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Abstract: This paper addresses the problem of modeling credit risk for multi-product and global loan
portfolios. The authors presented an improved version of the Basel Committee’s one-factor model
for capital requirements calculation. They examined whether latent market factors corresponding to
distinct portfolios are always highly correlated within the global portfolio and how this correlation
impacts total losses distribution function. Historical losses of top-tier banks (JPMorgan Chace, Bank
of America, Citigroup, Wells Fargo, US Bancorp) were analyzed. Furthermore, the estimation of the
correlations between latent market factors was conducted, and its impact on the total loss distribution
function was assessed. The research was performed based on consolidated financial statements for
holding companies - FR Y-9C reports provided by the Federal Reserve Bank of Chicago. To verify the
improved model, the authors analyzed two distinct loan portfolios for each bank, i.e., credit cards
and commercial and industrial loans. They showed that the correlation between latent market factors
could be significantly lower than one and disregarding this conclusion may lead to overestimating
total unexpected losses. Hence, capital requirements calculated according to the IRB (Internal Ratings
Based Approach) formula as a sum of individual VaR999 estimates may be biased. According to
this finding, the enhanced one-factor model seems to be more accurate while calculating unexpected
total loss for global portfolios. The authors proved that the active credit risk management process
aiming to lower market factors’ correlation results in less volatile total losses. Therefore, financial
institutions could be more resistant to macroeconomic downturns.

Keywords: credit risk; probability of default; one-factor model; stress tests

1. Introduction

According to the New Basel Capital Accord [1], capital requirements are expected to be
calculated based on the one-factor model [2]. This methodology was implemented in more
than 150 countries worldwide and allowed to calculate credit risk capital requirements
using a statistical model. The purpose of this revolutionary approach was to provide more
adequate loss estimates and link them with capital requirements. Furthermore, banks were
encouraged to develop internal models reflecting their individual and unique risk profiles.
The critical element of the recommended IRB (Internal Ratings-Based Approach) method is
the probability of default (PD). The distribution function of portfolio losses depends on
correlations between defaults. The correlation refers to borrowers’ assets, which determine
the default event.

Under the one-factor approach, the asset correlation comes from the latent market
factors. Market factor (identical for all borrowers within the examined portfolio) impacts
each borrower’s asset values with the same strength. Furthermore, the asset value, and
finally default event, is also determined by the idiosyncratic factor. Therefore, the loss
distribution function is right-skewed. The higher the correlation, the more skewed the dis-
tribution function and the more probable the realizations of extreme losses. The rationale
for it is that correlated borrowers’ assets may lead to large portfolio losses under adverse
market conditions. Even though the expected value of losses stays constant, the higher sen-
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sitivity to market factors makes the loss distribution function much wider. For this reason,
the critical point of the one-factor approach is a reliable estimation of asset correlation.

The economic downturn that started in 2008 revealed that banks suffered higher
losses under severely adverse macroeconomic conditions than they previously expected.
Therefore, the Basel Committee has encouraged banks to develop stress test models and
estimate losses under adverse market scenarios. In the United States, this issue was
addressed in 2011 by introducing the Comprehensive Capital Analysis and Review (CCAR)
exercise. According to this exercise, the largest Bank Holding Companies (BHCs) were
obliged to assess whether they can withstand potential financial stress. The Federal Reserve
decided to implement new requirements towards banks with assets’ value exceeding
50 billion USD. A similar exercise was implemented in Europe by the European Banking
Authority (European Union (EU)-wide stress testing). However, there are some substantial
differences between US and EU approaches. First, there is a different number of adverse
scenarios (three US scenarios vs. two European scenarios). Also, the methodology defined
by FED (Federal Reserve) is more advanced and very precise, making it more standardized.
Nevertheless, the most critical difference results from the relation between the financial
regulator and the banks. FED is deemed as very demanding and strict, and therefore
passing the stress test exercise is more challenging for banks in the US.

The banks are expected to calculate losses under the most plausible scenario and the
severely adverse scenario.

This paper’s key challenge is to examine whether the one-factor model is accurate
enough to reflect macroeconomic conditions’ volatility, especially for multi-product and
multi-region loan portfolios. Currently, the one-factor approach is an industry-standard
for capital requirements calculation, IFRS9 (International Financial Reporting Standard)
implementation, and stress tests exercise. It is mainly due to the assets’ correlation factor
inclusion, which gave model developers more flexibility in actual loss analysis. Thus,
the assumptions regarding the market and idiosyncratic factors or asset correlation need
thorough analysis.

There are many credit risk model applications in the literature, with particular empha-
sis on asset correlation. Gordy and Heitfield [3] presented the asset correlation estimation
method under the multi-factor model approach. The authors leveraged Monte Carlo
simulations to examine the impact of the number of observations on estimation error.
S&P (Standard & Poor’s) and Moody’s data proved that the MLE (Maximum Likelihood
Estimator) method gives reliable coefficient estimates. They also pointed out that a small
number of defaults can significantly reduce model performance. Hamerle, Liebieg, and
Rosh [4] also leveraged the MLE approach for the one-factor model. They estimated asset
correlations for various business sectors and countries. They leveraged data sourced from
Boegelein [5] and considered such industries as construction, agriculture, manufacturing,
and services. The results revealed that the asset correlations are relatively low. Only in
Japan, Germany, and Great Brittan did the correlations exceed 1%.

