υn is K2 : p ∼ p2. By Lemma 4, we have

Γ(Zp3) = Υp3 [Γ(Ap), Γ(Ap2)] = K2[Kφ(p2), Kφ(p)] = Kp(p−1)OKp−1.

That is, Γ(Zp3) is a complete split graph of order p2 − 1, with independence number
p(p− 1). Therefore, by Theorem 4, we have (α1, α2) = (p− 1, p2 − p), and

Q(K2) =

(
p− 1 −φ(p)
−φ(p2) p2 − p

)
. (9)

As G1 = Kp(p−1), so the Laplacian spectrum of Γ(Zn) consists of the eigenvalue
α1 = p − 1 with multiplicity p(p − 1) − 1, the eigenvalue α2 + µ2k(Kp−1) = p2 − p +

p− 1 = p2 − 1 with multiplicity p− 2 and the other two Laplacian eigenvalues are the
eigenvalues of matrix (9).

Now, consider the case when one of Ni’s is even and other is odd, say N1 is even and
N2 is odd or N1 is odd and N2 is even. In the following result, first case is given and the
second case can be treated similarly.

Theorem 7. Let Γ(Zn) be the zero-divisor graph of order N, where n = pN1 qN2 and m1 < m2 so
that N1 = 2m1 < 2m2 + 1 = N2. The Laplacian spectrum of Γ(Zn) consists of the eigenvalues{

(pi − 1)[φ(pN1−iqN2 )−1], (qj − 1)[φ(pN1 qN2−j)−1], (pqj − 1)[φ(pN1−1qN2−j)−1], . . . , (pm1 qj − 1)[φ(pm1 qN2−j)−1]

, . . . , (pN1 qk − 1)[φ(q
N2−k)−1]

}
,

where i = 1, 2, . . . , m1, . . . , N1, j = 1, 2, . . . , N2 and k = 1, 2, . . . , 2m2. The remaining Laplacian
eigenvalues of Γ(Zn) are the eigenvalues of the matrix given in (6).
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Proof. For n = pN1 qN2 , with p and q, being primes and 2 ≤ N1 = 2m1 < 2m2 + 1 = N2.
The proper divisor set of n is{

p, p2, . . . ,pm1 , . . . , pN1 , q, q2, . . . , qm2+1, . . . , qN2 , pq, pq2, . . . , pqm2+1, . . . , pqN2 , . . . , pm1 q, pm1 q2,

. . . ,pm1 qm2 , pm1 qm2+1, . . . , pm1 qN2 , . . . , pN1 q, pN1 q2, . . . , pN1 qm2 , pN1 qm2+1, . . . , pN1 qN2−1
}

.

Now by the definition of Υn, the adjacency relations are

pi ∼ pjqN2 , i + j ≥ N1, for i = 1, 2, . . . , N1

qi ∼ pN1 qj, i + j ≥ N2, for i = 1, 2, . . . , N2,

pqi ∼ pkqj, i + j ≥ N2, for i = 1, 2, . . . , N2 and k ≥ 2m1 − 1,
...

pm1 qi ∼ pkqj, i + j ≥ N2, for i = 1, 2, . . . , N2 and k ≥ m1

...

pM1 qi ∼ pkqj, i + j ≥ N2, for i = 1, 2, . . . , N2 − 1 and k ≥ 0.

Also, the cardinalities of Adi
’s are

|Api | = φ(pN1−iqN2), |Aqj | = φ(pN1 qN2−j), |Apqj | = φ(pN1−1qN2−j), . . . , |Apm1 qj | = φ(pm1 qN2−j),

. . . , |ApN1−1qj | = φ(pqN2−j), |ApN1 qk | = φ(qN2−k),

where i = 1, 2, . . . , N1, j = 1, 2, . . . , N2 and k = 1, 2, . . . , N2 − 1. Further by using Lemma 3,
we have

