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Abstract: For any integer k ≥ 2, the sequence of the k-generalized Fibonacci numbers (or k-bonacci
numbers) is defined by the k initial values F(k)

−(k−2) = · · · = F(k)
0 = 0 and F(k)

1 = 1 and such that each
term afterwards is the sum of the k preceding ones. In this paper, we search for repdigits (i.e., a
number whose decimal expansion is of the form aa . . . a, with a ∈ [1, 9]) in the sequence (F(k)

n F(k+m)
n )n,

for m ∈ [1, 9]. This result generalizes a recent work of Bednařík and Trojovská (the case in which
(k, m) = (2, 1)). Our main tools are the transcendental method (for Diophantine equations) together
with the theory of continued fractions (reduction method).
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1. Introduction

We start by recalling that the Fibonacci sequence (Fn)n is defined by the recurrence

Fn+1 = Fn + Fn−1, (1)

with initial values F0 = 0 and F1 = 1 (see, e.g., [1–3]). This sequence admits many
generalizations and one of the most known is its higher order version. The Fibonacci
sequence is a binary (or second order) recurrence and then, for any integer k ≥ 2, the se-
quence of the k-generalized Fibonacci numbers (or k-bonacci numbers) is defined by the kth
order recurrence

F(k)
n = F(k)

n−1 + · · ·+ F(k)
n−k

with initial values F(k)
−(k−2) = · · · = F(k)

0 = 0 and F(k)
1 = 1. Clearly, for k = 2, we have the

Fibonacci numbers and for k = 3, we have Tribonacci numbers (which is one of the most
well-studied generalizations of Fibonacci numbers).

On the other hand, a repdigit (short for “repeated digit”) is a number of the form

a

(
10` − 1

9

)
, (2)

where ` ≥ 1 and a ∈ [1, 9] (here, as usual, for integers x < y, we denote [x, y] =
{x, x + 1, . . . , y}), that is, a number with only one distinct digit (in this case a) in its
decimal expansion.

We point out that many authors have been interested in solving Diophantine equations
involving repdigits (their sums, products, concatenations, etc.) and some special forms of
linear recurrences (like their product, sums, etc.). For some works in this direction, we refer
the reader to [4–33] and the references therein.
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Luca [34], in 2000, and Marques [35], in 2012, proved that the largest repdigits in
the Fibonacci and Tribonacci sequence are F10 = 55 and T8 = 44, respectively. Recently,
Bednařík and Trojovská [36] and Trojovský [37] found all repdigits of the form FnTn and
Fn + Tn, respectively.

The aim of this paper is to continue this program and generalize the main result of [36].
More precisely, we search for repdigits which are the product of the nth k-bonacci number
by the nth (k + m)-bonacci number, for m ∈ [1, 9]. Our main result is the following:

Theorem 1. The Diophantine equation

F(k)
n F(k+m)

n = a

(
10` − 1

9

)
, (3)

does not have a solution in positive integers n, a, k, `, with k ≥ 2, ` > 1 and a, m ∈ [1, 9].

The main tools in the proof is the transcendental method (lower bounds for linear
logarithm of real algebraic numbers) together with the theory of continued fractions
(reduction method). It is important to stress that the method can be implemented for any
given range of values for m. However, we chose m ∈ [1, 9] in order to avoid too much time
of computation (by using Mathematica software).

2. Auxiliary Results

The results of this section can be found in the classical literature about this kind of
Diophantine equation (see, for example, [20] and the references therein). For this reason,
we shall present here these tools as succinctly as possible.

The first useful result is due to Dresden and Du [38] (Theorem 1) who proved that

F(k)
n = g(α, k)αn−1 + En,k, (4)

with |En,k| < 1/2, where α is the dominant root of the polynomial ψk(x) := xk −∑k−1
j=0 xj.

Moreover, we have the notation g(x, y) := (x − 1)/(2 + (y + 1)(x − 2)). Furthermore,
Bravo and Luca [39] showed that

αn−2 ≤ F(k)
n ≤ αn−1. (5)

Another very useful ingredient is the following result à la Baker:

Lemma 1. Let γ1, . . . , γt ∈ R be algebraic numbers and let b1, . . . , bt be nonzero integer numbers.
Let D be the degree of the number field extension Q(γ1, . . . , γt)/Q and let Aj ∈ be any constant
such that

Aj ≥ max{Dh(γj), | log γj|, 0.16}, for j ∈ [1, t].

In addition, choose a constant B for which

B ≥ max{|b1|, . . . , |bt|}.

