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Abstract: This study presents a new one-parameter family of the well-known fixed point iteration
method for solving nonlinear equations numerically. The proposed family is derived by implementing
approximation through a straight line. The presence of an arbitrary parameter in the proposed family
improves convergence characteristic of the simple fixed point iteration as it has a wider domain of
convergence. Furthermore, we propose many two-step predictor–corrector iterative schemes for
finding fixed points, which inherit the advantages of the proposed fixed point iterative schemes.
Finally, several examples are given to further illustrate their efficiency.
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1. Introduction

The fixed point iteration is probably the simplest and most important root-finding
algorithm in numerical analysis [1,2]. The fixed point methods and fixed point theorems
have many applications in mathematics and engineering. One way to study numerical
ordinary differential solvers and Runge–Kutta methods is to convert them as fixed point
iterations. The well-known Newton’s method [2–17] is also a special case of an iteration
method. The fixed point theory has been voluminously used as a tool to find the solution
of function-differential equations. Furthermore, the fixed point problems are equivalent
to root-finding problems and sometimes easier to analyze while posing some strange and
cute problems by themselves.

Suppose that we wish to find the approximate solution of the nonlinear equation

f (x) = 0, (1)

where f : [a, b] ⊂ R→ R is a sufficiently differentiable function with simple zeros.
This can be rewritten to obtain an equation of the form

x = φ(x), (2)
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in such a way that any solution of (2), which is a fixed point, is a root of the original
Equation (1). Root-finding problems and fixed-point problems are equivalent classes in the
following sense:

f (x) has a zero at x = α ⇔ φ(x) = x− f (x) has a fixed point at x = α.

Geometrically, the fixed point occurs where the graph of y = φ(x) intersects the graph
of the straight line y = x. Starting from a suitable approximation x0 and consider that the
recursive process:

xn+1 = φ(xn), n ≥ 0, 1, 2, · · · , (3)

is called a fixed point iteration method. This method is locally linearly convergent if
|φ′(x)| < 1 for all x ∈ [a, b].

2. Geometric Derivation of the Family

Assume that Equation (2) has a fixed point at x = α. Let

y = φ(x) (4)

represent the graph of the function φ(x).
Let x0 be an initial guess to the required fixed point and φ(x0) be the corresponding

point on the graph of the function y = φ(x). The idea is to approximate nonlinear function
y = φ(x) by a linear approximation. Therefore, we assume that(

y− φ(x0)
)
+ m(x− x0) = 0 (5)

be a linear approximation to the curve y = φ(x), where m ≥ 0 is the slope of the straight
line. The expression (5) can be rewritten as y = m(x0 − x) + φ(x0), and this line is
passing through the points (x0, φ(x0)) and

(
x0 +

φ(x0)
m , 0

)
. More details can be found in

the following Figure 1:

Figure 1. The graph of approximate nonlinear function y = φ(x) by a linear approximation.

The point of intersection of (5) with the straight line y = x will be a required fixed
point and let x = x1 be this point of intersection. Therefore, at the point of intersection, the
expression (5) yields

x1 =
mx0 + φ(x0)

m + 1
. (6)
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Without loss of generality, the general form of the above expression (6) can be written
as follows:

xn+1 =
mxn + φ(xn)

m + 1
, n ≥ 0. (7)

Next, we want to demonstrate the convergence order of the proposed iterative
scheme (7). Therefore, we rewrite the expression (7) in the following way:

xn+1 =
mxn + φ(xn)

m + 1
= h(xn),

or we can say that h(x) =
mx + φ(x)

m + 1
. If α is a fixed point of φ(x) = x, then

h(α) =
mα + φ(α)

m + 1
=

mα + α

m + 1
= α.

So, we conclude that α is a root of h(x) = 0.

Theorem 1. Let φ(x) and φ′(x) be continuous functions on the interval [a, b]. In addition, we
assume that m ≥ 0 and a ≤ x ≤ b⇒ a ≤ φ(x) ≤ b, λ = max{|h′(x)|} for all x ∈ [a, b], then
(i) x = h(x) has a unique solution α ∈ [a, b]; (ii) for any initial guess x0 ∈ [a, b], the iteration
xn+1 = h(xn), n = 0, 1, 2, . . . will converge to α.

