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Abstract: In the present paper, a Random Forest classifier is used to detect leak locations on two
different sized water distribution networks with sparse sensor placement. A great number of leak
scenarios were simulated with Monte Carlo determined leak parameters (leak location and emitter
coefficient). In order to account for demand variations that occur on a daily basis and to obtain a
larger dataset, scenarios were simulated with random base demand increments or reductions for
each network node. Classifier accuracy was assessed for different sensor layouts and numbers of
sensors. Multiple prediction models were constructed for differently sized leakage and demand
range variations in order to investigate model accuracy under various conditions. Results indicate
that the prediction model provides the greatest accuracy for the largest leaks, with the smallest
variation in base demand (62% accuracy for greater- and 82% for smaller-sized networks, for the
largest considered leak size and a base demand variation of ±2.5%). However, even for small leaks
and the greatest base demand variations, the prediction model provided considerable accuracy,
especially when localizing the sources of leaks when the true leak node and neighbor nodes were
considered (for a smaller-sized network and a base demand of variation ±20% the model accuracy
increased from 44% to 89% when top five nodes with greatest probability were considered, and for
a greater-sized network with a base demand variation of ±10% the accuracy increased from 36%
to 77%).

Keywords: leak localization; water distribution network; random forest; prediction modeling;
big data

1. Introduction

Leakages in water distribution networks can cause great cumulative losses as small
leakages can remain undetected for long periods of time. Direct losses are typically followed
by the overall reduction of the functionality of the water distribution network, which
usually manifests as a pressure drop on the user end. Moreover, leakages can potentially
cause health hazards since microbiological contamination can enter the water distribution
network and reach end users. Porous soil introduces additional difficulties, as even greater
leakages can remain undetected since water is absorbed in the soil, and there is no evidence
of the leakage on the surface. Thus, different technologies and methodologies have been
proposed for leakage detection and localization. In a work by Jacobsz and Jahnke [1], leak
detection using discrete fiber optic sensing was investigated. In a recent study by Nkemeni
et al. [2], a wireless sensor network application was investigated, where processing for leak
detection is performed at the sensor nodes. In a work by Wu et al. [3], a two-stage method
was proposed, which first detects outliers from flow measurements using a clustering
algorithm and then detects whether burst occurred. In the work of Rajeswaran et al. [4], a
multi-stage graph partitioning algorithm was presented, which uses flow measurements to
indicate a minimum number of additional measuring locations needed to narrow down

Mathematics 2021, 9, 672. https://doi.org/10.3390/math9060672 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5839-3156
https://doi.org/10.3390/math9060672
https://doi.org/10.3390/math9060672
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9060672
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9060672?type=check_update&version=1


Mathematics 2021, 9, 672 2 of 14

leak location in large-size networks. In the work by Cody et al. [5], a linear prediction
signal processing technique was used to extract features from acoustic data, which can
detect and localize pipe leaks. In a work by Bohorquez et al. [6], an artificial neural network
was applied to detect leak size and location in a single water pipeline.

Problems with leak detection and localization in pipelines that are used for trans-
portation of hydrocarbon fluids are also extensively explored, since leaks can cause serious
damage to people and the environment due to often hazardous fluid that is transported.
A number of investigations were conducted, including a data-driven approach using the
Kantorovich distance [7], feature extraction from acoustic signals [8], application of a least
squares twin support vector machine [9], and a multi-layer perceptron neural network
(MLPNN) [10]. A detailed overview of leak detection technologies in pipelines can be
found in a review paper by Adegboye et al. [11].

Additionally, a number of studies considered strategies for optimal sensor place-
ment since it greatly influences leak detection and localization methods efficiency. The
optimization approach is most widely used, and thus different enhancements were con-
sidered, such as a clustering process prior to optimization [12], hybrid feature selection
method [13], methods that reduce the optimization search space [14], and an investigation
of the influence of measurement uncertainty [15]. A detailed overview of leakage detec-
tion methodologies can be found in review papers by Wu and Liu [16], Chan et al. [17],
and Zaman et al. [18].

