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Abstract: We consider the inverse function z = g(w) = w + byw? + - - - of a normalized convex
univalent function w = f(z) = z +az> + - - - on the unit disk in the complex plane. So far, it is
known that |b,| < 1 forn = 2,3,...,8. On the other hand, the inequality |b,| < 1 is not valid for
n = 10. It is conjectured that |bg| < 1. The present paper offers the estimate |bg| < 1.617.
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1. Introduction

An analytic function f on the unit disk D = {z € C: |z| < 1} of the complex plane C
is called convex if f maps ID univalently onto a convex domain in C. Let K denote the class
of convex functions f normalized so that w = f(z) = z + az? + a3z® + - - - . For a function
f € K, we expand the inverse function g = f 1 : f(D) — D as a power series of the form

g(w) = w+ byw? +byw’ + - - - .

It is known that |a,| < 1 for every n > 2. This is sharp for every n and, indeed, the
function fy(z) = z/(1 —z) = z+ 2> + 2z + - - - satisfies the equality for all n. Note that
go(w) = fo H(w) = w/(1+w) = w—w? +w® — - - satisfies |b,| = 1 for all n. Since (D)
contains the disk |w| < 1/2 for every f € K, the radius of convergence of the above g(w) is
atleast 1/2; namely, lim sup |b, |1/ " <2, and the number 2 is sharp. Thus we cannot expect
small bounds for b,,. Nevertheless, it has been proved so far that |b,| < 1forn =2,3,...,8
(Libera-Ztotkiewicz [1] for n < 7 and Campschroer [2] for n = 8). For clarity, we define
the quantity

(FH)(0)
My = sup [by| = sup ————
fek fek n

forn > 2. Then M,, = 1forn = 2,3,...,8. On the other hand, Kirwan and Schober [3]
showed that Mjy > 1. In the same paper, Kirwan and Schober also gave the estimate

2T \an 1)
V(5 +1) T n3/2

Moreover, for each 0 < ¢ < 2, there is a number 1, such that

Mn<

2—¢ 2"
Mn > 7 . ﬁ, n Z Ne.

Clunie [4] showed that M, = O(2"n=3 logn) as n — oo and conjectured that
M, = O(2"n~3). The conjecture was confirmed by Campschroer [5].
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It is believed that Mg = 1 but this has neither been proved nor disproved so far. The
estimate in Equation (1) gives in this case

20.41 131072

My < -
? S 9 /rT(11/2) 28357

~ 14.7166.

The main purpose of this short note is to show the following.

Theorem 1.

12223
< — =~ 1. .
9 < 7560 1.6168

The estimate is not optimal. We may find a better partition of the expression of by for
the proof in Section 3. However, it seems difficult to prove |by| < 1.

2. Some Results on Carathéodory Functions

An analytic function P on the unit disk D is called Carathéodory if Re P(z) > 0 for
z € D and P(0) = 1. We denote by P the class of Carathéodory functions. We expand
P € P in the forms

o [ee]
P(z) =1+ ) duz" =142) pu2", |z] <1

n=1 n=1

The following general estimates are useful.

Lemma 1. Let P € P be expanded as above. Then

(i) |du| <2(n=12,...),

(i) |dyix —dndi| <2(k,n=1,2,...),

(le) ‘dn-‘rk — dndk/2| S 2 — |dndk|/2 (k,l’l = 1,2,. .. )

The inequalities in (i), (ii) and (iii) are due to Carathéodory [6], Livingston [7] and
Campschroer [2], respectively. See also [8]. Note that (ii) follows from (iii); in other words,
(iii) is a refinement of (ii). Let A and B be square matrices of order n. We will say that A is
majorized by B and write A < B if the inequality |Ax| < |Bx| holds for each vector x € C".
Here, the norm of a vector x = (x1,...,x,)! € C"is defined by |x| = \/|x1]2 + - - - + |x |2
as usual. For P(z) = 1 +dyz +dpz?> + - -+, we define two kinds of Toeplitz matrices of
order n by

d dy dy - dy 2 dy dy - dy g
0 dy dy - dygq 0 2 d - dyo
A= |0 0 d - dia| and B, = |0 0 2 - dis
0 0 0 d 00 0 -~ 2

Then Campschroer [2] (Example 1.XIII) showed the following.
Lemma 2. A, < By, for a Carathédory function P(z) = 1+ dyz + dpz> + - - - .

