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Abstract: In this paper, we have investigated the global dynamics of a discrete-time middle east
respiratory syndrome (MERS-Cov) model. The proposed discrete model was analyzed and the
threshold conditions for the global attractivity of the disease-free equilibrium (DFE) and the en-
demic equilibrium are established. We proved that the DFE is globally asymptotically stable when
R0 ≤ 1. Whenever R̃0 > 1, the proposed model has a unique endemic equilibrium that is globally
asymptotically stable. The theoretical results are illustrated by a numerical simulation.

Keywords: discrete-time model; coronaviruses; MERS; backward difference; equilibria; global stability

1. Introduction

Mankind has been suffering from several epidemic diseases during every age of
human being history. In the past century, many disease outbreaks have occurred, such
as influenza, malaria, dengue fever, SARS, H1N1, H7N1, pestilence, AIDS, MERS and
Covid-19. Recently, most of the viruses that affect the mankind life are the coronaviruses,
which are a single standard RNA virus that were firstly reported in 1960s [1].

Severe acute respiratory syndrome (SARS) is an airborne virus which was firstly found
in Foshan, China on 16 November 2002 [2]. The spread of the SARS virus was through
small droplets of saliva, similar to influenza with an incubation period of 2–7 days. The
SARS virus transmission was from bats to humans. The number of reported cases was
8098 and the number of death cases was 774 [3]. The middle east respiratory syndrome
(MERS) is a viral respiratory disease caused by novel coronavirus MERS-Cov, that was
first reported in Saudi Arabia in 2012 [4]. The infection of MERS may occur through both
animals, such as camels and bats, and humans by a direct or indirect contact [5]. The
incubation period of MERS is 2 to 14 days [6]. Since 2012, the reported infected cases
of MERS are 2494 with a death rate of 34% [7]. In early December 2019, the first case of
Covid-19 was reported in Wuhan, China [8]. The symptoms of Covid-19 are similar to the
other coronaviruses SARS and MERS, such as colds and high temperature, which lead to
pneumonia and hence respiratory system failure and death [9].

A vast number of mathematical models have been proposed to understand the dynam-
ics of the coronaviruses. The SIS, SIR and SEIR models are studied by many researchers to
investigate the dynamics of the coronaviruses [10–14,14–21]. The model we have proposed
in this paper is investigating the dynamics of the middle east respiratory syndrome coro-
navirus. We have studied the asymptomatic, symptomatic and hospitalized individuals’
effects on the spread of the virus.

Yong and Owen [22] have discussed the dynamical transmission model of MERS-Cov
in two areas. They proved that the model has two equilibrium points, a disease-free
equilibrium point and an endemic equilibrium point. Moreover, the disease dies out
whenever the basic reproductive number is less than unity. Usaini et al. [17] proposed
a new deterministic mathematical model for the transmission dynamics of MERS-Cov.
They found that there is a unique endemic equilibrium point and there is no infection
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free equilibrium point due to the constant influx of latent immigrants. Lee et al. [16]
have designed a dynamic transmission model to analyze the MERS-Cov outbreak in the
Republic of Korea. This model incorporates the time-dependent parameters and the pulse
of infections. Moreover, they estimated the basic reproductive number,Re, and showed
that it is decreased which indicates that the MERS-Cov outbreak in the Republic of Korea
had a low transmissibility.

Scientists have studied several types of dynamical epidemic models such as continuous-
time type models that are described by differential equations and discrete-time type models
that are described by difference equations. Currently, the scientists have paid more attention
to the investigation of bigdata, which have made the discrete-time type epidemic models
more interesting. In addition, discrete-time models have more dynamical behaviors [23].