If γb1
1 · · · γ

bt
t 6= 1, then

|γb1
1 · · · γ

bt
t − 1| ≥ exp(−1.4 · 30t+3 · t4.5 · D2(1 + log D)(1 + log B)A1 · · · At).

This result is a version of a Matveev theorem [40] due to Bugeaud et al. (see its proof
in [41]). In the previous statement, h(γ) denotes the logarithmic height of an `-degree
algebraic number γ. This function satisfies the following properties (the proof of these facts
can be found in [42]):
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Lemma 2. We have

i. h(xy) ≤ h(x) + h(y);

ii. h(x + y) ≤ h(x) + h(y) + log 2;

iii. h(αr) = |r| · h(α), for all r ∈ Z.

Finally, the last tool was proved by Dujella and Pethő [43] (Lemma 5(a)):

Lemma 3. Let M be a positive integer and let p/q be a convergent of the continued fraction
expansion of the irrational number γ such that q > 6M. Let (A, B) ∈ R>0 ×R>1 and define
ε :=‖ µq ‖ −M ‖ γq ‖, where µ is a given real number. If ε > 0, then there is no solution to the
Diophantine inequality

0 < mγ− n + µ < A · B−k

in positive integers m, n and k satisfying

m ≤ M and k ≥ log(Aq/ε)

log B
.

In the previous statement, we used the notation ‖ x ‖= min{|x− n| : n ∈ Z}.
Now, we are ready to deal with the proof of the theorem.

3. The Proof of Theorem 1
3.1. Upper Bounds for n and ` in Terms of k

Let α and β be the dominant roots of the sequences (F(k))n and (F(k+m))n, respectively.
Moreover, set g := g(α, k), h := g(β, k + m), e1 := En,k and e2 := En,k+m. Thus, by using (4)
in Equation (3), we obtain

(
gαn−1 + e1

)(
hβn−1 + e2

)
= a

(
10` − 1

9

)
. (6)

After some computations, we get∣∣∣∣∣gh(αβ)n−1 − a
10`

9

∣∣∣∣∣ < 3βn−1, (7)

where we used that max{|e1|, |e2|} < 1/2 and α < β. Now, we divide the inequality by
gh(αβ)n−1, to derive ∣∣∣1− a(9gh)−1(αβ)n−110`

∣∣∣ < 96
αn , (8)

where we applied the inequality min{|g|, |h|} > 1/4 (see [44]). Let us define

Λ = ` log 10− (n− 1) log(αβ) + log θa,m, (9)

where θa,m := a(9gh)−1 (for a, m ∈ [1, 9]). Then, Equation (8) can be rewritten as

|eΛ − 1| < 96
αn . (10)

First, we claim that Λ 6= 0 (for ` > 1). On the contrary, we would have a 10`/9 =
gh(αβ)n−1. Now, we can apply to the previous equality, a nontrivial automorphism
σ : K → K (α 7→ α2 and β 7→ β2) of the Galois group of K := Q(α, β) to obtain (after
applying absolute values):
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10`/9 ≤ a · 10`/9 =
∣∣∣σ(a · 10`/9)

∣∣∣ = |σ(gh(αβ)n−1)| = |g2h2(α2β2)
n−1| < 4,

where g2 = g(α2, k) and h2 = g(β2, k + m) (both are smaller than 2). The previous inequal-
ity implies 10` ≤ 36 and so ` = 1 yielding ta contradiction. Therefore, we have that Λ 6= 0
as desired.

In order to use Lemma 1, we take t := 3,

γ1 := 10, γ2 := αβ, γ3 := θa,m

and

b1 := `, b2 := −n + 1, b3 := 1.

For this choice, we have D = [Q(α, β) : Q] ≤ k(k + m) ≤ k(k + 9) ≤ 6k2, for k ≥ 2.
Note that h(γ1) = log 10, and by Lemma 2

h(γ2) ≤ h(α) + h(β) =
log α

k
+

log β

k + m
≤ 2 log 2

k
.

Moreover, in [39] (p. 73), an estimate for h(g) was given. More precisely, it was proved
that h(g) < log(4k + 4). Thus, by using again Lemma 2, we have

h(γ3) ≤ h(9a) + h(g) + h(h) ≤ log(81) + log(4k + 4) + log(4k + 4m + 4) < 11.3 log k,

where we used that 4k + 4m + 4 ≤ 4k + 40 ≤ k5.6, for all k ≥ 2.
Thus, we can choose

A1 := 6k2 log 10, A2 := 12k log 2, A3 := 67.9k2 log k.