Low asset correlation results were also confirmed by Hamerle, Liebieg, and Sceule [6].
According to their research conducted based on corporate loans, the asset correlations
appeared to be below 1%. The authors utilized more than 220 thousand observations
from various industries. For correlation estimation, they used the likelihood function
constructed based on individual observations (loan-level model). They also examined a
wide range of macroeconomic factors that may determine credit losses.

Calem and Follain [7] verified the default values of asset correlation provided by the
Basel Committee. They admitted that high values of asset correlations (e.g., 15%) might
be adequate for some loan portfolios. However, Calem and LaCour-Little [8] noticed that
asset correlations assigned to mortgage loans are most likely overestimated.

Also, Rosch and Scheule [9] addressed the one-factor model and credit risk estimation
issue. They considered market factors as model regressors. The authors concluded that
coefficient volatility might significantly impact loss projections. This finding was used for
their approach, where losses under severely adverse economic scenarios were projected.
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The ABA data (American Bankers Association, Washington, DC, USA) were used to calcu-
late asset correlations for several loan products, including car loans, cash loans, and credit
cards. For all examined portfolios, the maximum value of asset correlation appeared to
be below 3%. A similar approach was utilized by Siarka [10] for portfolio profitability
analysis. He used a wide range of variables, e.g., cost of funding, remuneration costs,
and expected credit loss. He showed that correlation volatility (i.e., the correlation between
macro-factors) impacts portfolio profitability volatility. According to the author, it may
explain loss spikes observed over time due to adverse economic conditions. Weigand [11]
in his study also focused on the profitability problem. He analyzed the 20 largest banks
in Japan, the US, and Europe from 2003 to 2015. He noticed that Japanese and European
banks suffer due to lower net interest margins compared to US banks.

The observed discrepancies between the actual and theoretical losses volatility were
examined by Lee, Lin, and Yang [12]. The authors noticed that under severely adverse
macroeconomic conditions, the asset correlation might change significantly. They also
pointed out that this may be a direct reason for credit losses’ uncontrolled increase under
economic downturns. On the other hand, they suggested that the asset correlation can
decrease during the economic boom. Owusu-Ansah [13] also referred to this problem.
According to his research based on 22 US states, macro-factors were responsible for almost
28% of the PD volatility.

The US mortgage market was examined by Rossi [14]. He addressed the credit
risk volatility problem of mortgage portfolios, which led to several financial institutions’
bankruptcy during the financial crisis in 2008. He concluded that many contemporary
credit risk statistical models are developed based on assumptions that cannot be met.
Another common problem is scarce data, which impacts model quality. He also pointed
out that consideration of additional market factors may contribute to model performance
improvement. Also, other portfolio breakdowns (e.g., geographical) should positively
impact forecast quality.

An in-depth comparison of asset correlation estimates was presented by Siarka [15].
The author focused on retail banking, which researchers hardly explore. He presented
his results (car loans portfolio) on the background of other research: Magalhaes [16],
Botha [17], Crook [18], Hansen [19], Rosh [20], and Duchemin [21]. According to his
research, asset correlations are not higher than 2.3%, i.e., much below the Basel Committee
expectations. Kuzucu [22] showed that the real GDP (Gross Domestic Product) growth
is the main determinant that affects the NPL (Non-Performing Loans) ratio. His analysis
revealed that exchange rate and foreign direct investments are statistically significant for
emerging countries. Vives [23] noticed that the banking sector stability depends not only
on capital regulations but also on other market conditions, including competition and
digital technologies.

The purpose of this paper is to examine whether the traditional approach based on the
one-factor model is adequate for the global US leading banks. The authors want to examine
whether a variety of business lines, such as car loans, cash loans, wholesale loans, etc.,
impact the overall loss distribution function. In other words, the authors want to verify the
dependencies between latent market factors referring to various portfolios. For this reason,
the one-factor model was enhanced by introducing another source of correlation. Finally,
the two-factor models were developed for all selected banks. It is expected that this step
will result in better model performance. The paper’s novelty comes from the incorporation
of market factor correlation estimates to better reflect loss distribution function, giving
more reliable loss forecasts.

The paper is organized as follows. The first section incorporates the introduction and
the review of other researchers’ studies and defines the paper’s purpose. The next section
incorporates a detailed description of the one-factor model, which the Basel Committee
recommends for capital requirements calculation. Another section presents a generalized
form of the model by introducing the second macro-factor. Next, the empirical results for
five US banks are presented. The paper ends with a discussion, summary, and conclusions.
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2. Methodology

The AIRB (Advanced Internal Rating-Based Approach) method is based on Merton’s
statistical model [2]. The Basel Committee recommends it for capital requirements calcu-
lations as an efficient method of protecting banks against bankruptcy. The model allows
estimating the distribution function of losses, where losses are defined as a fraction of de-
faulted loans in a portfolio. This approach’s idea is intuitive and based on the assumption
that the default event appears when the borrower assets’ value decreases below a specific
threshold limit. The value of i-th borrower assets is presented as follows:

Xi = Y·√ρ + Zi·
√

1− ρ (1)

where Y is a market factor that is identical for all borrowers over time. The rationale for
it is that all borrowers are being affected by the same economic environment, and this is
why they are sensitive to Y in the same way. Zi is an idiosyncratic factor representing
the borrower’s specific risk. Hence, it represents a unique borrower characteristic. Both
factors directly impact the value of borrower assets Xi. As it can be noticed, the impact
of these factors on the value of the assets depends on the coefficient ρ, which is called
asset correlation. It is also assumed that both variables Z and Y are independent and
normally distributed.