Numerous studies have been done to explore the discrete-time epidemic models.
L. Wang et al. [23] have studied a class of discrete SIRS epidemic models with disease
courses. The authors have computed the basic reproduction numberR0. In addition, they
have proved that the disease-free equilibrium is globally attractive whenR0 < 1 and the
disease is permanent wheneverR0 > 1. Y. Wang et al. [24] have introduced Lyapunov func-
tions for a class of discrete SIRS epidemic models with nonlinear incidence rate and varying
population size. The authors have established the sufficient and necessary conditions on
the global asymptotic stability of the disease-free equilibrium and endemic equilibrium
with general nonlinear incidence rate β S g(I) and different death rates. X. Fan et al. [25]
have investigated a class of SEIRS epidemic models with a general nonlinear incidence
function. In addition, they considered a discrete SEIRS model with standard incidence
function. Moreover, the authors have shown that the model has a disease-free equilibrium,
is globally attractive when the basic reproduction number R0 ≤ 1 and the disease is
permanent wheneverR0 > 1. Batarfi et al. [18] have proposed a nonlinear mathematical
model for MERS-Cov with two discrete-time delays. They computed the reproduction
number, R0, and proved that there exists a disease-free equilibrium point when R0 ≤ 1
and there is an endemic equilibrium point whenever R0 > 1. M. Khan et al. [26] have
investigated a discrete-time TB model which is parameterized by the cases in the Pak-
istani of Khyber Pakhtunkhwa between 2002 and 2017. The authors have computed the
reproduction number R0 which showed that the discrete-time TB model is stable at the
disease-free equilibrium point when R0 < 1 and the model is globally asymptotically
stable for the endemic equilibrium point wheneverR0 > 1. Moreover, the authors have
compared the discrete-time model with the continuous-time model. M. Safi et al. [27] have
considered a discrete-time mathematical model that is obtained from the continuous-time
model in [28]. The authors investigated the stability of the model and they proved that the
model is globally asymptotically stable whenR0 < 1.

This paper is organized as follows: A discrete MERS-Cov epidemic model is con-
sidered in Section 2. In Section 3, we present the fundamental properties of the discrete
model. The stability analysis of the disease-free equilibrium is carried out in Section 4. The
existence and stability analysis of endemic equilibrium point is conducted in Section 5. In
Section 6, numerical simulations are provided to illustrate the obtained results and the
results are concluded.

2. Model Formulation

The backward difference scheme is applied to propose the following discrete epidemic
MERS-Cov coronavirus model. This model is called SEAIHR model. The population N(n)
is divided into the following compartments: S(n) is the susceptible individuals, E(n) is
the exposed individuals, A(n) is the asymptomatic individuals, I(n) is the symptomatic
individuals, H(n) is the hospitalized individuals and R(n) is the recovered individuals.
Hence, N(n) = S(n) + E(n) + A(n) + I(n) + H(n) + R(n). Susceptible people (S) is
increased by the recruitment of individuals into the population, at a rate of Π. This class
is decreased by infection (with the rate of λ). Furthermore, this population is decreased
by natural death (at a rate of µ; populations in all classes are assumed to have the same
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natural death rate). Exposed individuals (E) are generated with the rate of λ and reduced
by progression to the asymptomatic individuals (A) at rate of σ and to the symptomatic
individuals (I) at rate of (r). The class of asymptomatic individuals (A) increased to the
exposed individuals at a rate of σ and it is reduced by progression to the exposed at rate of
(r) and to the recovered individuals (R) at rate of γ1. The symptomatic class (I) is increased
by the exposed people at a rate of (rσ) and decreased to the hospitalized individuals
(isolation) (H) at rate of φ, to the recovered people at rate of γ2 and disease-induced death
(at a rate δ1). The hospitalized (isolated) class is increased by the symptomatic individuals
(I) at rate of φ and decreased to recovery at rate of γ3 and disease-induced death (at a
rate δ2). Figure 1 illustrates the model (1) by a schematic diagram. Therefore, the SEAIHR
model is governed by the following difference equations:

S(n + 1)− S(n) = Π− λ(n + 1) S(n + 1)− µ S(n + 1),
E(n + 1)− E(n) = λ(n + 1) S(n + 1)− k1 E(n + 1),
A(n + 1)− A(n) = (1− r) σ E(n + 1)− k2 A(n + 1),
I(n + 1)− I(n) = r σ E(n + 1)− k3 I(n + 1),
H(n + 1)− H(n) = φ I(n + 1)− k4 H(n + 1),
R(n + 1)− R(n) = γ1 A(n + 1) + γ2 I(n + 1) + γ3 H(n + 1)− µ R(n + 1),

(1)

where λ(n + 1) =
β [A(n + 1) + η1 I(n + 1) + η2 H(n + 1)]

N(n + 1)
, k1 = σ + µ, k2 = µ + γ1,

k3 = µ + φ + δ1 + γ2, k4 = µ + δ2 + γ3, Π is the recruitment rate of susceptible peo-
ple corresponding to births and immigration, µ is the natural death rate, β is the contact

rate,
1
σ

is the mean time of incubation period,
1
φ

is the mean time from data of symptoms

onset to data of hospitalization, r is the clinical outbreak rate in all the infected cases,
1

γ1
is

the mean infections period of asymptomatic infected person for survivors,
1

γ2
is the mean

duration of infected person for survivors,
1

γ3
is the mean duration for hospitalized cases

for survivors and δi (i = 1, 2) is the disease-induced death rate of infectious. Subject to the
following initial conditions:

S(0) > 0, E(0) > 0, A(0) > 0, I(0) > 0, H(0) > 0, R(0) > 0. (2)

It is worthy to mention that such models are potentially analytically solvable by
using the Lie algebra method through matrix exponentials [29]. Based on the Kolmogorov
equation and the Wei–Norman method, the analytical solution for the proposed model can
be obtained in terms of matrix exponentials (for more details about Lie algebra method,
see [30,31]).
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Figure 1. Model (1) schematic diagram.

3. Fundamental Properties

Lemma 1. The model (1) with initial conditions (2) has a unique positive solution
(S(n), E(n), A(n), I(n), H(n), R(n)), ∀n = 1, 2, 3, · · ·

To prove Lemma 1, we will apply the mathematical induction as follows:

Proof. Rewrite the model (1) as follows:

A(n + 1) = a1 E(n + 1) + b1

I(n + 1) = a2 E(n + 1) + b2

H(n + 1) = a3 E(n + 1) + b3

R(n + 1) = a4 E(n + 1) + b4

S(n + 1) = a5 E(n + 1) + b5

(3)

where

a1 =
(1− r) σ

1 + k2
, b1 =

A(n)
1 + k2

a2 =
r σ

(1 + k3)
, b2 =

I(n)
(1 + k3)

a3 =
r φσ

(1 + k3)(1 + k4)
, b3 =

φ I(n)
(1 + k3)(1 + k4)

+
H(n)
1 + k4

a4 =
γ a1 + γ2 a2 + γ3 a3

1 + µ
, b4 =

γ1 b1 + γ2 b2 + γ3 b3 + R(n)
1 + µ

a5 = −1 + k1

1 + µ
, b5 =

Π + S(n) + E(n)
1 + µ

Substituting the expression (3) in the second equation of model (1) yields
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E(n + 1) =
E(n)

1 + k1
+

β[a5 E(n + 1) + b5][(a1 + η1 a2 + η2 a3) E(n + 1) + b1 + η1 b2 + η2 b3]

(1 + k1)[(1 + ∑5
i=1 ai) E(n + 1) + ∑5

i=1 bi]
(4)

Let u = E(n + 1). Hence, we define

f (u) = u− E(n)
1 + k1

− β[a5 u + b5][(a1 + η1 a2 + η2 a3) u + b1 + η1 b2 + η2 b3]

(1 + k1)[(1 + ∑5
i=1 ai) u + ∑5

i=1 bi]
= 0 (5)