Proof. First of all, we will prove the first part. Since φ′(x) exists in the interval [a, b],
therefore, this implies that h′(x) exists in the interval [a, b]. For any two points u, v ∈ [a, b],
we have

h(u)− h(v) = h′(c)(u− v), for some c ∈ (u, v),

which yields further
|h(u)− h(v)| = |h′(c)||u− v|,

≤ λ|u− v|.
(8)

Let us suppose that there are two solutions α and β of x = h(x) in the interval [a, b].
So, we have

h(α) = α, and h(β) = β.

From (8), we further have

|h(α)− h(β)| ≤ λ|α− β|.

If α 6= β, then λ ≥ 1 which contradicts the fact that λ < 1. Therefore, we have

α = β.

Hence, x = h(x) has a unique solution in [a, b].
Next, we move to the second part.
If x0 ∈ [a, b], then φ(x0) ∈ [a, b]. This further implies that

mx0 + φ(x0)

(m + 1)
∈ [a, b].

Therefore, h(x0) ∈ [a, b] and hence x1 ∈ [a, b].
Repeating the above process inductively, one gets {xn} ∈ [a, b].
Furthermore, one can have

|xn − α| = |h(xn−1)− h(α)|,
= |h′(cn)||xn−1 − α|, for some cn ∈ (α, xn−1),

≤ λ|xn−1 − α|.
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Continuing inductively

|xn − α| ≤ λn|x0 − α| → 0, (as λ < 1)

Hence, the sequence {xn} of xn+1 = h(xn) converges to α.

Theorem 2. Let φ : R→ R be an analytic function in the region containing the fixed point x = α.
In addition, we assume that initial guess x = x0 is sufficiently close to the required fixed point for
guaranteed convergence. Then, the proposed scheme (7) has at least linear convergence

en+1 =
(m + φ′(α)) en

m + 1
+

φ′′(α) e2
n

m + 1
+ O(e3

n).

In the case m = −φ′(α) ≈ −φ′(xn) ≈ −
(

φ(xn+1)− φ(xn)

xn+1 − xn

)
, we obtain

m = −

φ
(

φ(xn)
)
− φ(xn)

φ(xn)− xn

, (9)

since xn+1 = φ(xn), then the scheme (7) reaches at least the second order of convergence.

Proof. Suppose xn ≈ α. We can write

h(xn) = h(α) + h′(α)(xn − α) + h′′(α)
(xn − α)2

2!
+ O((xn − α)3),

by Taylor’s expansion in the neighborhood of fixed point “α”.
Therefore, one gets

xn+1 − α = h′(α)(xn − α) + h′′(α)
(xn − α)2

2!
+ O((xn − α)3). (10)

As h(x) =
mx + φ(x)

m + 1
, we get h′(α) =

m + φ′(α)

m + 1
and h′′(α) =

φ′′(α)

m + 1
.

Substituting these values in (10), one can have

en+1 =
(m + φ′(α)) en

m + 1
+

φ′′(α) e2
n

m + 1
+ O(e3

n).

Furthermore, if m = −φ′(α), then en+1 =
φ′′(α) e2

n
m + 1

+ O(e3
n).

This implies that scheme (7) has at least second-order convergence.

Special Cases

Here, we shall consider the role of the parameter m ≥ 0 and derive the various
following formulas as follows:

1. For m = 0, Formula (7) corresponds to the classical fixed point method xn+1 = φ(xn).

2. For m =
1− γ

γ
, where γ ∈ (0, 1], Formula (7) corresponds to the following well-

known Schaefer’s iteration scheme [18]

xn+1 = (1− γ)xn + γ φ(xn).
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3. For m =
1− γn

γn
, where {γn} is a real sequence in (0, 1], Formula (7) corresponds to

the following well-known Mann’s iteration [19]

xn+1 = (1− γn)xn + γn φ(xn).

4. By inserting m = 1, in scheme (7), one achieves the following well-known Kranselski’s
iteration [20]

xn+1 =
xn + φ(xn)

2
,

denoted by (KM) for the computational results (see also more recent work on this
iteration in the book [21]).
Similarly, we can derive several other formulas by taking different specific values
of m. Furthermore, we proposed the following new schemes on the basis of some
standard means of two quantities xn and φ(xn) of same signs:

5. Geometric mean-based fixed point formula is given by

xn+1 =
√

xnφ(xn), where x0 6= 0.