Software-based leakage detection methods can be divided into transient-based, model-
based, and data-driven approaches. The transient-based approach is based on various
analyses of pressure signals; the model-based approach analyzes residuals, i.e., compares
pressure measurements with the pressure estimation based on a hydraulic network model;
and the data-driven approach relies on collected data and mathematical operations in order
to determine anomalies in pressure. In recent years, machine learning methods have been
increasingly used for leakage detection and localization. Zhou et al. [19] and Pérez-Pérez
et al. [20] investigated leak detection in a single pipeline. In the Zhou et al. [19]’s work, a
convolutional neural network (CNN) was used to pinpoint leak locations in a 1500 m long
pipe segment for different leak sizes, where the better prediction was obtained for greater
leakages. Pérez-Pérez et al. [20] used a combined artificial neural network (ANN), where
the ANN is first used to estimate the friction factor of the pipe and then to localize leak
location. Tests were conducted for a 64.48 m pipe, for which it was reported that an average
percentage error of 0.47% was achieved. Mounce et al. [21] proposed a system using an
artificial neural network for online detection of bursts in water distribution networks that
was shown to have 44% of alarms when burst really occurred, 32% of alarms in cases of
unusual short-term increased demand, 9% of alarms due to industrial events and only
15% were false alarms, indicating the applicability of the proposed method. In the work
of Jensen et al. [22], a sensitivity analysis of pressure residuals was performed to isolate
possible leakage locations. The proposed methodology was applied to the actual water
distribution network, where only a few false alarms occurred, and frequent alarms occured
during the leakage. It was observed that the proposed methodology can isolate a limited set
of candidate nodes, where better performance was observed for greater flows in the system.
In the work of Zhang et al. [23], a data-driven and model-based approach was utilized,
where large-scale water distribution networks were divided into leakage zones that were
categories for multi-class support vector machine prediction. Large-scale networks were
divided into up to 25 zones, with a classification accuracy of above 90% for a division into
25 zones, which further increased with smaller divisions into leakage zones. However,
it must be taken into consideration that further leak localization needs to be conducted
after the leak zone is determined to provide the exact leak location. Soldevila et al. [24]
used a mixed model-based and data-driven approach in which the K-nearest neighbors
(k-NN) algorithm is used to localize leaks. The proposed methodology was applied to three
different sized networks, with leak, demand, and sensor measurement uncertainties. For
the Hanoi benchmark network, for all considered uncertainties in the study, an accuracy
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greater than 90% was reported for the time horizon of one day using pressure sensor
measurements from two sensors. Additionally, some network nodes were grouped since
leaks from those nodes cannot be distinguished due to similar pressure measurements.
Further study was presented by Soldevila et al. [25], where Bayesian classifiers were applied
and greater accuracy than when using a k-NN approach was obtained. Both proposed
methods were successfully applied to real water distribution network case studies where
leak locations detected by the proposed methods were in the vicinity of the real leak
locations. In the work of Quiñones-Grueiro et al. [26], an unsupervised approach to leak
detection was conducted for the Hanoi distribution network using three pressure sensors,
where the average reported classification accuracy was 85% for leak magnitudes smaller
than 2.5% of the total demand of the network for leaks detected within a time interval of
one day. In the work of Zhou et al. [27], after the burst was detected, additional pressure
sensors were placed at optimal locations and deep learning was employed to identify
burst locations. The proposed methodology was applied to 58 synthetic burst cases, where
in 57 cases the top five most probable pipes were correctly identified, and in 37 cases
the top pipe was correctly located. However, it must be noted that the requirement for
additional measurements can extend reaction time in case of a pipe burst. In the work
of Sun et al. [28], a classification approach was utilized where pressure measurements in
network nodes with no pressure sensors were estimated using the Kriging method. The
Hanoi water distribution network was considered with a wide range of sensors, and it
was reported that in the average case 70% accuracy was achieved; however, for some
sensor layouts the reported accuracy was below 20%, which is believed to be due to the
Kriging interpolation error. Javadiha et al. [29] used a convolutional neural network with
pressure measurements for the Hanoi network, where for a one day time horizon the
model accuracy varied from 56% for four sensors to 94% for 12 sensors considering leak
size uncertainty, sensor noise, and base demand uncertainty. The Kriging method was
also used in work by Soldevila et al. [30] with satisfactory leak localization in a real water
distribution network case; however, when compared with their previous work, the Kriging
method did not provide better results.