Note that max{|b1|, |b2|, |b3|} = max{`, n− 1}. However, by (3), we deduce that

22n−4 ≥ F(k)
n F(k+m)

n = a

(
10` − 1

9

)
> 10`−1

yielding n > 1.6`+ 0.3 > ` and so we can take B = n.
Now, we are in a position to use Lemma 1 which provides us (after some manipula-

tions) ∣∣∣1− a(9gh)−1(αβ)n−110`
∣∣∣ > exp(−1.4 · 1015k9(log k)2 log n). (11)

By combining (10) and (11), we obtain

n
log n

< 4.7 · 1016k9(log k)2. (12)

Since, for x > e, the function x 7→ x/ log x is increasing, then it is a simple exercise to
show that x

log x
< A implies that x < 2A log A. (13)

Thus, by using (13) in (12) for x := n and A := 2.7 · 1015k9(log k)2, we get

n < 2(4.7 · 1016k9(log k)2) log(4.7 · 1016k9(log k)2) < 2.4 · 1018k9(log k)3,

where

log(4.7) + 16 log 10 + 9 log k + 2 log log k < 46 log k,
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for all k ≥ 2.
In conclusion, we arrive at

` < n < 4.4 · 1018k9(log k)3 (14)

Now, the proof splits into two cases, as follows.

3.2. The Case k ≤ 322

By using (14), we have that, if k ≤ 322, then

` < n < 2.3 · 1043.

Now, we desire to apply the reduction method (based on Lemma 3) to make the
bounds much smaller. The further arguments work for Λ > 0 and Λ < 0 in a similar way.
So, to avoid unnecessary repetitions, we shall consider only the case when Λ > 0 (and then
Λ < eΛ − 1). Thus, by (8), we have

0 < Λ = ` log 10− (n− 1) log(αβ) + log θa,m < 96 · α−n.

We divide by log(αβ) to get

0 < `γk,m − (n− 1) + µk,a,m < 32 · (1.4)−n (15)

where γk,m := log 10/ log(αβ) and µk,a,m := log θa/ log(αβ).
We claim that γk,m is irrational for any integer k ≥ 2 (In fact, it suffices to notice that

(αβ)r is irrational for all integer r ≥ 1). Let qν,k,m be the denominator of the ν-th convergent
of the continued fraction of γk.m. After taking M := 2.3 · 1043, we use Mathematica to obtain

min
(k,m)∈[2,322]×[1,9]

q600,k > 6M.

Moreover

q′ := max
(k,m)∈[2,322]×[1,9]

q600,k < 3.4 · 10423.

Define εk,a,m := ‖µk,a,mq600,k,m‖−M‖γk,mq600,k,m‖, for k ∈ [3, 322] and a, m ∈ [1, 9]. Then,

ε′ := min
(k,a,m)∈[3,322]×[1,9]2

εk,a > 2.6 · 10−8.

Observe that the conditions of Lemma 3 are fulfilled for A = 32 and B = 1.4 and
hence there is no solution to inequality (15) (and then no solution to the Diophantine
Equation (3)) for n and l satisfying

` < M and n ≥ log(Aq′/ε′)
log B .

Since ` < n < M, then

n ≥ log(Aq′/ε′)

log B
< 3155.

Therefore, the possible solutions of (3) are in the range `, n ∈ [2, 3155] (since ` > 1
was already studied) and k ∈ [3, 322]. By using Mathematica, we can explicit F(k)

n F(k+m)
n

(mod 1010), for n ∈ [3, 3155], k ∈ [3, 322] and m ∈ [1, 9]. Now, we search for 10 digits
repdigits among these remainders (mod 1010) and none a solution was found. This
completes the proof.
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3.3. The Case k ≥ 323
3.3.1. Bound for k in Terms of n

In this case, we have

n < 4.4 · 1018k9(log k)3 < 2k/2 < 2(k+9)/2.

This allows us to apply the Bravo and Luca method (see [39]). The main idea of their
approach is to approximate α and β to 2 (in an explicit form). We shall omit the details
since it is very well explained in [39]. Therefore, we can write

gαn−1 = 2n−2 + δ1/2 + 2n−1η1 + η1δ1

and

hβn−1 = 2n−2 + δ2/2 + 2n−1η2 + η2δ2,

where η1 := g− 1/2, η2 := h− 1/2, δ1 := 2n−1 − α and δ2 := 2n−1 − β. Moreover, they
proved that

|ηi| < 2(k + i− 1)/2k+i−1 and |δi| < 2n+2/2(k+i−1)/2, for i ∈ {1, 2}.