Gi =



Γ
(

Adpi

)
= Kφ(pN1−iqN2 ), 1 ≤ i ≤ N1,

Γ
(

Ad
qj

)
= Kφ(pN1 qN2−j), 1 ≤ j ≤ N2,

Γ
(

Ad
piqj

)
= Kφ(pN1−iqN2−j), 1 ≤ i ≤ m1 − 1 and 1 ≤ j ≤ N2

or 1 ≤ i ≤ N1 and 1 ≤ j ≤ m2,
Γ
(

Ad
piqj

)
= Kφ(pN1−iqN2−j), m1 ≤ i ≤ N1 and m2 ≤ j ≤ N2.

(10)

Thus, by Lemma 4, the joined union of Γ(Zn) is

Γ(Zn) =Υn
[
Kφ(pN1−1qN2 ), . . . , Kφ(pm1 qN2 ), . . . , Kφ(qN2 ), Kφ(pN1 qN2−1), . . . , Kφ(pN1 qm2 ), . . . , Kφ(pN1 ),

Kφ(pN1−1qN2−1), . . . , Kφ(pN1−1qm2 ), . . . , Kφ(pN1−1), . . . , Kφ(pm1 qN2−1), . . . , Kφ(pm1 qm2−11),

Kφ(pm1 qm2 ), . . . , Kφ(pm1 ), . . . , Kφ(qN2−1), . . . , Kφ(qm2−1), Kφ(qm2 ), . . . , Kφ(q)
]
.
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By using Theorems 1 and 4, the value of αi’s are

αi = pi − 1, for i = 1, 2, . . . , N1

αi = qj − 1, for i = N1 + 1, . . . , N1 + N2 and j = 1, 2, . . . , m2 + 1, . . . , N2,

αi = pqj − 1 for i = N1 + N2 + 1, . . . , N1 + 2N2 and j = 1, 2, . . . , m2 + 1, . . . , N2,
...

αi = pm1 qj − 1, for i = N1 + m1N2 + 1, . . . , N1 + m1N2 + m2 − 1 and j = 1, 2, . . . , m2,

αi = pm1 qj − 1− φ(pm1 qj), for i = N1 + m1N2, . . . , N1 + (m1 + 1)N2 and j = m2 + 1, . . . , N2,
...

αi = pN1 qj − 1, for i = N1 + N1N2 + 1, . . . , N1 + N1N2 + m2 and j = 1, 2, . . . , m2,

αi = pN1 qj − 1− φ(qN2−j), for i = N1 + N1N2 + m2 + 1, . . . , N1 + N1N2 + N2 − 1

and j = m2 + 1, . . . , 2m2.

Again, applying Theorem 4 and using Equation (10), we see that

α1 + µ1k(G1) = α1 + 0 = p− 1

is the Laplacian eigenvalue of Γ(Zn) with multiplicity φ(p2m1−1q2m2+1)− 1. Similarly, the
other Laplacian eigenvalues of Γ(Zn) are as in the statement.

Next, we find the Laplacian eigenvalues of Γ(Zn) when n is the product of three primes.

Theorem 8. The Laplacian spectrum of Γ(Zpqr) consists of the eigenvalues{
(p− 1)[φ(qr)−1], (q− 1)[φ(p1)−1], (r− 1)[φ(pq)−1], (pq− 1)[φ(r)−1], (pr− 1)[φ(q)−1], (qr− 1)[φ(p)−1]

}
.

Proof. Let n = pqr. Then p, q, r, pq, pr and qr are the proper divisors of n and Υn is the
graph G6 : q ∼ pr ∼ pq ∼ r, pr ∼ qr ∼ p and pq ∼ qr, i.e., Υn is a unicyclic graph with
pendent vertices at each vertex of cycle as shown in Figure 2. Ordering the vertices by
increasing divisor sequence and applying Lemma 4, we have

Γ(Z30) = Υ30[K8, K4, K24, K4, K2, K1].