Let A = 1 + ∑5
i=1 ai, B = ∑5

i=1 bi, C = β a5(a1 + η1a2 + η2a3), D = β a5(b1 + η1b2 +
η2b3), E = b5(a1 + η1a2 + η2a3) and F = b5(b1 + η1b2 + η2b3). Then, Equation (5) can be
written as follows:

f (u) =
(A(1 + k1)C)u2 − (AE(n) + D + E)u− (BE(n) + F)

(1 + k1)(Au + B)

Which is simplified to

f (u) = Γ1u + Γ2 −
Γ3

u

where Γ1 = 1− C
A(1+k1)

, Γ2 =
BC− AB(1 + k1)− A2E(n)− A(D + E)

A2(1 + k1)

and Γ3 =
A2F− AB2(1 + k1) + B2C− AB(D + E)

A2 . Since Γ1 > 0, see Figure 2, then

limu→∞ f (u) > 0. Moreover, f ′(u) = Γ1 +
Γ3

u2 and hence, f ′(u) > 0, then f (u) is an

increasing function and f (0) = − β b5 (b1 + η1 b2 + η2 b3)

(1 + k1)∑5
i=1 bi

− E(n)
1 + k1

< 0, then f (u) = 0 has

a unique positive solution and therefore, Equation (4) has a unique solution E(n + 1) >
0 which implies that a unique A(n + 1), I(n + 1), H(n + 1) and R(n + 1) exist with
A(n + 1) > 0, I(n + 1) > 0, H(n + 1) > 0 and R(n + 1) > 0.

0 0.05 0.1 0.15 0.2

0.985

0.99

0.995

1

1

Figure 2. The plot of the the cofactor Γ1 as a function of β.

Let w = S(n + 1). Thus, from the first equation in model (1), we define

g(w) = (1 + µ)w +
β[(a1 + η1 a2 + η2 a3) E(n + 1) + b1 + η1 b2 + η2 b3]w

w + M
− S(n)−Π

where M = E(n + 1) + A(n + 1) + I(n + 1) + H(n + 1) + R(n + 1). Since g(w) is continu-
ous andg′(w) > 0, then g(w) is an increasing function with g(0) = −S(n)−Π < 0. Thus,
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by the intermediate value theorem g(w) = 0 has a unique positive solution and therefore,
there exists a unique S(n + 1) > 0 which completes the proof.

Lemma 2. Any solution (S(n), E(n), A(n), I(n), H(n), R(n)) of model (1) with initial condi-

tions (2) satisfies lim sup
n→∞

N(n) ≤ Π
µ

.

Proof. Since,

N(n + 1) = S(n + 1) + E(n + 1) + A(n + 1) + I(n + 1) + H(n + 1) + R(n + 1)

= Π− µ [S(n + 1) + E(n + 1) + A(n + 1) + I(n + 1) + H(n + 1)

+ R(n + 1)]− δ1 I(n + 1)− δ2 H(n + 1) + S(n) + E(n) + A(n) + I(n)

+ H(n) + R(n)

= Π− µ [S(n + 1) + E(n + 1) + A(n + 1) + I(n + 1) + H(n + 1)

+ R(n + 1)]− δ1 I(n + 1)− δ2 H(n + 1) + N(n)

= Π− µN(n + 1)− δ1 I(n + 1)− δ2 H(n + 1) + N(n)

N(n + 1) + µ N(n + 1) = Π− δ1 I(n + 1)− δ2 H(n + 1) + N(n)

N(n + 1) =
Π + N(n)− δ1 I(n + 1)− δ2 H(n + 1)

1 + µ

≤ Π + N(n)
1 + µ

, n = 0, 1, 2, · · ·

=
Π

1 + µ
+

N(n)
1 + µ

. Upon using the iteration method we get

N(n + 1) ≤ Π
1 + µ

+
Π

(1 + µ)2 +
Π

(1 + µ)3 + · · ·+ Π
(1 + µ)(n+1)

+
N(0)

(1 + µ)(n+1)

=
Π
µ

[
1− 1

(1 + µ)(n+1)

]
+

N(0)
(1 + µ)(n+1)

.