Now, we can use all these information to derive (after many straightforward manipu-
lations) that

22n−4 = (gαn−1 − δ1/2− 2n−1η1 − η1δ1)(hβn−1 − δ2/2− 2n−1η2 − η2δ2) = gh(αβ)n−1 + tn,k,

where |tn,k| < 15 · 22n−1/2k/2, for k ≥ 323. Thus

∣∣∣∣∣22n−4 − a · 10`

9

∣∣∣∣∣ ≤
∣∣∣∣∣gh(αβ)n−1 − a

10`

9

∣∣∣∣∣+ |tn,k| < 3βn−1 + 15 · 22n−1

2k/2 < 18 · 22n−1

2k/2 ,

where we used the inequality (7). We divide the previous inequality by 22n−4 to have∣∣∣∣1− 16a
9

10` · 4−n
∣∣∣∣ < 144

2k/2 . (16)

Clearly, the left-hand side above is nonzero (otherwise 5 would divide 9 · 4n). We shall
apply Lemma 1 again for t := 3,

γ1 := 10, γ2 := 4, γ3 := 16a/9

and

b1 := `, b2 := −n, b3 := 1.

Therefore, D = 1 and h(γi) = log γi (i ∈ {1, 2}), and by Lemma 2, h(γ3) < 7.2. Thus,
we can choose

A1 := log 10, A2 := log 4, A3 := 7.2

and B = n and Lemma 1 gives∣∣∣∣1− 16a
9

10` · 4−n
∣∣∣∣ > exp(−6.6 · 1012 log n). (17)

By combining (16) and (17), we get

k < 1.8 · 1013 log n. (18)
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3.3.2. Explicit Bounds for n, ` and k and the Reduction Method

By (14) and (18), we have

k < 1.8 · 1013 log(4.4 · 1018k9(log k)3).

Since the left-hand side is O(k), while the right-hand one is O(log k), then the previous
inequality is valid only for finitely many values of k (since k/ log k→ 0 as k→ ∞). In order
to make this explicitly, after some calculations, the previous inequality becomes

k < 5.2 · 1019 log k.

Now, by using Mathematica software, we infer that k < 2.7 · 1021 and n < 5.4 · 10214.
Therefore, we need to make these bounds smaller. For that, we shall use Lemma 3. Take
Γ := (`− 1) log 10− n log 4 + log(160a/9). By (16),

|eΓ − 1| < 144
2k/2 .

Again, we can suppose that Γ > 0 (otherwise, use that 1− e−x = |ex − 1|, if x < 0)
to write

0 < (`− 1) log 10− n log 4 + log(160 a/9) < 144 · 2k/2.

Dividing through by log 4, we obtain

0 < (`− 1)γ− n + µa < 104 · (1.4)−k, (19)

where γ := log 10/ log 4 and µa := log(160 a/9)/ log 4, for a ∈ [1, 9].
Clearly, γ is irrational and Let qν be the denominator of the ν-th convergent of its

continued fraction. Taking M := 3.4 · 10214, we use Mathematica again to obtain that
q454 > 6M.

Define εa := ‖µa q454‖ −M‖γq454‖, for a ∈ [1, 9]. Then, we obtain

ε′ := min
a∈[1,9]

εa > 0.009.

Thus, all conditions of Lemma 3 are satisfied for A = 104 and B = 1.4 and hence there
is no solution to inequality (19) for ` and k satisfying

`− 1 < M and k ≥ log(A q454/ε′)

log B
.

Since ` − 1 < n < M, we have that k <
log(A q454/ε′)

log B < 1506. Thus n < 3.8 · 1049.

By repeating this process again for the new M = 3.8 · 1049 (we use q120), we obtain k ≤ 365
and n < 5.7 · 10493. To conclude, we apply one more time Lemma 3 for the new choice of
M := 3.8 · 1049 (for q107) and hence k ≤ 322.

This contradicts our assumption that k ≥ 323. In conclusion, there is no solution to
the Diophantine Equation (3) for k ≥ 323.

4. Other Similar Equations: The Elementary Method

It is important to notice that an elementary method does not provide a reasonable
approach to deal with the Equation (1). The possible reasons can be because the product
(in the left-hand side) possesses only two terms, n can be much larger than k + m as well as
the very limited knowledge about arithmetic properties of repdigits (from that equation
we infer only that ` must be a composite number).

However, we shall provide here some similar Diophantine equations which can be
solved by using basic tools.

The first one is when the order is larger than the index. More precisely
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Proposition 1. The Diophantine equation

F(k+n)
n = a

(
10` − 1

9

)
, (20)

does not have a solution in positive integers n, a, k, `, with k ≥ 2, ` > 1 and a ∈ [1, 9].