The main drawback of the machine learning approach is that only a small amount
of real data measurements can be obtained for leak events. Additionally, when a new
installation is made in the water distribution network, all previous records are not valid,
consequently reducing the number of inputs for the prediction model. This is a com-
mon problem in rapidly developing urban areas. Thus, in this paper, a machine learning
approach is presented, in which a great number of leak scenarios for randomly cho-
sen network nodes and with different leak sizes under different demand conditions were
conducted, to obtain a database of pressure sensor measurements that are inputs for the pre-
diction model. This idea is similar to that proposed by Grbčić et al. [31] and Lučin et al. [32],
where a number of Monte Carlo simulations were conducted to obtain a large number of
inputs for a machine learning prediction model that successfully detects the location of
contamination source and determines the number of contamination sources. To the authors’
knowledge, the currently proposed methodology has not been previously applied to the
leak localization problem to obtain a large amount of synthetic data.

Model-based methods’ accuracy is greatly dependent on model calibration, where
model uncertainties can decrease the method’s efficiency. In this work, model uncertainties
are taken into consideration by including randomness for leak and demand values, so as
to describe as many possible combinations of different leak scenarios. Machine learning
classification is then utilized to detect the most appropriate leak scenario, which will
be utilized to determine leak location. A random forest classifier was tested for leak
localization on two different sized benchmark networks. Investigation of the influence
of sensor layout and number of sensors on model accuracy was conducted. Different
prediction models were constructed for different sizes of leaks and for different ranges of
demand uncertainty to estimate model accuracy. This approach allows for a large number
of varying measurements to be simulated in a short amount of time, thus providing
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relatively quick localization, which is suitable for use in real conditions. Additional model
uncertainties such as pipe diameters, node elevations, etc. can easily be incorporated into
the presented methodology.

The rest of the paper is organized as follows. In Section 2, the problem statement
is defined with a description of the used benchmark water distribution networks and a
description of the proposed methodology using a random forest classifier. In Section 3,
results are presented for both benchmark networks investigating the influence of a different
number of prediction model inputs and features, of different ranges of demand uncertain-
ties and leak sizes, and of sensor layout on model accuracy. Additionally, an example of
the application of the prediction model is presented. In Section 4, the main observations
regarding the obtained results are presented with proposed further research. In Section 5,
final remarks are presented.

2. Materials and Methods
2.1. Problem Statement

Model-based leakage detection methods rely on residuals obtained as a difference
between measured and expected results from the simulation of a calibrated water dis-
tribution network model. Unfortunately, water distribution models used for simulation
typically have estimated nodal demands, which greatly influences the accuracy of residual
values, hence resulting in modeling errors that are the main drawback of this approach.
Additionally, if sensitivity analysis is used with nominal leak values, further uncertainties
are introduced. The basic premise of the currently proposed methodology is that the
prediction model can be constructed from a large database of simulated measurement data,
which should describe a variety of possible leak scenarios. Consequently, if a considerable
amount of data is generated, with a set range of considered uncertainties, it is reasonable
to assume that the real measurements can be determined from simulated events with
randomly chosen leak parameters by the prediction model.

Leak scenarios were simulated using EPANET2 version 2.0.12. [33]. Simulation results
were obtained with randomly chosen leak locations, leak size, and random demands of end
users. Basic assumptions used in this work are that leaks can occur only in network nodes
and that a single leak is present in the water distribution network. Sensor measurements
are considered ideal. The used water distribution network models were considered to
be calibrated, i.e., pipe diameter and roughness were considered to be known and well-
calibrated. However, these uncertainties can easily be incorporated into the data generation
stage and further investigation of these uncertainties is to be evaluated in future work.

The prediction model was constructed using raw pressure sensor measurements
obtained every 15 min for a period of 24 h where different ranges of base demand variation
were investigated. Although in a real case scenario base demands vary greatly on daily
basis, several prediction models can be created with characteristic demand patterns, e.g.,
one for summer weekdays, one for winter weekends, etc. Additionally, a prediction model
can be created specifically for night scenarios where smaller demand variations occur. This
methodology is already used for leak detection when differences in flows are measured
during the night to detect if the leak is present in the network. Prediction model random
forest implementation in the Python library Scikit-learn [34] version 0.20.3 was used. Data
generation and prediction model training were performed using the supercomputing
resources at the Center for Advanced Computing and Modelling, University of Rijeka.