6. Harmonic mean-based fixed point formula is defined by

xn+1 =
2xnφ(xn)

xn + φ(xn)
, where x0 6= 0.

7. Centroidal mean-based fixed point formula is mentioned as follows:

xn+1 =
2
(

x2
n + xnφ(xn) + φ2(xn)

)
3
(

xn + φ(xn)
) .

8. The following fixed point formula based on the Heronian mean is defined as

xn+1 =
xn +

√
xnφ(xn) + φ(xn)

3
.

9. The fixed point formula based on Contra-harmonic is depicted as follows:

xn+1 =
x2

n + φ2(xn)

xn + φ(xn)
.

Remark 1. Geometric mean-based fixed point formula and Heronian mean formula are applicable
for finding positive fixed points only.

3. Two-Step Iterative Schemes

In this section, we present a new two-step predictor–corrector iterative schemes using
the modified fixed point methods as predictor. There are several two-point [1,22,23] and
multi-point [24,25] iterative schemes in the literature for finding the fixed points. Here, we
mention some of them as follows:

1. Ishikawa [22] has proposed the following iterative scheme:

xn+1 = (1− βn)xn + βn φ(yn),

yn = (1− γn)xn + γn φ(xn),
(11)
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where {βn} and {γn} are sequences of positive numbers in (0, 1] as a generalization of
the Mann [19] iteration scheme. We denote this method as (IS) for the computational
work and choose βn = γn = 1

n3+1 .
2. Agarwal et al. [1] have proposed the following iteration scheme defined as

xn+1 = (1− βn) φ(xn) + βn φ(yn),

yn = (1− γn)xn + γn φ(xn),
(12)

where {βn} and {γn} are sequences of positive numbers in (0, 1]. We call this scheme
by (AS) for the computational work and consider βn = γn = 1

n3+1 . For γn = 0, it
reduces to the well-known Mann iteration scheme.

3. Thianwan [23] defined the following two-step iteration scheme as

xn+1 = (1− βn)yn + βn φ(yn),

yn = (1− γn)xn + γn φ(xn),
(13)

where {βn} and {γn} are sequences of positive numbers in (0, 1]. We denote this
method as (TS) for the computational work and choose βn = γn = 1

n3+1 . This scheme
is also known as modification of Mann’s method.

Modified Schemes

These elementary schemes allow us to propose the following iterative schemes with
any of the proposed methods as the first predictor step and these existing methods as the
second step. For the sake of simplicity, we consider some of the special cases as a predictor
part. Therefore, we have the following modified schemes depicted in the Table 1.

Table 1. Some modified schemes based on Ishikawa’s, Agarwal and Thianwan as corrector, respectively.

Predictor
Ishikawa’s Agarwal Thianwan

Corrector Corrector Corrector

yn =
√

xnφ(xn) xn+1 = (1− βn)xn + βn φ(yn), xn+1 = (1− γn) φ(xn) + γn φ(yn), xn+1 = (1− γn)yn + γn φ(yn),

called by (IGM) (AGM) (TGM)

yn = 2xnφ(xn)
xn+φ(xn)

xn+1 = (1− βn)xn + βn φ(yn), xn+1 = (1− γn) φ(xn) + γn φ(yn), xn+1 = (1− γn)yn + γn φ(yn),

known by (IHM) (AHM) (THM)

yn = xn+2φ(xn)
3 xn+1 = (1− βn)xn + βn φ(yn), xn+1 = (1− γn) φ(xn) + γn φ(yn), xn+1 = (1− γn)yn + γn φ(yn),

denoted by (IOM1) (AOM1) (TOM1)

yn = xn+4φ(xn)
5 xn+1 = (1− βn)xn + βn φ(yn), xn+1 = (1− γn) φ(xn) + γn φ(yn), xn+1 = (1− γn)yn + γn φ(yn),

called by (IOM2) (AOM2) (TOM2)

yn = xn+10φ(xn)
11 xn+1 = (1− βn)xn + βn φ(yn), xn+1 = (1− γn) φ(xn) + γn φ(yn), xn+1 = (1− γn)yn + γn φ(yn),

known by (IOM3) (AOM3) (TOM3)

4. Numerical Examples

The theoretical results developed in the previous sections are tested in this section.
We choose our methods by substituting m = 1

2 , m = 1
4 , m = 1

10 and m = −φ′(xn) in the
proposed scheme (7), denoted by OM1, OM2, OM3 and OM4, respectively. In addition,
we select methods GM and HM from special cases (5) and (6), respectively.