Asset correlation has an intuitive algebraic interpretation that can be visualized in
three-dimensional space. For this purpose, let us assume that vector Xi is a linear combina-
tion of vectors Zi and Y in line with Equation (1).

Figure 1 presents a graphical interpretation of asset correlation for a portfolio consist-
ing of two borrowers, X1 and X2. Z1 is an idiosyncratic risk of the first borrower orthogonal
to Z1, i.e., Z1 and X2 are independent, which is an underlying assumption. Market factor
Y is also independent of idiosyncratic risks Z1 and Z2. The market factor impacts asset
values as the asset value is a linear combination of idiosyncratic and market factors. The
asset value of the first borrower (X1) lies in the space spanned by vectors Z1 and Y. Asset
value of the second borrower is represented by vector Z1. It can be noticed that the angle
between these two vectors (borrower assets) depends on the coefficients used for a linear
combination of Z1 and Y. The higher the weight assigned to market factor Y, the narrower
the angle between asset values. It is a crucial finding, as the cosine of this angle is an asset
correlation. The left panel of Figure 1 presents a scenario where the value of borrower
assets strongly depends on the market factor. Therefore, a relatively small angle between
X1 and X2 is observed, i.e., correlation is high. The right panel of Figure 1 shows the
opposite situation, where the angle is relatively large, and the asset correlation is close to
zero, as cos(90) is equal to zero.
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According to the one-factor model, it is possible to calculate an asset’s threshold value
that triggers a default event. When the value of assets decreases below this limit, the
borrower is expected to default. The probability of default is denoted as PD. PD can also be
interpreted as an expected fraction of defaulted borrowers in the portfolio. Therefore, the
assets threshold limit can be calculated based on the loss distribution function. The thresh-
old limit is straightforward to calculate based on the inverse loss distribution function.
For the given expected percentage of defaulted borrowers, e.g., 3.0%, we can calculate
the corresponding assets’ value as they are normally distributed. Figure 2 presents this
problem in a graphical way, where the left tail of the distribution function determines the
threshold limit.
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As mentioned above, the default event arises when the value of assets decreases below
a threshold limit α. Assuming that the variable Li takes one when default appears and zero
in another case, we have:

Li =

{
1 when X < α
0 when X ≥ α

(2)

As the threshold limit can be calculated as α = N−1(PD), the default always ap-
pears when:

Zi <
N−1(PD) −√ρY√

1− ρ
(3)

Based on the above formula and the assumption regarding standard normal dis-
tribution of variable Zi, the conditional (conditional on market factor Y) probability of
default is:

P( Li = 1|Y) = N

(
N−1(PD) −√ρY√

1− ρ

)
(4)
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The conditional probability of the i-th default can be interpreted as a result of a
specific scenario, i.e., the market factor’s specific value. Based on a borrower’s conditional
probability of default, a portfolio losses distribution function can be derived. The fraction

of defaulted borrowers (portfolio loss) is defined as L = 1
n

n
∑

i=1
Li. It can be noticed that

variables Li are mutually independent for the given value of variable Y [24], and they are
identically distributed. Based on these findings [25], the cumulative distribution function
of losses can be presented as follows:

P(L ≤ x) = N

(√
1− ρN−1(x) − N−1(PD)

√
ρ

)
(5)

Its density function presents the following formula:

f (x) =

√√√√1− ρ

ρ
exp

(
[N−1(x)]2

2
−
[
N−1(PD)−

√
1− ρN−1(x)

]2
2ρ

)
(6)

Hence, the shape of a distribution function depends on two elements, i.e., PD and
ρ. Figure 3 presents the impact of an asset correlation ρ on the shape of the distribution
function. For illustration purposes, the calculations were performed for expected loss
equal to 2% and asset correlation ranging from 0% to 10%. It can be noticed that the
distribution function becomes wider as the correlation grows. At the same time, the mode
decreases while the expected value remains unchanged. Furthermore, the right tail of the
distribution function gets fatter. Therefore, high values of losses are more likely to arise.
The rationale for this is that the market factor becomes more critical once the correlation
grows. Hence, we observe a reduction of the risk diversification effects resulting from
independent idiosyncratic factors. Therefore, highly correlated borrowers may easily lead
to enormous losses.
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The assumption that there is only one significant market factor for the overall portfolio
seems to be a critical model limitation. This weakness is even more apparent when
considering a portfolio covering various geographical regions and/or distinct product
lines. It is intuitively clear that the losses of commercial and industrial loan portfolios
may be triggered by market factors that are different from the factors relating to credit
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card portfolios. Furthermore, a geographical breakdown may also improve loss forecasts.
The borrowers located in Asia may be sensitive to different macro-factors than the US
companies. Assuming that there is more than one market factor, it is essential to examine
the dependencies between them. Any correlation between these market factors will impact
the overall loss distribution function, i.e., total loss throughout all portfolios.

Providing that a bank has K portfolios, it can be assumed that there are K asset
correlations (one for each portfolio) and also K2

2 − K cross-portfolio correlations. Hence, the
general formula presenting the specificity of an individual bank can be shown as follows:

R =

 ρ1 · · · ρ1,K
...

. . .
...