2.2. Benchmark Water Supply Networks

Prediction of the leak location was conducted on two differently sized benchmark
networks. The investigated networks are the Hanoi (Vietnam) network with 31 nodes,
obtained from The Centre for Water Systems (CWS) at the University of Exeter [35], and
the Net3 EPANET2 example consisting of 92 nodes. Both benchmark networks were
considered to be calibrated. To achieve unsteady simulation, demand patterns for the
Hanoi network were taken as in [26] and are presented in the Figure 1. For the Hanoi
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network, two pressure sensors were placed at nodes 14 and 30, as depicted in [24]. In the
Net3 network, two different sensor layouts were considered, with four pressure sensors
placed at network nodes 117, 143, 181, and 213, and for the second layout, four sensors
were placed at network nodes 115, 119, 187, and 209. The considered networks with sensor
placements can be seen in Figures 2 and 3.

Figure 1. Hanoi network pattern demands.

Figure 2. Hanoi network with pattern demands in nodes.
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Figure 3. Net3 network with two sensor layouts.

For the Hanoi network, simulation time was 24 h with a hydraulic time step of 1 h
and report time step of 15 min. For the Net3 network, simulation time was 24 h with
a hydraulic time step of 10 min and report time step of 15 min. To obtain data for the
machine learning model, leak scenarios were simulated using different emitter coefficients
on randomly chosen leak nodes. For both networks, all network nodes were assumed as a
potential location of the burst. The first dataset was constructed with no variation of base
demand and only leak location and emitter coefficients were varied. Different ranges of
emitter coefficients were considered, ranging from 5 to 15. To consider the variation of
base demand, first, it was randomly chosen whether base demand is to be altered or not. If
the base demand was to be altered it was randomly increased or decreased by randomly
chosen percentages of 2.5, 5, 10, 15, and 20%. Scenarios with no base demand variation
were considered to investigate the influence of different ranges of emitter coefficients on
prediction model accuracy.

2.3. Random Forest Classifier

Machine learning algorithms build a model on sample data where the underlying
correlation in the data is found and a prediction can be made for a new set of inputs.
Machine learning algorithms can be divided into regression and classification, where
regression provides information about continuous output values, whereas classification
algorithms return discrete values, i.e., class labels. Since the problem considered in this
paper is a classification problem, the machine learning classifier random forest was used.
The random forest algorithm introduced by Breiman [36] is an ensemble learning algorithm
that consists of multiple decision trees where each decision tree is trained independently
on a random subset of data. Bootstrapping ensures that each decision tree in the random
forest has a different subset of the training data, providing unique decision trees. Followed
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by aggregation, a classification with the most occurrences is chosen by the random forest
and is considered as the class prediction.

Random forest parameters used in this study were chosen with the grid search hy-
perparameter optimization method, which was conducted to optimize the number of
estimators (trees), maximum depth, and a minimum number of samples required to split
an internal node while other parameters were kept constant. The Net3 network with four
sensors placed at network nodes 117, 143, 181, and 213, an emitter coefficient ranging from
5 to 15 and with no demand uncertainty was considered for the hyperparameter optimiza-
tion method. Resulting machine learning parameters chosen for further study include
200 estimators, a maximum depth of 60 and a minimum number of samples required to
split an internal node equal to 2. Obtained data were split into 70% for learning and 30%
for model testing. A flowchart of the proposed method can be seen in Figure 4.

Figure 4. Flowchart of data generation and the machine learning algorithm used for the prediction of leak location.

3. Results
3.1. Data Influence

For both networks, the influence of the number of data inputs was investigated when
only the emitter coefficient varied with no change in base demand. The emitter coefficient
was chosen to be in a range from 5 to 15. For the Hanoi network with 100,000 inputs, 100%
accuracy was achieved. For the Net3 network with the first sensor layout, results can be
seen in the Table 1. For each model, 10 runs were conducted with a random training–test
split to consider the influence of the random seed. Standard deviation ranged from 0.17%
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for a model with 100,000 inputs to 0.03% for 500,000 inputs. It can be observed that the
accuracy of the model was 98% for 500,000 inputs. Thus, all further results are with models
with 500,000 inputs, and due to the small standard deviation, the presented results were
calculated as an average of 5 runs.