The proof follows because F(k+n)
n = 2n−2, for all n ∈ [2, k + n + 1] and so F(k+n)

n ≡ 0
(mod 16), for all n ≥ 6. Since none repdigit is a multiple of 16, then n ∈ [1, 5]. However,
F(k+5)

5 < 10 which contradicts ` > 1.
Another possible problem is a symmetric equation (between k and n) which forces the

previous case. For example:

Proposition 2. The Diophantine equation

F(k)
n F(n)

k = a

(
10` − 1

9

)
, (21)

does not have a solution in positive integers n, a, k, `, with k ≥ 2, ` > 1 and a ∈ [1, 9].

The proof is similar to the previous one by using that either n ≤ k + 1 or k ≤ n + 1.
In the previous propositions, we used the fact that F(k)

n is a power of 2, when n ≤ k + 1.
However, we can use another approach (since F(k)

n is never a power of two, for n > k + 1,
see [39]) for equations related to the product of “many” consecutive k-bonacci numbers.
More precisely:

Proposition 3. The Diophantine equation

F(k)
n F(k)

n+1 · · · F
(k)
n+4k = a

(
10` − 1

9

)
, (22)

does not have a solution in positive integers n, a, k, `, with k ≥ 2, ` > 1 and a ∈ [1, 9].

For proving this, we notice that the recurrence of (F(k)
n )n yields

F(k)
n+1 = 2F(k)

n − F(k)
n−k.

Thus, F(k)
n+(k+1) ≡ F(k)

n (mod 2), i.e., (F(k)
n )n is a (k + 1)-periodic sequence (mod 2).

Thus, the sequence (F(k)
n )n contains infinitely many even numbers (for example, F(k)

3+t(k+1),

for all t ≥ 0). For this reason, at least one among the numbers F(k)
n , F(k)

n+1, . . . , F(k)
n+k

is even. The same happens for the lists {F(k)
n+k+1, . . . , F(k)

n+2k}, {F
(k)
n+2k+1, . . . , F(k)

n+3k} and

{F(k)
n+3k+1, . . . , F(k)

n+4k}. Hence, the product

F(k)
n F(k)

n+1 · · · F
(k)
n+4k

is a multiple of 16 and so it can not be a repdigit.

5. Conclusions

For any integer k ≥ 2, the sequence of the k-generalized Fibonacci numbers (or k-
bonacci numbers) is defined by the k initial values F(k)

−(k−2) = · · · = F(k)
0 = 0 and F(k)

1 = 1
and such that each term afterwards is the sum of the k preceding ones. In this paper, we
search for solutions of the Diophantine equation F(k)

n F(k+m)
n = a(10` − 1)/9 for positive
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integers k, n, `, m and a, with k ≥ 2, ` ≥ 2 and a, m ∈ [1, 9]. In particular, the only
repdigits, which can be written as a product of nth terms of two generalized Fibonacci
sequences with consecutive orders, has only one digit. Our approach to proving this fact is
to combine the Baker’s theory (on lower bounds for linear forms in the logarithms) with a
reduction method from the theory of continued fractions (due to Dujella and Pethő). In the
concluding section, we present some similar problems which can be solved by using only
elementary tools.
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17. Şiar, Z.; Erduvan, F.; Keskin, R. Repdigits as product of two Pell or Pell-Lucas numbers. Acta Math. Univ. Comen. 2019, 88,

247–256.
18. Bitim, B.D. On the Diophantine equation Ln − Lm = 2 · 3a. Period. Math. Hung. 2019, 79, 210–217.
19. Trojovský, P. On Diophantine equations involving Lucas sequences. Open Math. 2019, 17, 942–946. [CrossRef]
20. Trojovský, P. On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes. Mathematics 2019, 7, 700. [CrossRef]
21. Alahmadi, A.; Altassan, A.; Luca, F.; Shoaib, H. Fibonacci numbers which are concatenations of two repdigits. Quaest. Math. 2019.

[CrossRef]
22. Keskin, R.; Erduvan, F. Repdigits in the base b as sums of four Balancing numbers. Math. Bohem. 2020. [CrossRef]
23. Panda, G.K.; Sahukar, M.K. Repdigits in Euler functions of associated Pell numbers. Proc. Math. Sci. 2020, 130, 25. [CrossRef]
24. Adegbindin, C.; Luca, F.; Togbé, A. Pell and Pell–Lucas numbers as sums of two repdigits. Bull. Malays. Math. Sci. Soc. 2020, 43,

1253–1271. [CrossRef]
25. Trojovský, P. Fibonacci numbers with a prescribed block of digits. Mathematics 2020, 8, 639. [CrossRef]
26. Ddamulira, M. Repdigits as sums of three Padovan number. Bol. Soc. Mat. Mex. 2020, 26, 1–15. [CrossRef] [PubMed]
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