ρK,1 · · · ρK

 (7)

Table 1 presents exemplary portfolio segmentation, which banks often use under
CCAR (Comprehensive Capital Analysis and Review) exercise. The breakdown is based on
Schedule HC-C, which is a part of the FR Y-9C report (FR Y-9C is a consolidated financial
statement. This report collects basic financial data from a domestic bank holding company
(BHC), a savings and loan holding company (SLHC), and a securities holding company
(SHC) on a consolidated basis in the form of a balance sheet. Data are published in the
Federal Reserve Bulletin and the Federal Reserve’s Uniform Bank Holding Company
Performance Report (BHCPR)). These reports are submitted quarterly to appropriate
Federal Reserve Banks and keep the same structures for all BHCs. Hence, it can be used for
comparative analysis across the industry.

Table 1. Asset correlation matrix—proposed segmentation.
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According to the presented approach, each product line has its specific asset corre-
lation. It may result from various sensitivity of asset values to market factors and/or
various composition of market factors. As was mentioned above, any market factor is
latent and may vary across various portfolios. However, these market factors may be highly
correlated (at least within the same geographical region). Nonetheless, the correlation
between market factors must impact the overall loss distribution function.

The asset value of the i-th borrower in the k-th portfolio where F market factors were
specified, can be presented as follows [26]:

Xi =
F

∑
f=1

A f ,k Yf + Zi·
√

1− ρk (8)

where correlation matrix R (see Table 1) is a product of matrix A consisting of elements A f ,k:

R = ATA (9)

The conditional probability of default of the i-th borrower for given market factors
can be presented by the following formula:

P( Li = 1|Y1 . . . YF) = N

(
N−1(PDk)−∑F

f=1 A f ,k Yf√
1− ρk

)
(10)

The above formula can be used to estimate the correlation matrix R. The number of
defaults in a specific portfolio (for given values of market factors) can be modeled based on
binomial distribution function as they are independent. Demey [26] proposed the following
likelihood function, which leads to correlation estimates:

g(R) = log
∫

. . .
∫ K

∏
k=1

(
Nk

dk

)(
N

(
N−1(PDk)−∑F

f=1 A f ,k Yf√
1− ρk

))dk(
1− N

(
N−1(PDk)−∑F

f=1 A f ,k Yf√
1− ρk

))Nk−dk

dN(Y) (11)

where dk is a number of observed defaults in the k-th portfolio, Nk is a number of borrowers
in the k-th portfolio, and PDk is an unconditional probability of default in the k-th portfolio.

Under the presented approach, the number of matrix R elements requiring estimation
is equal to K × (K + 1)/2. For a given segmentation (e.g., Table 1), there are 36 unknown
correlations. Such a large number of coefficients requires enormous observations to get
reliable estimates, and therefore it is a substantial model limitation. Therefore, a kind of
simplification is highly desirable, although some information regarding cross-portfolio
correlation volatility is lost. For simplicity, let us assume that various market factors are
equally correlated. Based on that assumption, all elements of matrix R are the same, except
diagonal elements:

R =

 ρ1 · · · ρ
...

. . .
...

ρ · · · ρK

 (12)

Under such a simplified approach, a substantial reduction in the number of unknown
elements is observed. The number of correlations is then equal to K + 1. All cross-portfolio
correlations are equal; however, there are still distinct asset correlations reflecting unique
risk profiles within specific portfolios.

Cespedes and Martin [27] presented an illustrative example with two latent mar-
ket factors. The authors considered two separate groups of borrowers (A and B), where
borrower assets were sensitive to distinct market factors, i.e., YA and YB, respectively.
Furthermore, market factors were assumed to be correlated. This particular situation
occurs in global portfolios where, e.g., borrowers from distinct groups (A and B) come from
various geographical regions. It is expected that specific latent market factors characterize
various locations. However, various economies may also interact with each other, i.e.,
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correlations between market factors can be positive or negative. Furthermore, the under-
lying correlation may also result from many other possible portfolio breakdowns, e.g.,
product/industry/rating, etc. For instance, defaults within commercial and industrial loan
portfolios are driven most likely by a market factor different from the market factor relevant
to the consumer loan portfolio. In this case, these factors are expected to be positively
correlated, especially under economic downturns. This particular assumption will be
examined later in this paper, where five leading US banks are examined.

The following formula presents the relation between two distinct market factors:

YB = ρFYA +
√

1− ρ2
Fζ (13)

ρF = corr(YA, YB) (14)

where ζ is N(0, 1) i.i.d. (independent and identically distributed).
Hence, the conditional probability of default (conditional on the market factor) can be

presented for portfolio A and B as follow:

PA( Li = 1|YA) = N

(
N−1(PDA) −

√
ρA YA√

1− ρA

)

and

PB( Li = 1|YB) = N

(
N−1(PDB) −

√
ρB YB√

1− ρB

)
The correlation between factors ρF must impact the overall losses distribution function,

i.e., total losses observed in both portfolios. In order to illustrate that impact, a Monte Carlo
simulation method was used. It was assumed that PDs were identical and equal to 3% in
both portfolios for simulation purposes. Asset correlations ρA and ρB were also assumed
to be equal (5%). Furthermore, the composition of the overall portfolio was assumed to be
50/50, i.e., the exposure values from portfolios A and B were assumed to be equal. Hence,
the only factor which was changing under the simulation was correlation ρF.

Under the simulation, two macro-factors (one for each portfolio) were randomly gen-
erated at various correlation ρF. Moreover, 10,000 independent idiosyncratic factors were
also generated for each portfolio according to Equation (1). Next, borrower asset values
were calculated, and default events were identified based on assumed PD (Equation (3)).
Subsequently, the underlying simulation was repeated 10,000 times at assumed market
factors’ correlation. Each time, overall losses were calculated, as well as losses observed for
individual portfolios. Various correlations ρF were considered to examine its impact on the
overall portfolio loss distribution function.