By Theorem 4, value of αi’s are

α1 = φ(p) = p− 1, α2 = φ(q) = q− 1, α3 = φ(r) = r− 1, α4 = φ(pq) + φ(p) + φ(q) = pq− 1,

α5 = φ(pr) + φ(p) + φ(r) = pr− 1, α6 = φ(qr) + φ(q) + φ(r) = qr− 1.

Since each of Gi is a null graph, so the Laplacian eigenvalues of Γ(Zpqr) are p− 1 with
multiplicity φ(qr) − 1, q − 1 with multiplicity φ(pr) − 1, r − 1 with multiplicity φ(pq)− 1,
pq− 1 with multiplicity φ(r)− 1, pr − 1 with multiplicity φ(q)− 1, and qr − 1 with multi-
plicity φ(p)− 1. The remaining Laplacian eigenvalues of Γ(Zpqr) are the eigenvalues of the
following matrix

φ(p) 0 0 0 0 −φ(p)
0 φ(q) 0 0 −φ(q) 0
0 0 φ(r) −φ(q) 0 0
0 0 −φ(pq) pq− 1 −φ(q) −φ(p)
0 −φ(pr) 0 −φ(r) pr− 1 −φ(p)

−φ(qr) 0 0 −φ(r) −φ(q) qr− 1

.
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Theorem 8 can be generalized for arbitrary product of distinct primes. Although it
is hard to find the Laplacian spectra of Γ(Zn) with canonical decomposition of n, it is
interesting and can explore various properties of Zn and the structure of its associated
zero-divisor graph. The spectral study of zero-divisor graphs of rings may open research
work as in the case of Cayley graphs.

Figure 2. Proper divisor graph Υpqr and zero-divisor graph Γ(Zpqr).

4. Conclusions and Comments

LetMn(C) be the set of all square matrices of order n with complex entries. The trace

norm of a matrix M ∈ Mn(C) is defined as ‖M‖∗ =
n
∑

i=1
σi(M), where σ1(M) ≥ σ2(M) ≥

· · · ≥ σn(M) are the singular values of M (that is the square roots of the eigenvalues
of MM∗, where M∗ is the complex conjugate of M). In case of symmetric matrices, the
singular values coincide with the absolute values of the eigenvalues, i.e., if σi(M) are the
singular values and λi(M), i = 1, 2, . . . , n, are the eigenvalues of M, then σi(M) = |λi(M)|.
Thus, the sum of the absolute values of eigenvalues of the matrix L(Γ(Zn))− 2m

n In is the
trace norm of L(Γ(Zn))− 2m

n In, where In is the identity matrix of order n. It is an interesting
problem in Matrix theory, to determine among a given class of matrices the matrix (or the
matrices) which attain the maximum value and the minimum value for the trace norm. The
trace norm of matrices associated with the graphs and digraphs are extensively studied.
For some recent papers in this direction see [20,21] and the references therein.

In spectral graph theory, the trace norm is studied under the name graph energy.
Gutman and Zhou [22] defined the Laplacian energy of G as

LE(G) =
n

∑
i=1

∣∣∣∣µi −
2m
n

∣∣∣∣.
Using the fact that

n−1
∑

1=i
µi = 2m, from [23], we have

LE(G) = 2

(
σ

∑
i=1

µi − σd

)
= 2 max

1≤k≤n

(
k

∑
1=i

µi − kd

)
, (11)

where σ is the number of Laplacian eigenvalues greater than or equal to the average degree

d. We note that
k
∑

1=i
µi is actually the Ky Fan k-norm, which for positive semi-definite matrices

is the sum of k largest eigenvalues. The parameter σ is an active component of the present
research and some work mostly on trees can be found in the literature [24]. In fact, it is
shown in [25] that the Laplacian energy has remarkable chemical applications beyond the
molecular orbital theory of conjugated molecules. For some recent works on Laplacian
energy and related results, we refer to [2,26–28] and the references therein.