Table 1 additionally includes results for the top three nodes with the greatest prob-
ability of being the true leak node. As evidenced by the results, an accuracy of 99% was
achieved with merely 200,000 inputs. Considering the top three nodes can be greatly
beneficial for big networks with dense network node placement where a small distance
between network nodes is present. The prediction model can successfully localize leak
location, where further procedures can be used to exactly detect which network node is a
true leak location.

Table 1. Influence of data inputs on model accuracy without base demand variation for the Net3
network with an emitter coefficient range of 5–15.

Data Inputs 100,000 200,000 300,000 450,000 500,000

Accuracy 88% 93% 96% 97% 98%
Top 3 98% 99% 99% 99% 99%

3.2. Variation of Base Demand and Emitter Coefficient

For the Hanoi network, the influence of variation of base demand was investigated for
the model with an emitter coefficient range of 10–15. Results are presented in Table 2. When
demand variation was ±2.5%, the model accuracy was above 80%. It can be observed that
with the greater demand variation for the same number of inputs, the model accuracy
considerably decreased; however, if the top three and five nodes were considered, model
accuracy greatly increased, where for the top five nodes accuracy was above 90% for the
models with a demand variation of up to ±15%. It is important to note, however, that the
top five nodes for such a small network do not provide a considerable localization, and
thus further study of this approach must be conducted on larger networks.

Table 2. Influence of base demand variation on model accuracy for the Hanoi network with an
emitter coefficient range of 10–15 with 500,000 inputs.

Base Demand Variation ±2.5% ±5% ±10% ±15% ±20%

Accuracy 82% 69% 57% 49% 44%
Top 3 98% 93% 86% 81% 76%
Top 5 99% 98% 95% 92% 89%

Results for the Net3 network with variations of base demand for the emitter coefficient
range of 10–15 are presented in the Table 3. It can be observed that for the same base
demand variation and same emitter coefficient range, the model accuracy for the Net3
network decreased by roughly 20% when compared to the Hanoi network. This is to be
expected, since the Net3 network has a considerably larger number of network nodes.
However, it is evident that the approach that considers the top three and five network
nodes significantly increased model accuracy, which would make it possible to successfully
localize leak location even in large networks. The results indicate that for greater variation
in base demand more data inputs are needed when considering large networks.
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Table 3. Influence of base demand variation on model accuracy for the Net3 network with an emitter
coefficient range of 10–15 with 500,000 inputs.

Base Demand Variation ±2.5% ±5% ±10%

Accuracy 62% 49% 36%
Top 3 92% 80% 65%
Top 5 98% 90% 77%

For the investigation of emitter coefficient variation a ±2.5% base demand variation
was chosen, and the results for the Hanoi network are presented in Table 4. It can be
observed that for the smaller emitter coefficient values, model accuracy was considerably
smaller than for cases with greater emitter coefficient values. This is to be expected, since
a greater emitter coefficient value represents a greater leak where a greater discrepancy
in sensor measurements is present, which is easier to detect with the prediction model.
Additionally, when the emitter coefficient range was narrowed down from 10 (emitter
coefficient range 5–15) to 5 (emitter coefficient range 10–15) it was also observed that model
accuracy increased. This is also to be expected since the smaller emitter coefficient range
has a smaller number of leak combinations and the same number of inputs better describes
the prediction model in that case.

Table 4. Influence of emitter coefficient variation on model accuracy for the Hanoi network with a
demand variation of ±2.5% with 500,000 inputs.

Emitter Coefficient Range 1–5 5–10 5–15 10–15

Accuracy 38% 67% 71% 82%
Top 3 67% 92% 93% 98%
Top 5 81% 98% 98% 99%

Results for the Net3 network are presented in the Table 5. The accuracy of the model,
similarly, decreased when smaller emitter coefficients were used. However, it is interesting
to observe that for greater emitter coefficient values the difference in model accuracy
between the two models increased—e.g., for the emitter coefficient range of 1–5, both
models had low accuracy with a difference around 6%. When the emitter coefficient was in
the range of 10–15, model accuracy increased with the Hanoi network yielding improved
accuracy by around 20% when compared to the Net3 network. When considering the top
five leak candidates, both models achieved high accuracy.