In order to check the effectiveness of our results, we consider five different types of
nonlinear problems which are illustrated in examples (1)–(5). In the Table 2, we compared
them with classical fixed point method. In addition, we contrast our method to the existing
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Ishikawa and Agarwal methods, and the results are mentioned in the Tables 3 and 4,
respectively. Finally, we compared them with classical Mann’s and Thianwan methods
and computational depicted in the Table 5. In all the tables, we mentioned the results after
twelve iterations (i.e., k = 12) with γn = βn = 1

n3+1 .
Additionally, we obtain the computational order of convergence by adopting the

pursuing techniques

ρ =
ln ‖xk+1−α‖

|xk−α‖

ln ‖xk−α‖
‖xk−1−α‖

, for each k = 1, 2, . . . (14)

or the approximate computational order of convergence (ACOC) [26]

ρ∗ =
ln ‖xk+1−xk‖
‖xk−xk−1‖

ln ‖xk−xk−1‖
‖xk−1−xk−2‖

, for each k = 2, 3, . . . (15)

Computations are performed with the package Mathematica 9 with multiple precision
arithmetic. The a(±b) stands for a× 10±b.

Example 1. Let us consider the following standard test problem

f (x) = cos x− xex. (16)

The corresponding fixed point iterative method is given as follows:

φ(xn) = e−x cos x. (17)

The required zero of expression (16) and fixed point for (17) is α = 0.517757363682459 with
initial guess x0 = 0.52.

Example 2. We choose the following expression for the comparison with other different fixed point
methods

f (x) = e−x − x. (18)

We can easily obtained the following fixed point iterative method based on expression (18)

φ(xn) = e−xn . (19)

The required zero of expression (18) and fixed point for (19) is α = 0.567143289740340 with
initial guess x0 = 0.6.

Example 3. Here, we assume the following expression

f (x) = sin x− 10(x− 1). (20)

Based on the expression (20), we have the following fixed point iterative method:

φ(xn) = 1 +
sin x

10
. (21)

The required zero of expression (20) and fixed point for (21) is α = 1.08859775239789. We
select x0 = 1.1 as the initial guess for comparison.

Example 4. Assume another test problem as follows

f (x) = x3 + x2 − 1. (22)
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Corresponding to expression (22), we have

φ(xn) =
1√

xn + 1
, (23)

as the fixed point iterative method. The required zero of expression (22) and fixed point for (23) is
α = 0.754877666347995. We assume the starting point x0 = 0.8 for contrast.

Example 5. Here, we assume another expression

f (x) = cos x− sin x. (24)

We have the following expression for the fixed point method

φ(xn) = x + cos x− sin x. (25)

The required zero of expression (24) and fixed point for (25) is α = 0.785396509573049. We
consider x0 = 0.8 as the initial guess for comparison.

Table 2. Comparison of different fixed point methods on Examples (1)–(5) with k = 12.

Examples

E.C.

FIM KM GM HM OM1 OM2 OM3 OM4R.E.

ρ

(1)
|xk+1 − xk| 3.4(−4) 9.3(−16) 9.1(−16) 8.9(−16) 8.1(−11) 2.2(−7) 2.0(−5) 8.2(−14, 080)

f (xk) 5.7(−4) 3.1(−15) 3.1(−15) 3.0(−15) 4.6(−11) 4.7(−7) 3.7(−5) 2.5(−14, 079)

ρ 0.9998 1.000 1.000 1.000 1.000 1.000 1.000 2.000

(2)
|xk+1 − xk| 5.6(−5) 2.8(−10) 2.5(−10) 2.3(−10) 1.9(−18) 2.9(−9) 1.6(−6) 6.5(−9126)

f (xk) 5.6(−5) 5.6(−10) 5.0(−10) 4.5(−10) 2.9(−18) 3.6(−9) 1.7(−6) 1.0(−9125)