Hence,

lim sup
n→∞

N(n + 1) ≤ lim sup
n→∞

N(n) ≤ Π
µ

Therefore, the region

D =

{
(S(n), E(n), A(n), I(n), H(n), R(n)) ∈ R6

+|N(n) ≤ Π
µ

}
is positively invariant.

4. Disease-Free Equilibrium (DFE)
4.1. Local Stability of DFE

The unique disease-free equilibrium (DFE) of the system (1) is given by

E0 =

(
Π
µ

, 0, 0, 0, 0, 0
)
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To compute the basic reproduction number of model (1), we will apply the next
generation operator method [32–36]. The matrix of the new infection terms, F, and the
matrix of the transition terms, V, that are associated with the model (1) are given by:

F =


0 β β η1 β η2
0 0 0 0
0 0 0 0
0 0 0 0

 and V =


k1 0 0 0

−(1− r) σ k2 0 0
−r σ 0 k3 0

0 0 −φ k4


Following [34], the basic reproduction number is denoted byR0 = ρ

(
F V−1) and is

given by

R0 =
β σ[(1− r) k3 k4 + r η1 k2 k4 + r φ η2 k2]

k1 k2 k3 k4

The proof of following lemma can be deduced from the proof of Theorem 2 in [34],
which is the following “Consider the disease transmission model given by (1). If x0 is a
disease-free equilibrium of the model, then x0 is locally asymptotically stable if R0 < 1,
but unstable ifR0 > 1, whereR0 = ρ(FV−1).”

Lemma 3. The DFE point E0 =

(
Π
µ

, 0, 0, 0, 0, 0
)

of model (1) is locally asymptotically stable

(LAS) whenR0 < 1 and unstable whenR0 > 1.

4.2. Global Stability of DFE

In this section, the global attractivity of the disease-free equilibrium of model (1) is
investigated and we can obtain the following result.

Theorem 1. The DFE of the model (1) is globally-asymptotically stable (GAS) in D whenever
R0 ≤ 1.

Proof. Consider the following Lyapunov function

F1(n) = p1k1 E(n) + p2 A(n) + p3 I(n) + p4 H(n)

where

p1 =
σ[(1− r) k3 k4 + r η1 k2 k4 + r φ η2 k2]

k1 k2 k3
, p2 =

k4

k2
, p3 =

η1 k4 + η2 φ

k3
and p4 = η2

The backward difference of F1 is denoted by ∆F1 and is given by

∆F1 = F1(n + 1)− F1(n)

= p1 [E(n + 1)− E(n)] + p2 [A(n + 1)− A(n)] + p3 [I(n + 1)− I(n)]

+ p4 [H(n + 1)− H(n)]

= p1 [λ(n + 1) S(n + 1)− k1 E(n + 1)] + p2 [(1− r) σ E(n + 1)

− k2 A(n + 1)] + p3 [r σ E(n + 1)− k3 I(n + 1)] + p4 [φ I(n + 1)

− k4 H(n + 1)]

Since
S(n + 1)
N(n + 1)

≤ 1 in D, then

F1(n + 1)− F1(n) ≤ p1 [β [A(n + 1) + η1 I(n + 1) + η2 H(n + 1)]− k1 E(n + 1)]

+ p2 [(1− r) σ E(n + 1)− k2 A(n + 1)] + p3 [r σ E(n + 1)

− k3 I(n + 1)] + p4 [φ I(n + 1)− k4 H(n + 1)]