Table 5. Influence of emitter coefficient variation on model accuracy for the Net3 network with a
demand variation of ±2.5% with 500,000 inputs.

Emitter Coefficient Range 1–5 5–10 5–15 10–15

Accuracy 32% 51% 52% 62%
Top 3 59% 83% 84% 92%
Top 5 72% 92% 94% 98%

3.3. Sensor Layout Influence

The influence of sensor layout was investigated for the Net3 network where two
different sensor layouts with four sensors and two different sensor layouts with 2 sensors
were considered. Results are presented in the Table 6. It has been shown that with
no demand variation all sensor layouts achieved exceptional accuracy. When demand
variation was introduced, sensor layout slightly influenced model accuracy. Smaller
number of sensors led to a reduction in model accuracy of around 10%. This is to be
expected and indicates that for greater model accuracy a greater number of sensors should
be used.
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Table 6. Influence of sensor layout on model accuracy for the Net3 network for an emitter coefficient
range of 5–10 with 500,000 inputs.

Sensor Locations
Demand Variation

No Variation ±2.5% ±5%

117, 143, 181, 213
Accuracy 98% 51% 37%

Top 3 99% 83% 69%
Top 5 99% 92% 79%

117, 181
Accuracy 96% 41% 27%

Top 3 99% 71% 52%
Top 5 99% 83% 64%

115, 119, 187, 209
Accuracy 98% 54% 37%

Top 3 99% 84% 70%
Top 5 99% 94% 83%

119, 209
Accuracy 97% 40% 27%

Top 3 99% 71% 53%
Top 5 99% 85% 67%

3.4. Feature Influence

To investigate the influence of a number of features, two different report time steps
were considered. For all prediction models and for both water distribution networks,
a report time step of 15 min was used, resulting in 97 features per sensor for each leak
scenario. For the Hanoi network with two sensors, this resulted in 194 features, and for the
Net3 network with four sensors, this resulted in 388 features. In [18], it was reported that
sampling data typically vary between 1 min and 15 min; however, to reduce prediction
model complexity, for both the Hanoi and Net3 networks simulations were conducted for
an emitter coefficient range of 10–15, with ±2.5% demand variation, with a report time
step of 1 h resulting in 25 features per sensor per leak scenario. Results are presented in
the Table 7. It is evident that with a smaller number of features, model accuracy slightly
decreased. This indicates that prediction models with a greater number of inputs but with
a smaller number of features should be investigated to see if greater accuracy could be
achieved with the same computational expense.

Table 7. Influence of number of features on model accuracy for the Hanoi and Net3 networks with
an emitter coefficient range of 10–15 and a demand variation of ±2.5% with 500,000 inputs.

Hanoi Network Net3 Network

Number of Features 194 50 388 100

Accuracy 82% 81% 62% 60%
Top 3 98% 98% 92% 91%
Top 5 99% 99% 98% 97%

3.5. Application of the Prediction Method

To investigate the possibility of application of the proposed method on real case events,
30 simulations were conducted to simulate daily measurements during a one month period
for the same leak location and same leak emitter coefficient. The Hanoi network was
chosen with a leak at network node 26 and with an emitter coefficient value of 10. For each
simulation, if the network node was chosen to be altered, demand was randomly changed
in the range of ±10%. In this way, daily demand variation was simulated. The machine
learning model for the Hanoi network, with an emitter coefficient range of 10–15 and with
a demand variation of ±10% with a model accuracy 57% was used to predict leak location.
Results of the predictions can be observed in Figure 5. It can be seen that for the majority
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of days (16 out of 30) true leak location was successfully detected, which roughly matches
the overall model accuracy. For the remaining days, adjacent network nodes were detected
as leak locations. This shows that the proposed methodology can be successfully used to
approximately localize and detect leak location.

Figure 5. Prediction of leak location for 30 day measurements with percentage of predicted leak nodes.