In case of n = p2, n = p3 and n = pq, the trace norm of L = L(Γ(Zn))− 2m
n In are

2(p− 2),
2(2p + q2 − pq− 2)

p + q− 2
, and

2(2p3 − 4p2 − p + 3)
p3 − 1

.
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Similarly, Laplacian energy of Γ(Zn)) can be discussed for other values of n and
various upper bounds and lower bounds can be obtained.

As zero-divisor graph of Zn has been written in terms of the joined union, where
components are either cliques or their complements, but, in general the zero-divisor graphs
of ring R cannot be expressed as the joined union of graphs. So, their spectral analysis
becomes difficult. No general method is yet available in discussing the spectra of zero-
divisor graphs of rings such as Zn[i],Zp × Zq, (p 6= q),Zp[i]× Zq[i], (p 6= q) and many
other zero-divisor graphs associated with commutative as well as non-commutative rings.
Also relating spectral properties with the graph invariants such as connectivity, chromatic
number, matching number and other parameters are very interesting problems.
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1. Cvetković, D.M.; Rowlison, P.; Simić, S. An Introduction to Theory of Graph Spectra Spectra of Graphs, Theory and Application; Lonndon

Math. S. Student Text, 75; Cambridge University Press: Cambridge, UK, 2010.
2. Pirzada, S.; Ganie, H.A. On the Laplacian eigenvalues of a graph and Laplacian energy. Linear Algebra Appl. 2015, 486, 454–468.

[CrossRef]
3. Beck, I. Coloring of a commutative rings. J. Algebra 1988, 116, 208–226. [CrossRef]
4. Anderson, D.F.; Livingston, P.S. The zero-divisor graph of a commutative ring. J. Algebra 1999, 217, 434–447. [CrossRef]
5. Chattopadhyay, S.; Patra, K.L.; Sahoo, B.K. Laplacian eigenvalues of the zero-divisor graph of the ring Zn. Linear Algebra Appl.

2020, 584, 267–286. [CrossRef]
6. Magi, P.M.; Jose, S.M.; Kishore, A. Adjacency matrix and eigenvalues of the zero-divisor graph Γ(Zn). J. Math. Comput. Sci. 2020,

10, 1285–1297.
7. Pirzada, S.; Rather, B.A.; Aijaz, M.; Chishti, T.A. On distance signless Laplacian spectrum of graphs and spectrum of zero divisor

graphs of Zn. Linear Multilinear Algebra 2020. [CrossRef]
8. Pirzada, S.; Rather, B.A.; Shaban, R.U.M. On signless Laplacian spectrum of zero divisor graphs of the ring Zn. Korean J. Math. 2021,

in print.
9. Pirzada, S.; Rather, B.A.; Chishti, T.A. On distance Laplacian spectrum of zero divisor graphs Zn. Carpathian Math. Publ. 2021,

in print.
10. Shang, Y. Lower bounds for the Estrada index using mixing time and Laplacian spectrum. Rocky Mt. J. Math. 2013, 43, 2009–2016.

[CrossRef]
11. Young, M. Adjacency matrices of zero-divisor graphs of integer modulo n. Involve 2015, 8, 753–761. [CrossRef]
12. Anderson, D.F.; Weber, D. The zero-divisor graph of a commutative ring without identity. Int. Elect. J. Algebra 2018, 223, 176–202.

[CrossRef]
13. Pirzada, S.; Aijaz, M.; Imran, M. On zero-divisor graphs of the ring Zn. Afr. Math. 2020, 31, 727–737. [CrossRef]
14. Shang, Y. A note on the commutativity of prime near-rings. Algebra Colloq. 2015, 22, 361–366. [CrossRef]
15. Pirzada, S. An Introduction to Graph Theory; Orient BlackSwan: Hyderabad, India, 2012.
16. Koshy, T. Elementary Number Theory with Applications, 2nd ed.; Academic Press: Cambridge, MA, USA, 2007.
17. Spiroff, S.; Wickham, C. A zero-divisor graph determined by equivalence classes of zero-divisors. Common. Algebra 2011, 39,