ρ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.000

(3)
|xk+1 − xk| 1.1(−18) 2.3(−6) 2.3(−6) 2.3(−6) 3.9(−8) 2.7(−10) 3.0(−13) 2.6(−13, 415)

f (xk) 1.1(−17) 4.6(−5) 4.5(−5) 4.5(−5) 5.9(−7) 3.4(−9) 3.3(−12) 2.5(−13, 414)

ρ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.000

(4)
|xk+1 − xk| 5.3(−10) 3.7(−7) 3.5(−7) 3.4(−7) 8.2(−11) 1.1(−20) 8.3(−14) 2.6(−10, 135)

f (xk) 1.4(−9) 2.0(−6) 1.9(−6) 1.8(−6) 3.3(−10) 3.7(−20) 2.4(−13) 8.3(−10, 135)

ρ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.000

(5)
|xk+1 − xk| 5.3(−7) 4.1(−9) 4.0(−9) 3.9(−9) 1.7(−17) 4.4(−13) 5.5(−9) 6.0(−1, 102, 284)

f (xk) 5.3(−7) 8.2(−9) 8.0(−9) 7.9(−9) 2.5(−17) 5.5(−13) 6.1(−9) 8.5(−1, 102, 284)

ρ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.000

FIM, E.C. and R.E. stand for classical fixed point method, errors between two consecutive iterations and residual errors in the corresponding
function by using the obtained fixed point, respectively.
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Table 3. Comparison of our methods with existing Ishikawa method based on k = 12 number of iterations.

Examples
E.C.

IS IGM IHM IOM1 IOM2 IOM3
R.E.

(1)
|xk+1 − xk| 5.1(−7) 3.9(−8) 3.9(−18) 9.1(−8) 1.8(−7) 2.3(−7)

f (xk) 1.5(−3) 1.9(−4) 1.9(−4) 5.8(−4) 1.5(−3) 2.5(−3)

(2)
|xk+1 − xk| 3.1(−6) 8.7(−7) 7.9(−7) 1.7(−7) 1.1(−6) 1.8(−6)

f (xk) 5.4(−3) 2.1(−3) 1.9(−3) 4.8(−4) 3.5(−3) 6.6(−3)

(1)
|xk+1 − xk| 5.7(−9) 6.6(−8) 6.6(−8) 4.6(−8) 3.0(−8) 1.7(−8)

f (xk) 9.9(−5) 1.1(−3) 1.1(−3) 7.7(−4) 5.0(−4) 2.8(−4)

(4)
|xk+1 − xk| 5.3(−7) 8.6(−7) 8.4(−7) 4.4(−7) 7.2(−8) 2.4(−7)

f (xk) 2.4(−3) 4.4(−3) 4.3(−3) 2.4(−3) 4.0(−4) 1.3(−3)

(5)
|xk+1 − xk| 6.9(−7) 4.0(−7) 5.1(−7) 8.2(−8) 1.9(−7) 4.2(−7)

f (xk) 1.2(−3) 8.7(−4) 8.6(−4) 2.0(−4) 4.9(−4) 1.2(−3)

IS stands for Ishikawa’s scheme. From the above numerical results, we concluded that our methods IGM, IHM and IOM1, have smaller
absolute residual errors and smaller errors difference between two iterations as compared to the original Ishikawa method in all the
examples. On the other hand, our methods, IOM2 and IOM3, have similar computational results to Ishikawa method.

Table 4. Comparison of our methods with standard Agarwal scheme after k = 12 number of iterations.

Examples
E.C.

AS AGM AHM AOM1 AOM2 AOM3
R.E.

(1)
|xk+1 − xk| 1.5(−4) 1.4(−5) 1.4(−5) 2.2(−5) 3.1(−5) 3.4(−5)

f (xk) 2.5(−4) 2.4(−5) 2.4(−5) 3.7(−5) 5.3(−5) 5.8(−5)

(2)
|xk+1 − xk| 1.9(−5) 6.1(−6) 5.6(−6) 8.6(−7) 4.1(−6) 5.2(−6)

f (xk) 1.9(−5) 6.1(−6) 5.6(−6) 8.6(−7) 4.1(−6) 5.2(−6)

(3)
|xk+1 − xk| 3.7(−20) 3.9(−15) 3.9(−19) 5.1(−18) 1.4(−19) 6.8(−20)

f (xk) 3.7(−19) 3.9(−14) 3.9(−18) 5.1(−17) 1.4(−18) 6.8(−19)