4. Discussion

Based on the presented results, it can be concluded that the proposed methodology can
be successfully applied to small-sized and medium-sized networks. With the increase in
network size, model accuracy considerably decreases. It is important to note, however, that
this behavior is not unexpected as the same assumptions and amount of data (i.e., inputs)
are utilized for small and larger cases. Despite this, meaningful results and adequate
localization can be achieved when the top three and five network nodes based on leak
location probability are considered. This indicates that leak nodes can be localized on a
more general water distribution network with one prediction model, where exact location
can be detected if coupled with another prediction model that focuses on a specific network
zone or employs a different leak localization methodology. Both approaches should be
further investigated.

It can be observed that the greatest accuracy was achieved for prediction models
trained with smaller demand variation and greater leak coefficients. This is expected since
in the case of no demand variation, 500,000 simulations provide a considerable amount of
combinations of leak events, where the prediction model simply chooses from the most
similar event. When demand variation is introduced, model accuracy decreases as the
demand variation range increases. However, several prediction models can be constructed
with different demand patterns, e.g., a night demand model, a workday demand model,
etc., where in case of a leak event, the prediction model with the most similar demand
pattern can be chosen for leak localization. When considering leak coefficients, independent
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prediction models can also be built; for example, prediction models to detect small, medium,
and large leaks. The greatest accuracy is achieved for the large leaks, which can be greatly
beneficial in the case of large bursts in the water distribution network. This kind of events
needs quick intervention since the water supply to end users is usually interrupted until
the burst is repaired. A prediction model can indicate leak location so rapid intervention
can be achieved.

Another potential issue stems from the fact that the calibrated model relies on data
that might already incorporate leaks. Consequently, predominantly new leaks can be
predicted, as existing leaks are incorporated in the calibrated model itself. As existing leaks
become larger with time and due to the material deterioration, older leak locations can
eventually be detected as well, although they would appear as a comparatively smaller
leak than they actually are; this is not a crucial problem, however. This drawback can be
mitigated by coupling or employing as standalone older calibrated models that predate
the current one.

The study of the influence of the report time step indicates that with a smaller amount
of features, similar accuracy can be achieved, and thus a greater number of inputs can be
considered to achieve better model accuracy. The optimum number of features and inputs
should be further investigated to provide the best accuracy and model complexity ratio.
This is especially important if the proposed methodology is to be used on more complex
water distribution networks. This approach is valid if existing leaks that are undetected
for a longer period of time are to be found. However, in the case of a pipe burst event,
the prediction model with a smaller time step should be considered to reduce reaction
time in case of the event. This should be further investigated since larger pipe bursts
considerably change water distribution network dynamics and the measurement period
should be considerably smaller than one day (as is in the current paper) to provide rapid
reaction. Additionally, techniques for data dimensionality reduction should be explored to
possibly reduce the model complexity.

The sensor layouts considered in this paper can be considered sparse. Improvement in
prediction model accuracy can be achieved if additional sensors are installed in the water
distribution network. Additionally, a combination of pressure and flow sensors should be
investigated since additional data could be beneficial to the model and water distribution
networks have a combination of both types of sensors. Further study should be focused
on investigating other classification models, for example K-NN and ANN, which were
successfully applied in previous literature using model-based approaches, which could
possibly provide greater model accuracy. The coupling of multiple prediction models
should also be investigated, where one model would provide coarse leak localization
and the second model would provide the exact location of the leak. Moreover, future
studies should account for uncertainties such as pipe diameter and pipe roughness with
the methodology tested on real water distribution networks.

Although computationally demanding, the proposed methodology with introduced
randomness can successfully describe a wide range of operating conditions, thus providing
a considerable amount of data that cannot be obtained from field measurements. With
growing computational power, the proposed methodology could be successfully utilized,
as once they are generated, prediction models can be employed to evaluate a network with
a considerably lower amount of computational resources and time.

5. Conclusions

In this paper, a machine learning approach was presented that helps identify leak
locations based on pressure sensor measurements. A random forest classifier is used for
small-sized and medium-sized benchmark networks. The presented results show that the
proposed methodology can be successfully used for leak localization using data obtained
from numerical simulations even for sparse sensor placement. The discrepancy between
synthetic data obtained from numerical simulations and real data can be compensated
for with randomness in the model simulation. Using Monte Carlo random parameters
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of leak events and demands, a significant amount of data can be obtained, which can be
successfully used for building a machine learning prediction model.