Under the Monte Carlo simulation, the following factor correlations were considered:
0%, 25%, 50%, 75%, and 100%. Figure 4 presents overall loss distribution functions derived
for three selected market factor correlations (0%, 50%, 100%). It can be noticed that lower
correlation makes the distribution function narrower. Hence, the unexpected loss (e.g.,
VaR999) gets higher when correlation rises. This finding is quite obvious, as a positive
correlation weakens the portfolio diversification effect.
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Figure 5 presents an alternative view of the simulation outcomes focusing on right
tails. As underlined above, a higher correlation results in higher losses corresponding to the
given quantile. Furthermore, the differences between losses are larger for higher quantiles.
This finding is significant, as high quantiles correspond to severe market scenarios and are
used for capital requirements calculation under the IRB approach. Therefore, market factors’
correlation is critical for capital requirements calculation and stress testing exercises.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 5. Total losses for various factors’ correlations. 

Table 2 presents overall losses calculated under Monte Carlo simulations. The market 
factors’ correlation ranges from 0% to 100%, with steps of 25%. Overall losses were calcu-
lated for the following quantiles: 0.8, 0.85, 0.9, 0.95, and 0.99. It can be noticed that overall 
loss corresponding to quantile 0.99 rises by around 0.5% once correlation increases by 
25%. Moreover, unexpected loss (VaR99) for correlation equal to 0% was estimated at 
6.6%, while for correlation equal to 100%, the loss increased up to 8.4%. 

Table 2. Total loss results corresponding to various quantiles and factor correlation. 

 
Quantile 

0.80 0.85 0.90 0.95 0.99 

fa
ct

or
 

co
rr

el
at

io
n 

100% 4.2% 4.6% 5.2% 6.2% 8.4% 
75% 4.1% 4.5% 5.0% 5.9% 8.0% 
50% 4.0% 4.4% 4.9% 5.7% 7.5% 
25% 4.0% 4.3% 4.7% 5.4% 7.0% 
0% 3.9% 4.2% 4.6% 5.2% 6.6% 

The simulation results clearly show that market factor correlation may significantly 
impact the overall loss distribution function. This effect is especially evident for high 
quantiles. 

3. Results 
One of this paper’s critical purposes was to examine whether unexpected losses cal-

culated for distinct portfolios are highly correlated and can be summed up to give the 
bank’s overall potential loss. Nowadays, bankers widely use this additive method. This 
approach’s rationale is that latent market factors are assumed to be equal for various port-
folios even though they are not directly observed. So, under the IRB method, the correla-
tion between latent market factors is assumed to be equal to one (i.e., perfect correlation). 

This section presents the results of the analysis conducted for five leading US banks. 
The credit losses were calculated based on data sourced from the FR Y-9C reports (The 
data were downloaded from the web page: (https://www.chicagofed.org/webpages/bank-
ing/financial_institution_reports/bhc_data.cfm accessed on 10 February 2021)). These re-
ports are published quarterly and publicly disclosed for the United States Bank Holding 
Companies (BHCs). It incorporates almost two thousand database fields for each bank, 
including charge-offs, recoveries, outstanding values, and various product breakdowns. 

Figure 5. Total losses for various factors’ correlations.

Table 2 presents overall losses calculated under Monte Carlo simulations. The market
factors’ correlation ranges from 0% to 100%, with steps of 25%. Overall losses were
calculated for the following quantiles: 0.8, 0.85, 0.9, 0.95, and 0.99. It can be noticed that
overall loss corresponding to quantile 0.99 rises by around 0.5% once correlation increases
by 25%. Moreover, unexpected loss (VaR99) for correlation equal to 0% was estimated at
6.6%, while for correlation equal to 100%, the loss increased up to 8.4%.
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Table 2. Total loss results corresponding to various quantiles and factor correlation.

Quantile

0.80 0.85 0.90 0.95 0.99

factor
correlation

100% 4.2% 4.6% 5.2% 6.2% 8.4%
75% 4.1% 4.5% 5.0% 5.9% 8.0%
50% 4.0% 4.4% 4.9% 5.7% 7.5%
25% 4.0% 4.3% 4.7% 5.4% 7.0%
0% 3.9% 4.2% 4.6% 5.2% 6.6%

The simulation results clearly show that market factor correlation may significantly im-
pact the overall loss distribution function. This effect is especially evident for high quantiles.

3. Results

One of this paper’s critical purposes was to examine whether unexpected losses cal-
culated for distinct portfolios are highly correlated and can be summed up to give the
bank’s overall potential loss. Nowadays, bankers widely use this additive method. This
approach’s rationale is that latent market factors are assumed to be equal for various portfo-
lios even though they are not directly observed. So, under the IRB method, the correlation
between latent market factors is assumed to be equal to one (i.e., perfect correlation).

This section presents the results of the analysis conducted for five leading US banks.
The credit losses were calculated based on data sourced from the FR Y-9C reports (The data
were downloaded from the web page: (https://www.chicagofed.org/webpages/banking/
financial_institution_reports/bhc_data.cfm (accessed on 10 February 2021)). These reports
are published quarterly and publicly disclosed for the United States Bank Holding Compa-
nies (BHCs). It incorporates almost two thousand database fields for each bank, including
charge-offs, recoveries, outstanding values, and various product breakdowns. Currently,
all BHCs with total consolidated assets above 50 billion USD are obliged to submit data
every quarter. The data has been collected since 1986, and during the last 30 years, the
scope has been changed multiple times, becoming more and more granular.