(4)
|xk+1 − xk| 7.4(−11) 1.3(−10) 1.2(−10) 5.3(−11) 7.2(−12) 2.0(−11)

f (xk) 2.0(−10) 3.4(−10) 3.3(−10) 1.4(−10) 1.9(−11) 5.2(−11)

(5)
|xk+1 − xk| 1.4(−7) 8.6(−8) 8.5(−8) 1.3(−8) 2.4(−8) 4.2(−8)

f (xk) 1.4(−7) 3.6(−8) 8.5(−8) 1.3(−8) 2.4(−8) 4.2(−8)

AS stands for Agarwal’s scheme. We deduced from the obtained numerical results that our methods, AGM, AHM, AOM1, AOM2 and
AOM3, have better numerical results as compared to the classical Agarwal scheme in examples 1, 2 and 5. In addition, our methods have
similar numerical results to the Agarwal method in the case of examples 3 and 4.
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Table 5. Comparison of our methods with classical Mann’s and Thianwan method after k = 12 number of iterations.

Examples
E.C.

MS TS TGM THM TOM1 TOM2 TOM3
R.E.

(1)
|xk+1 − xk| 1.2(−7) 1.3(−8) 4.9(−17) 4.8(−17) 9.7(−13) 1.2(−8) 1.1(−6)

f (xk) 3.6(−4) 1.9(−5) 1.6(−16) 1.6(−16) 2.4(−12) 2.5(−8) 2.0(−6)

(2)
|xk+1 − xk| 2.6(−6) 4.9(−7) 2.3(−11) 2.1(−11) 1.7(−19) 2.6(−10) 3.4(−7)

f (xk) 4.5(−3) 4.2(−4) 4.6(−11) 4.3(−11) 2.6(−19) 3.2(−10) 3.7(−7)

(3)
|xk+1 − xk| 1.3(−7) 5.1(−9) 4.6(−8) 4.6(−8) 8.0(−10) 5.5(−12) 6.8(−20)

f (xk) 2.2(−3) 4.4(−5) 4.8(−7) 9.2(−7) 1.2(−8) 6.9(−11) 6.8(−19)

(4)
|xk+1 − xk| 2.7(−6) 2.8(−7) 2.4(−8) 2.3(−8) 5.4(−12) 7.4(−22) 5.5(−15)

f (xk) 9.5(−3) 6.4(−4) 1.3(−7) 1.2(−7) 2.2(−11) 2.4(−21) 1.6(−14)

(5)
|xk+1 − xk| 1.1(−6) 2.0(−7) 3.7(−10) 3.7(−10) 1.6(−18) 4.0(−14) 5.1(−10)

f (xk) 1.9(−3) 1.8(−4) 7.5(−10) 7.4(−10) 2.3(−8) 5.0(−14) 5.6(−10)

MS and TS stand for Mann’s and Thianwan’s schemes, respectively. On the basis of computational results, we inferred that our methods,
TGM, THM, TOM1, TOM2 and TOM3, have better performance in the form of absolute residual error and smaller error difference between
two iterations as compared to the classical Mann’s and Thianwan schemes.

5. Role of the Parameter ‘m’

The presence of the arbitrary slope ‘m’ in the proposed family has the following character-
istics:

1. Since a ≤ x ≤ b implies that a ≤ φ(x) ≤ b. Therefore, the parameter ‘m ≥ 0’ ensures
that the fixed point divides the interval between x0 and φ(x0) internally in the ratio
m : 1 or 1 : m, otherwise, there will be an external division and hence, h(x) /∈ [a, b].

2. Since h(x) =
mx + φ(x)

m + 1
. As |h′(xn)| < 1 is the sufficient condition for the conver-

gence of modified fixed point method, then we have∣∣∣∣m + φ′(xn)

m + 1

∣∣∣∣ < 1.

This further implies that
− (2m + 1) < φ′(xn) < 1. (26)

This is the interval of convergence of our proposed scheme (7). As m ≥ 0, so (26)
represents a wider domain of convergence in contrast to the classical fixed point
method x = φ(x). In particular for m = 1 (arithmetic mean), (26) gives the following
interval of convergence as

−3 < φ′(xn) < 1.

Therefore, the arithmetic mean formula has a bigger interval of convergence as
compared to simple fixed point method.