Our main findings include:

• Greatest prediction model accuracy was achieved for the largest leaks, with the
smallest demand variation. With the increase in demand variation, prediction model
accuracy considerably decreased.

• Model accuracy increased significantly when the top three and five network nodes
with the greatest certainty of being leak nodes were considered to narrow down the
leak location region.

• Investigation of the application of the proposed methodology on a small-sized network
showed that in the majority of records, true leak location was detected, where in other
cases neighbor nodes were chosen.

The obtained results indicate that the proposed methodology could be successfully
applied to real water distribution networks; however further study should include the
following:

• Investigation of a greater number of inputs should be conducted to increase model
accuracy under greater demand variation, or multiple prediction models should be
used for different demand ranges.

• Validation of the proposed methodology should be conducted on real water distribu-
tion networks.

• Randomness should be incorporated into other model uncertainties, such as pipe
diameter and pipe roughness.

• Further investigation should be conducted to explore other algorithms with an in-
creased number of inputs and an optimized number of features to further increase
model accuracy.
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32. Lučin, I.; Grbčić, L.; Čarija, Z.; Kranjčević, L. Machine-Learning Classification of a Number of Contaminant Sources in an Urban
Water Network. Sensors 2021, 21, 245. [CrossRef] [PubMed]

33. Rossman, L.A. EPANET 2: Users Manual. 2000. Available online: https://epanet.es/wp-content/uploads/2012/10/EPANET_
User_Guide.pdf (accessed on 6 September 2020).

34. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

35. Centre for Water Systems, University of Exeter. Benchmarks. Available online: http://emps.exeter.ac.uk/engineering/research/
cws/downloads/benchmarks/ (accessed on 6 November 2020).

36. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

http://dx.doi.org/10.1109/JSEN.2017.2740220
http://dx.doi.org/10.1109/ACCESS.2017.2703122
http://dx.doi.org/10.1016/j.jlp.2016.06.018
http://dx.doi.org/10.3390/s19112548
http://dx.doi.org/10.2166/hydro.2015.021
http://dx.doi.org/10.1016/j.compchemeng.2017.09.002
http://dx.doi.org/10.1016/j.ins.2019.12.043
http://dx.doi.org/10.2166/hydro.2018.032
http://dx.doi.org/10.1080/1573062X.2017.1279191
http://dx.doi.org/10.1109/ACCESS.2018.2885444
http://dx.doi.org/10.1016/j.engfailanal.2019.104264
http://dx.doi.org/10.1109/ACCESS.2019.2902711
http://dx.doi.org/10.1016/j.conengprac.2020.104677
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000030
http://dx.doi.org/10.1016/j.ifacol.2018.09.657
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000661
http://dx.doi.org/10.1016/j.conengprac.2016.07.006
http://dx.doi.org/10.1016/j.jprocont.2017.03.015
http://dx.doi.org/10.2478/amcs-2018-0020
http://dx.doi.org/10.1016/j.watres.2019.115058
http://www.ncbi.nlm.nih.gov/pubmed/31536886
http://dx.doi.org/10.3390/w12010054
http://dx.doi.org/10.3390/w11071500
http://dx.doi.org/10.2166/hydro.2020.042
http://dx.doi.org/10.3390/s21010245
http://www.ncbi.nlm.nih.gov/pubmed/33401513
https://epanet.es/wp-content/uploads/2012/10/EPANET_User_Guide.pdf
https://epanet.es/wp-content/uploads/2012/10/EPANET_User_Guide.pdf
http://emps.exeter.ac.uk/engineering/research/cws/downloads/benchmarks/
http://emps.exeter.ac.uk/engineering/research/cws/downloads/benchmarks/
http://dx.doi.org/10.1023/A:1010933404324

	Introduction
	Materials and Methods
	Problem Statement
	Benchmark Water Supply Networks
	Random Forest Classifier

	Results
	Data Influence
	Variation of Base Demand and Emitter Coefficient
	Sensor Layout Influence
	Feature Influence
	Application of the Prediction Method

	Discussion
	Conclusions
	References