The FR Y-9C reports contain aggregated data, i.e., loan-level data is not available.
Charge-offs and outstanding values were used for charge-off rate time series creation. The
charge-off balance is the value of loans removed from the books and charged against loss
reserves. Quarterly charge-off rates were calculated as a ratio of charge-offs and average
portfolio outstanding for a given quarter. Hence, the charge-off rate is a risk measure
similar in its nature to the default rate. However, it needs to be underlined that not every
default event is automatically treated as a charge-off. Ultimately, both rates are strongly
correlated and reflect the actual risk of the portfolio. For this reason, the conclusions
coming from this study are valid for both risk measures.

The data regarding average quarter outstanding were sourced from Schedule HI-C—
Loans and Lease Financing Receivables. The data for gross charge-offs were obtained
from Schedule HI-B—Charge-Offs and Recoveries on Loans and Leases and Changes in
Allowance for Loan and Lease Losses. Table 3 presents items’ codes from Schedule HI-C,
and HI-B.

https://www.chicagofed.org/webpages/banking/financial_institution_reports/bhc_data.cfm
https://www.chicagofed.org/webpages/banking/financial_institution_reports/bhc_data.cfm


Mathematics 2021, 9, 562 12 of 19

Table 3. The Items codes (FR Y-9C report).

FR Y-9C Group FR Y-9C Subgroup HI-C—Loans and Lease
Financing Receivables

HI-B—Charge-Offs and
Recoveries on Loans and
Leases and Changes in
Allowance for Loan and
Lease Losses.

5. Loans to Indivituals for
household, family, and other
personal expenditures

Credit cards BHCKB538 BHCKB514

4. Commercial and industrial loans
To U.S. addressees BHCK1763 BHCK4646

To non-U.S. addressees BHCK1764 BHCK4645

For the analysis, there were two types of portfolios considered, i.e., (I) credit cards and
(II) commercial and industrial loans. The data were downloaded for five leading US banks,
including JPMorgan Chase and Co., Bank of America Corporation, Citigroup, Wells Fargo
and Company, and US Bancorp. These banks were selected due to their global span and
the scale of activity measured by their assets’ value. Finally, an enhanced approach with
market factors’ correlation was applied.

Figure 6 presents the time series of charge-off rates extracted for each bank and
selected portfolios. In the sixth chart, the aggregated values for all banks are shown.
It symbolizes the situation where all banks were merged (or one bank acquired other
portfolios). The data used for the analysis covers the period from the first quarter in
2001 up to the second quarter in 2017, which gave 66 observations. Hence, the period
of the economic downturn in 2008/2009 was included. During this turbulent period,
a significant deterioration of macroeconomic factors was observed, causing significant
losses to all BHCs.
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Figure 6. Charge-off rate time series.

The average charge-off rate for credit card portfolios across all banks was equal to
1.62%, with a standard deviation equal to 0.14%. The average rate for commercial and
industrial loans was much lower, i.e., 0.33%, with a standard deviation of 0.04%. The visual
analysis of Figure 6 reveals similarities between charge-off rates derived for various banks.

Figure 7 presents charge-off rate actual distribution functions calculated for each
portfolio (credit cards and commercial and industrial loans). The results prove that the
average percentage loss of commercial and industrial loans is much lower than the average
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loss of credit card portfolios. It can also be noticed that all actual distribution functions are
right-skewed, which is in line with the one-factor approach where the right tail is ‘extended’
by the correlation. Furthermore, expected values are higher than the modes, which is also
a result of positive asset correlation [15].
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Figure 7. Charge-off rates’ density functions.

Next, a Monte Carlo simulation method was used for the one-factor model and the
model with macro-factors correlation. Under the exercise, two portfolios for each bank
were simulated. The simulation was performed at the borrower level, where idiosyncratic
and market factors were randomly generated. Asset correlation was then estimated by
finding the minimum value of Kolmogorov–Smirnov statistics calculated for actual and
theoretical distribution functions. In other words, the best fit between theoretical and actual
cumulative distribution functions indicated asset correlation.

The simulation procedure consisted of the following steps:

1. The random generation of portfolios for each bank (Credit Cards, Commercial and
Industrial)

a. Each simulated portfolio includes 10,000 borrowers

� Randomly generated idiosyncratic factors for each borrower,
� Randomly generated market factor for each portfolio (CC, C&I),
� Asset value calculations for each borrower,
� Default events identification at the borrower level due to its specific

asset value.

b. The procedure (1.a) repeated 1000 times

� Asset correlation was assumed to be identical for all borrowers within
a given portfolio (one-factor model approach).

2. The asset correlation estimation using Kolmogorov–Smirnov (KS) statistics (mini-
mum KS)

a. The actual charge-off rate cumulative distribution function was calculated (for
each bank and each portfolio),

b. Asset correlations were derived under the iterative process, where the maxi-
mum difference between actual and simulated cumulative distribution func-
tions reached its minimum.
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3. Market factors’ correlations calculation

a. Nominal losses (charge-off rate * actual outstanding) for each simulated portfolio
were calculated,

b. Based on the results (3.a.), total losses were calculated (CC + C&I) for each bank,
c. Actual distribution functions of total losses for each bank were calculated,
d. Market factor correlations were calculated using KS statistics for losses

� Cumulative distribution function from points 3.b. and 3.c. were used,
� Asset correlations from point 2 were utilized.