2338–2348. [CrossRef]
18. Horn, R.; Johnson, C. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1985.
19. Cardoso, D.M.; Freitas, M.A.D.; Martins, E.N.; Robbiano, M. Spectra of graphs obtained by a generalization of the join of graph

operations. Discret. Math. 2013, 313, 733–741. [CrossRef]
20. Monsalve, J.; Rada, J. Oriented bipartite graphs with minimal trace norm. Linear Multilinear Algebra 2019, 67, 1121–1131. [CrossRef]
21. Nikiforov, V. The trace norm of r-partite graphs and matrices. C. R. Acad. Sci. Paris Ser. I 2015, 353, 471–475. [CrossRef]
22. Gutman, I.; Zhou, B. Laplacian energy of a graph. Linear Algebra Appl. 2006, 414, 29–37. [CrossRef]
23. Fritscher, E.; Hoppen, C.; Rocha, I.; Trevisan, V. On the sum of the Laplacian eigenvalues of a tree. Linear Algebra Appl. 2011, 435,

371–399. [CrossRef]

http://doi.org/10.1016/j.laa.2015.08.032
http://dx.doi.org/10.1016/0021-8693(88)90202-5
http://dx.doi.org/10.1006/jabr.1998.7840
http://dx.doi.org/10.1016/j.laa.2019.08.015
http://dx.doi.org/10.1080/03081087.2020.1838425
http://dx.doi.org/10.1216/RMJ-2013-43-6-2009
http://dx.doi.org/10.2140/involve.2015.8.753
http://dx.doi.org/10.24330/ieja.373663
http://dx.doi.org/10.1007/s13370-019-00755-3
http://dx.doi.org/10.1142/S1005386715000310
http://dx.doi.org/10.1080/00927872.2010.488675
http://dx.doi.org/10.1016/j.disc.2012.10.016
http://dx.doi.org/10.1080/03081087.2018.1448051
http://dx.doi.org/10.1016/j.crma.2015.03.013
http://dx.doi.org/10.1016/j.laa.2005.09.008
http://dx.doi.org/10.1016/j.laa.2011.01.036


Mathematics 2021, 9, 482 17 of 17

24. Das, K.C.; Mojallal, S.A. Open problems on σ-invariant. Taiwan. J. Math. 2019, 23, 1041–1059. [CrossRef]
25. Radenkovic, S.; Gutman, I. Total electron energy and Laplacian energy: How far the analog goes? J. Serb. Chem. Soc. 2007, 72,

1343–1350. [CrossRef]
26. Alhevaz, A.; Baghipur, M.; Das, K.C.; Shang, Y. Sharp bounds on (generalized) distance energy of graphs. Mathematics 2020,

8, 426. [CrossRef]
27. Ganie, H.A.; Pirzada, S.; Rather, B.A.; Trevisan, V. Further developments on Brouwer’s conjecture for the sum of Laplacian

eigenvalues of graphs. Linear Algebra Appl. 2020, 588, 1–18. [CrossRef]
28. Ganie, H.A.; Pirzada, S.; Rather, B.A.; Shaban, R. On Laplacian eigenvalues of graphs and Brouwer’s conjecture. J. Ramanujan

Math. Soc. 2021, 36, 1–9.
[CrossRef]

http://dx.doi.org/10.11650/tjm/181104
http://dx.doi.org/10.2298/JSC0712343R
http://dx.doi.org/10.3390/math8030426
http://dx.doi.org/10.1016/j.laa.2019.11.020
http://dx.doi.org/10.1016/j.laa.2016.03.034

	Introduction
	Structure of the Zero-Divisor Graph  (ZpN1qN2) 
	Laplacian Eigenvalues of the Zero-Divisor Graph  (Zn) 
	Conclusions and Comments
	References