= k4(R0 − 1) [A(n + 1) + η1 I(n + 1) + η2 H(n + 1)]
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This implies that ∆F1 = F1(n + 1)− F1(n) ≤ 0 whenever R0 ≤ 1 and ∆F1 = 0
if and only if E(n + 1) = A(n + 1) = I(n + 1) = H(n + 1) = 0. Hence, (E, A, I, H) →
(0, 0, 0, 0) as n → ∞. Upon setting E = A = I = H = 0 in the first and last equations in

model (1), we get S→ Π
µ

and R → 0 as n → ∞. Thus, the maximum invariable set in

{(S, E, A, I, H, R) : F1(n) = 0} is a disease-free equilibrium E0. Following the theorems of
stability of difference equations (Theorem 6.3 in [36]), every solution of the equations in
model (1) with the initial conditions in D approaches E0 as n→ ∞. Thus, the disease-free
equilibrium E0 of model (1) is globally attractive. Hence, the proof is completed.

It is worthy to remark that similar techniques have been used in the proof of stability
with feedback (for more details see [37]).

5. Endemic Equilibria
5.1. Existence of the Endemic Equilibrium Point EEP

Let E1 = (S1, E1, A1, I1, H1, R1) be and endemic equilibrium point for the model (1).
Hence, we can conclude the following lemma.

Lemma 4. The model (1) has a unique endemic equilibrium point E1 ∈ R6
+, wheneverR0 > 1.

Proof. By solving the equations of the model (1) at steady-state, we get:

S1 =
Π

λ1 + µ
, E1 =

λ1 S1

k1
, A1 =

(1− r) σλ1 S1

k1 k2

I1 =
r σ λ1 S1

k1 k3
, H1 =

r φ σ λ1 S1

k1 k3 k4

R1 =
r σ λ1 S1

µ k1 k2 k3 k4
[(1− r) γ1 k3 k4 + r γ2 k2 k4 + r γ3 φ k2]

(6)

where

λ1 =
β [A1 + η1 I1 + η2 H1]

N1
and N1 = S1 + E1 + A1 + I1 + H1 + R1

Substitute Equation (6) in the expression of λ1 to get

R0 = 1 + Γ λ1

where

Γ =
µ k2 k3 k4 + (1− r) σ (µ + γ1) k3 k4 + r σ (µ + γ2) k2 k4 + r φ σ (µ + γ3) k2

µ k1 k2 k3 k4

Since Γ > 0, then
R0 − 1

Γ
> 0 if and only ifR0 > 1. This implies that S1, E1, A1, I1, H1, R1 >

0 if and only ifR0 > 1.

5.2. Stability of the Endemic Equilibrium

Although no global asymptotic stability result is given here for the endemic equilib-
rium point E1, extensive numerical simulations suggest that E1 is a GAS inD/D0, whenever
R0 > 1. Hence, we add the following conjecture.

Conjecture 1. The unique endemic equilibrium point (EEP) of the model (1) is globally asymptoti-
cally stable (GAS) in D ifR0 > 1.
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For mathematical convenience, we provide the proof of the conjecture (1) for the
special case when the associated disease-induced mortality is neglected, i.e, δ1 = δ2 = 0.
Therefore, we define

D0 = {(S, E, A, I, H, R) ∈ D|E = A = I = H = R = 0}

which is the basin of attraction of the disease-free equilibrium point E0, to conduct the
global stability of the unique endemic equilibrium point for this case. Hence, the following
result is obtained.

Theorem 2. The unique endemic equilibrium point (EEP) of the model (1) with δ1 = δ2 = 0 is
globally asymptotically stable (GAS) in D/D0 if

R̃0 = R0

∣∣∣∣
δ1=δ2=0

> 1

Proof. Set δ1 = δ2 = 0 in model (1) and consider the following Lyapunov function

F2(n) =
1
2
[(S(n)− S1) + (E(n)− E1) + (A(n)− A1) + (I(n)− I1) + (H(n)− H1)

+(R(n)− R1)]
2

=
1
2
[N(n)− N1]

2

Then, the backward difference of F2 is given by

∆F2 = F2(n + 1)− F2(n)

=
1
2
[N(n + 1)− N1]

2 − 1
2
[N(n)− N1]

2

=
1
2
[N(n + 1)− N(n)] [N(n + 1) + N(n)− 2 N1]

= −1
2
[N(n + 1)− N(n)]2 + [N(n + 1)− N1] [N(n + 1)− N(n)]

≤ [N(n + 1)− N1] [N(n + 1)− N(n)].