Remark 2. For x = φ(x), we have different ways to choose φ(x); however, we have to select φ(x)
in such a way that the fixed point iteration method converges to its fixed point. We shall illustrate it
by taking the following two examples:
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Example 6. We choose the following expression for the comparison of simple fixed point method
with the modified fixed point method, namely, arithmetic mean formula

f (x) = x2 − x− 1. (27)

Corresponding to expression (27), one has

φ(xn) = x2
n − 1. (28)

One of the required zero of expression (27) and fixed point for (28) is α = −0.6180339887498948
with the initial guess x0 = −0.6. For φ(x) = x2 − 1, the fixed point method diverges for the
interval [−0.65,−0.55]. Here, φ′(x) = 2x and −0.65 ≤ x ≤ −0.55 implies −1.3 ≤ 2x ≤ −1.1.
This further implies −1.3 ≤ φ′(x) ≤ −1.1, which violates the condition of |φ′(x)| < 1 for
all x ∈ [−0.65,−0.55]. On the other hand, the interval of convergence for arithmetic mean for-
mula is [−3, 1] and φ′(x) clearly lies with in this interval. For m = 1, Formula (7) becomes

xn+1 =
xn + φ(xn)

2
. This further gives

xn+1 =
x2

n + xn − 1
2

.

The modified arithmetic mean fixed point method converges to α = −0.6180339887498948
for the initial guess x0 = −0.6.

Example 7. Let us consider the general square root finding problem by fixed point methods. We
wish to compute square roots of x =

√
a for a > 0. This is equivalent to find the roots of x2 = a.

For example, let a = 4. Therefore, the corresponding function becomes

f (x) = x2 − 4. (29)

Consider the following two possible rearrangements of f (x) as

1. xn+1 = φ(xn) =
4
xn

, n = 0, 1, 2, · · · ,

2. xn+1 = φ(xn) =
xn

2
+

2
xn

, n = 0, 1, 2, · · · .

One of the required zero of expression (29) and fixed point for the above two sequences is α = 2
with initial guess x0 = 1.99. The first considered sequence diverges as |φ′(xn)| > 1, and the second
one converges for the simple fixed point method as |φ′(xn)| < 1, for all xn ∈ [1.95, 2.05]. Let us
discuss the first sequence further. We have

φ(xn) =
4
xn

.

The interval of convergence for arithmetic mean formula is [−3, 1] and φ′(x) clearly lies

within this interval. For m = 1, Formula (7) becomes xn+1 =
xn + φ(xn)

2
.

This further implies

xn+1 =
xn

2
+

2
xn

.

The modified arithmetic mean fixed point method converges to α = 2 for the initial guess
x0 = 1.99, since |φ′(xn)| < 1 for all xn ∈ S := [1.95, 2.05].

Remark 3. We can do better sometimes with the selection of initial points or the convergence rate
or order, if we consider iteration functions using similar information. As an example, consider
Newton’s method defined for all n = 0, 1, 2, · · · by

xn+1 = xn − f ′(xn)
−1 f (xn). (30)
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Then, the celebrated Newton–Kantorovich semi-local convergence criterion [13,14] is given by

h = ld ≤ 1
2

, (31)

where
d =

∣∣∣ f ′(x0)
−1 f (x0)

∣∣∣, (32)

and l is the Lipschitz constant in the condition∣∣∣ f ′(x0)
−1
(

f ′(x)− f ′(y)
)∣∣∣ ≤ l|x− y|,

for all x ∈ D ⊂ R for some D. Then, as an example in the case of Example (7), (ii) Newton’s
method (30) coincides with the modified arithmetic mean fixed point method, but since f (x) =
x2 − 4, d = |x2

0 − 4| and l = 1
2|x0|

, condition (31) is satisfied for x0 ∈ S1 = (−∞, 2] ∪ [
√

2, ∞),

which includes S, and if x0 ∈ S2 = (−∞, 2) ∪ (
√

2, ∞) then, h < 1
2 , so the convergence is

quadratic faster than for the given (only linear) in the case of modified arithmetic mean.