Figure 8 presents all critical steps under the simulation procedure.
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The Monte Carlo simulations were performed for a given (historical) charge-off rate
and a total outstanding observed at the second quarter of 2017. Charge-off rates were
derived as a ratio of charge-offs and the total value of the assets. The parameters regarding
portfolio expected risk and its compositions (CC/C&I) are presented in Table 4.

Table 4. Parameter used under Monte Carlo simulation.

Portfolio JPMorgan Chase & Co. Bank of America
Corporation Citigroup Wells Fargo &

Company U.S. Bancorp. Total (All Five
Banks)

CoR comp. CoR comp. CoR comp. CoR comp. CoR comp. CoR comp.

Credit cards 1.40% 44.0% 1.50% 25.8% 1.58% 47.0% 1.46% 15.8% 1.22% 22.5% 1.48% 33.3%

Commercial and
industrial 0.31% 56.0% 0.28% 74.2% 0.32% 53.0% 0.25% 84.2% 0.24% 77.5% 0.28% 66.7%

Table 5 presents correlation estimates derived based on Monte Carlo simulation. The
first row includes asset correlations relevant to credit card portfolios (ρCC). These correla-
tions appeared to be lower than asset correlations calculated for commercial and industrial
loans (ρC&I). These results are in line with Basel Committee guidances, where companies
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are expected to be more vulnerable to macroeconomic changes than private persons. The
average asset correlation for credit cards was equal to 1.44%, with relatively small disper-
sion. The estimate for Bancorp was found to be relatively low (0.85%), suggesting that
quarterly losses are not substantially sensitive to market conditions. For commercial and
industrial loan portfolios, the impact of a market factor on borrower assets’ value appeared
to be much larger as the average value was equal to 5.05%. However, estimates appeared
to be quite diverse, ranging from 2.38% (Wells Fargo) to 7.31% (Bank of America).

Table 5. Asset correlation estimates.

JPMorgan
Chase & Co.

Bank of America
Corporation Citigroup Wells Fargo &

Company U.S. Bancorp. Total (All Five
Banks)

ρCC 2.58% 0.93% 1.82% 1.03% 0.85% 0.95%
ρC&I 4.96% 7.31% 5.94% 2.38% 4.66% 5.45%
ρCC,C&I 79.07% 79.56% 76.87% 98.09% 57.52% 74.07%

The last row of Table 5 presents estimates of the correlation between latent market
factors relevant for specified portfolios. The results are not consistent and suggest that each
bank has its own product specificity. The Wells Fargo outcome shows very high correlations,
reaching 98%. So, the market factors for credit cards and C&I portfolios behave nearly
identically over time. When the correlation is equal to 100%, the total unexpected loss can
be calculated in an additive way, i.e., as a sum of VaRs estimated independently for each
portfolio. Hence, no diversification benefits are expected due to a lack of uncorrelated
latent market factors.

The Bank of America, Citigroup, and JP Morgan Chase analysis shows significantly
different results, where market factors appeared to be relatively low correlated. In all these
cases, total losses’ distribution functions are narrower than theoretical distribution func-
tions, where correlations were arbitrarily set to 100% (traditional IRB approach). In other
words, VaR calculated for total losses (C&I and credit cards) is expected to be below the
sum of VaRs calculated for each portfolio independently. A substantially lower outcome
was achieved for US Bancorp, where market factors appeared to be correlated at the level
of 57.52%.

The last column in Table 5 presents the outcomes for two hypothetical portfolios
comprising all credit cards and C&I loans. This exercise represents a situation where all
selected banks are merged. This kind of analysis is especially interesting from the market
regulator’s point of view or from an investor’s perspective, where portfolio acquisitions
are considered to support active risk management. It is evident that Wells Fargo may
benefit from external portfolio acquisition, providing that market factors’ correlation goes
down. Therefore, the best portfolio candidate for acquisition belongs to US Bancorp, where
ρCC,C&I is only 57.52%. This way, the enhanced one-factor model could be leveraged.
The total losses volatility could be actively reduced, making the bank more resistant to
economic downturns.

Figure 9 presents distribution functions (empirical vs. theoretical) of total nominal
losses derived using the correlation between market factors. The dotted lines represent
theoretical distribution functions, while the solid lines represent the actual distribution
functions. The actual distribution functions were calculated based on historical charge-
off rates applied for the most recent outstanding values (2017Q2). This way, nominal
losses were calculated in line with the CCAR methodology. All six examples show that
distribution functions (actual and simulated) are close to each other, ensuring high model
performance. Later on, the results were verified with Kolmogorov–Smirnov test.
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Figure 9. Distribution functions of overall losses.

Figure 10 presents unexpected loss estimates (defined as VaR99) for various banks.
The left panel shows the “additive approach” (column 5 in Table 6), assuming that the
correlation is equal to one. Under this method, total unexpected loss is calculated as a sum
of VaRs corresponding to specific portfolios. The right side of Figure 10 shows the results
achieved for the enhanced approach, i.e., including actual market factors’ correlation.
A direct comparison of the final results is presented in Figure 11.
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Table 6. Nominal unexpected losses—simulation results.