Upon setting δ1 = δ2 = 0 and adding the equations of model (1), we get

N(n + 1)− N(n) = Π− µ N(n + 1) and N1 =
Π
µ

. Thus,

∆F2 ≤ [N(n + 1)− N1] [Π− µ N(n + 1)].

= [N(n + 1)− N1] [µ N1 − µ N(n + 1)].

= −µ [N(n + 1)− N1]
2

≤ 0

Therefore, F2 is a Lyapunov function on D/D0 and hence, by applying the theorem
of stability of difference equations (Theorem 6.3 in [36]), we obtain that every solution of
the equations in model (1) with δ1 = δ2 = 0 approaching the unique endemic equilibrium
point as n→ ∞ whenever R̃0 > 1.

6. Discussion and Conclusions

In this section, we will investigate the numerical simulation of the proposed model (1).
The values of the model (1) parameters are listed in Table 1 below.



Mathematics 2021, 9, 563 10 of 14

Table 1. The values of the parameters of model (1) whenR0 ≤ 1 and whenR0 > 1.

Parameter R0 ≤ 1 R0 > 1 Parameter R0 ≤ 1 R0 > 1

Π 136 136 γ1 0.0337 0.0337
µ 0.000035 0.000035 γ2 0.0486 0.0486
r 0.5 0.5 γ3 0.0535 0.0535
β 0.05 0.10 δ1 0.1 0.1
σ 0.157 0.157 δ2 0.1 0.1
φ 0.2 0.2 η1 0.03 0.03
η2 0.04 0.04

Figure 3 (Up) shows that the disease dies out which means that the disease-free
equilibrium point of model (1) is globally attractive and Figure 3 (Down) shows that the
disease is permanent.
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Figure 3. The infected compartments as functions of time whenR0 = 0.7468 < 1 (Up). The infected
compartments as functions of time whenR0 = 1.4936 > 1 (Down).
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Figure 4 displays that the number of cumulative cases of infection with treatment is
larger than cumulative cases of infection without treatment.
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Figure 4. The plot of the cumulative cases of infection verses time in days with treatment (dotted
line) and without treatment (solid line) whenR0 = 0.7468 < 1 (Up). The plot of the cumulative cases
of infection verses time in days with treatment (dotted line) and without treatment (solid line) when
R0 = 1.4936 > 1 (Down).

Figure 5 depicts the relation between the basic reproduction number R0 and the
natural death rate µ for several values of the contact rate β. It shows thatR0 decreases as µ
increases andR0 increases as β increases.
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Figure 5. The plot of the basic reproduction number as a function of the birth–death rate µ for several
values of the contact rate.
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Abbreviations
The following abbreviations are description of variables and parameters of the model (1).

Variable Description
S(t) Population of susceptible individuals
E(t) Population of exposed individuals
A(t) Population of asymptotic individuals
I(t) Population of symptotic individuals
H(t) Population of hospitalized individuals
R(t) Population of recovered individuals
Parameter Description
Π Recruitment rate
µ Natural death rate
r The clinical outbreak rate
β Contact rate
σ−1 The mean time of incubation period
φ−1 The mean time from symptoms to hospitalization
η1 The reduction factor in transmission rate by symptomated per day
η2 The reduction factor in transmission rate by hospitalized per day
γ−1

1 The mean infections period of asymptomatic infected person for survivors
γ−1

2 The mean duration of infected person for survivors
γ−1

3 The mean duration for hospitalized cases for survivors
δ1 Disease-induced death rate of infectious individuals
δ2 Disease-induced death rate of treated individuals
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