6. Conclusions

Motivated by geometrical considerations, we developed a one-parameter class of
fixed point iteration methods for generating a sequence approximating fixed points of
nonlinear equations. These methods are more specialist than a number of earlier popular
methods. Sufficient convergence criteria have been provided as well as the convergence
order. Numerical examples further demonstrate the efficiency as well as the superiority of
the new methods over earlier ones using similar convergence information. The convergence
order of Theorem 2 is confirmed in Table 2 by using COC or ACOC. These schemes can
also be extended for finding the fixed points of nonlinear systems.

Author Contributions: V.K., P.S., I.K.A. and R.B.: conceptualization; methodology; validation;
writing—original draft preparation; writing—review and editing. C.A., A.A. and M.S.: review and
editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Agawal, R.P.; Regan, D.O.; Sahu, D.R. Iterative constructions of the fixed point of nearly asymptotically nonexpansive mapping.

J. Nonlinear Convex Anal. 2012, 27, 145–156
2. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964.
3. Behl, R.; Salimi, M.; Ferrara, M.; Sharifi, S.; Samaher, K.A. Some real life applications of a newly constructed derivative free

iterative scheme. Symmetry 2019, 11, 239. [CrossRef]
4. Salimi, M.; Nik Long, N.M.A.; Sharifi, S.; Pansera, B.A. A multi-point iterative method for solving nonlinear equations with

optimal order of convergence. Jpn. J. Ind. Appl. Math. 2018, 35, 497–509. [CrossRef]
5. Sharifi, S.; Salimi, M.; Siegmund, S.; Lotfi, T. A new class of optimal four-point methods with convergence order 16 for solving

nonlinear equations. Math. Comput. Simul. 2016, 119, 69–90. [CrossRef]
6. Salimi, M.; Lotfi, T.; Sharifi, S.; Siegmund, S. Optimal Newton-Secant like methods without memory for solving nonlinear

equations with its dynamics. Int. J. Comput. Math. 2017, 94, 1759–1777. [CrossRef]
7. Matthies, G.; Salimi, M.; Sharifi, S.; Varona, J.L. An optimal eighth-order iterative method with its dynamics. Jpn. J. Ind. Appl.

Math. 2016, 33, 751–766. [CrossRef]
8. Sharifi, S.; Ferrara, M.; Salimi, M.; Siegmund, S. New modification of Maheshwari method with optimal eighth order of

convergence for solving nonlinear equations. Open Math. (Former. Cent. Eur. J. Math.) 2016, 14, 443–451.
9. Lotfi, T.; Sharifi, S.; Salimi, M.; Siegmund, S. A new class of three point methods with optimal convergence order eight and its

dynamics. Numer. Algor. 2016, 68, 261–288. [CrossRef]

http://doi.org/10.3390/sym11020239
http://dx.doi.org/10.1007/s13160-017-0294-4
http://dx.doi.org/10.1016/j.matcom.2015.08.011
http://dx.doi.org/10.1080/00207160.2016.1227800
http://dx.doi.org/10.1007/s13160-016-0229-5
http://dx.doi.org/10.1007/s11075-014-9843-y


Mathematics 2021, 9, 694 13 of 13

10. Jamaludin, N.A.A.; Nik Long, N.M.A.; Salimi, M.; Sharifi, S. Review of some iterative methods for solving nonlinear equations
with multiple zeros. Afr. Mat. 2019, 30, 355–369. [CrossRef]

11. Nik Long, N.M.A.; Salimi, M.; Sharifi, S.; Ferrara, M. Developing a new family of Newton–Secant method with memory based on
a weight function. SeMA J. 2017, 74, 503–512. [CrossRef]

12. Ferrara, M.; Sharifi, S.; Salimi, M. Computing multiple zeros by using a parameter in Newton-Secant method. SeMA J. 2017,
74, 361–369. [CrossRef]

13. Magreñán, A.A.; Argyros, I.K. A Contemporary Study of Iterative Methods: Convergence, Dynamics and Applications; Academic Press:
Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2019.

14. Argyros, I.K.; Magreñán, A.A. Iterative Methods and Their Dynamics with Applications; CRC Press: New York, NY, USA; Taylor &
Francis: Abingdon, UK, 2021.

15. Burden, R.L.; Faires, J.D. Numerical Analysis; PWS Publishing Company: Boston, MA, USA, 2001.
16. Ostrowski, A.M. Solution of Equations and Systems of Equation; Pure and Applied Mathematics; Academic Press: New York, NY,

USA; London, UK, 1960; Volume IX.
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