VaR99

Entity Credit Cards C&I Credit Cards + C&I VaR99 CC + VaR99 C&I

JPMorgan Chase & Co. 4,255,286 1,675,623 5,779,105 5,930,909
Bank of America Corporation 2,723,280 3,101,383 5,409,323 5,824,663
Citigroup 5,381,442 2,002,242 6,813,800 7,383,685
Wells Fargo & Company 1,023,845 1,201,312 2,124,130 2,225,157
U.S. Bancorp 521,525 582,588 982,318 1,104,113
Total (all five banks) 12,333,526 8,614,701 20,008,129 20,948,227
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Table 7 presents Kolmogorov–Smirnov test results for simulated and actual cumulative
loss distribution functions.

Table 7. Kolmogorov–Smirnov test results.

Entity p-Value

JPMorgan Chase & Co. 0.43
Bank of America Corporation 0.08
Citigroup 0.14
Wells Fargo & Company 0.48
U.S. Bancorp 0.15
Total (all five banks) 0.44

As mentioned in the first part of this paper, the total unexpected loss also depends on
market factors’ correlation. The lower the correlation, the larger the ‘diversification effect’
and the lower the capital requirements. However, the composition of the portfolio (credit
cards outstanding vs. C&I outstanding) may efficiently disrupt expected benefits. A high
imbalance may reduce the ‘diversification effect’ even though the correlation is low.

As shown in Figure 11, the bank with the highest market factors’ correlation (Wells
Fargo) did not benefit due to the enhanced model. The traditional approach, where
individual VaRs are summed for total losses estimation, gave nearly the same result as
the enhanced one-factor model. However, Bank of America or Citigroup’s results show
that the traditional approach may overestimate losses by around 8%. Furthermore, the
merged banks’ results show a significant reduction of unexpected losses (21 million vs.
20 million USD).

4. Discussion and Conclusions

Adequately calculated capital requirements provide stability and safety of the financial
industry. The economic downturn in 2008/2009 showed that not all financial institutions
were ready to withstand severe macroeconomic conditions. For this reason, the Federal
Reserve decided to implement a stress test exercise, where banks are periodically examined.
According to the Board of Governors of the Federal Reserve System report [28], the losses
under the severely adverse scenario are expected to be equal to 490 billion USD. Projected
net revenue before provisions for loan and lease losses (PPNR) is expected to be around
310 billion USD. The aggregated tier 1 capital ratio could fall from 11.9% to 8.4%.

This paper focused on the enhanced one-factor model, showing that correlations
between market factors could be calculated and used for active credit risk management.
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The proposed approach is adequate for total loss calculation, especially for global and
multi-portfolio assets. As the FED’s data is publicly disclosed, banks and financial market
regulators can easily implement the presented approach. Furthermore, the approach can
be leveraged as a challenger model for bottom-up methods and constitute a benchmark
solution. It needs to be underlined that latent market factors could be correlated differently
in various banks/portfolios. Therefore, total loss distribution functions may vary depend-
ing on portfolio composition. Ignoring the market factors’ correlation makes sense only
when it is equal to or close to one. Only then is VaRs summation methodologically justified.
In other cases, the total unexpected loss may be significantly overestimated.

This research proved that the correlation between market factors relating to credit
cards and commercial and industrial loan portfolios may vary across different banks.
In Bank of America Corporation, JP Morgan, and Citigroup, correlations were found to
be relatively low. For this reason, the total loss distribution functions are expected to be
relatively narrow. The market factors’ correlations at the level close to one (e.g., Wells
Fargo—98%) revealed no unexpected loss overestimation effect while using the traditional
additive approach for VaRs. This research also proved that the asset correlation estimated
for commercial and industrial loans is much higher than the asset correlation for credit
cards. This finding is in line with other papers [15], showing (Table 5) that correlations for
C&I portfolios can reach 6.0%, while credit cards oscillate around 1.5%.

The presented approach has several limitations resulting from the underlying model.
Although the one-factor model seems to be quite adequate for credit risk modeling, there
are still problems with the key assumptions. First, the latent macro-factor is not directly
observed, and therefore its identification is a challenge. Its impact on the asset value is
also difficult to interpret. While in corporate banking, ‘asset value’ has a clear theoretical
interpretation, it is not easy to understand in retail banking. Definitely, in retail banking,
the default causes are more complex than just a change in a borrower’s asset value. Further-
more, the one-factor model may not grasp the extreme losses observed under the economic
downturns. There are still no robust theories explaining crisis causes, where macro-factors
not only change, but their correlations seem to rise dramatically.

This paper’s purpose was to show that the portfolio risk management process should
consider correlations between latent market factors. Higher correlation leads to higher
unexpected loss due to the increase of loss volatility. This paper proved that the traditional
approach to capital requirements calculation, where the portfolio’s VaRs are summed up,
is quite conservative. Furthermore, the comparison of any two global banks without a
deep market factors’ correlation analysis will always be biased. The bank with higher
market factors’ correlation will be more risky, even though specific portfolios show equal
unexpected losses.

Currently, banks are not awarded or penalized for market factors’ correlation manage-
ment. So, there is no direct incentive from the capital planning point of view. This research
aimed to address this issue and show that the IRB approach has some limitations for global
financial institutions. As more and more financial institutions operate globally, future
research needs to cover the multi-region portfolio challenge. There must be region-specific
macro-factors considered for credit risk assessment. Therefore, the market practice focusing
on US macro-variables needs to be improved. Furthermore, stress-test models also need
revisions. The lagged variables included in the most popular in the banking industry
ARMAX models (AutoRegressive Moving Average with eXogenous input) make it highly
inertial. So, the models tend to respond to macro-changes with some delay, which is not
the case under the economic downturn.
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