For n = 6, we take x = (0,0, d1d> — d3, —d,,0,1)T and apply the above lemma to get
|Apx| < |Byx| for P € P; that s,

|d1d2d3 — d% — dpdy + d6| < 2.
Similarly, for n = 8,x = (0,0,d1d4 — d5, —d4,0,0,0,1)T, we obtain

|d1d3dy — dads — d3 + dg| < 2.
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The coefficient inequalities for P € P are more convenient for the later use if we
express them in terms of p, = d, /2. Thus we summarize the above inequalities in the
following form.

Lemma 3. Let P(z) = 1+ 2p1z + 2p2z2 + - - - be a Carathédory function. Then the following
inequalities hold.

i) |pa|<1(n=12,...),

(i) |puak —2pnpr] <1(k,n=1,2,...),

(ii)) [Pk — puprl < 1= |pupil (k,n=1,2,...),

(iv) |R| <1, where R = 4p1paps — 2p3 — 2papa + Pe,

(@) |S| <1, where S = 4p1p3ps — 2psps — 2p] + ps

Note that the above inequalities are all sharp because the function Py(z) = (1 +
z)/(1—z) =142z +22% + - - - satisfies equalities.

3. Proof of the Theorem

We will show Theorem 1 in this section. Since computations are often involved,
we need symbolic computations by computers. Suppose that a function w = f(z) =
z+ayz> + -+ belongs to K and let z = g(w) = f'(w) = w+ byw? + - - - . Then, by a
formal calculation, we have the formula

by = 143045 — 5005a5a3 + 2002a3a, + 5005a3a3 — 715a3a5 — 2860a5a3a4 + 2204346
- 1430a%a§ + 330a%aﬁ + 660a%a3a5 — 55a%a7 + 660a2a§a4 — 110aza4as — 110aya3a¢
+ 10ayag + 55a§ - 55a3aﬁ + 511% — 55a§a5 + 10a4a¢ + 10azay + 10aag — ag.
It is well known (see [9] for example) that a normalized analytic function f on D is

convex if and only if 1 + zf”(z)/ f’'(z) has a positive real part for each z € D. Therefore,
there is a function P € P such that

zf"(z) 1
1+ =——, zeD.
f'z)  P(z)
If we expand P in the form P(z) = 1+ 2piz + 2ppz*> + ---, we have the

following relations

ap = —p1, 3a3= 4p% —p2, 6ag= —12;7‘;’ +7p1p2 — p3,
30as = 96p1 — 92p3pa + 9p3 + 20p1p3 — 3pa,
90as = —480p; + 6523 pa — 172p3p3 — 157p1p3 + 39p1pa + 34p2ps — 6ps,

630a; = 5760p — 10224p7 py 4 30245 p3 + 4184p2 p3 — 828p2 py — 14681 p2p3
+192p1 ps — 225p3 + 80p3 + 165p2py — 30ps,

252005 = —40320p7 + 888487 p, — 28368p ps3 — 527603 p3 + 8676p3 ps + 233682 paps
— 2424p3ps + 7227 p1p3 — 2060p1 p3 — 4239p1 paps + 570p1ps — 1899p3p3
+465p3p4 + 486p2ps — 90py,

22680a9 = 645120p% — 1703808p8 po + 5748483 p3 + 1345136p7p3 — 189216p7p,

— 68636813 pap3 + 58944p3 ps — 3206483 p3 + 76304p? p3 + 1566967 paps
— 166803 ps + 141880p1 p3p3 — 277681 p3ps — 28944p1 p2ps + 3960p1 py
+11025p5 — 12488pap3 + 1575p3 — 12810p3ps + 3192p3ps + 3360pape — 630ps.
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We substitute these relations into the above expression of bg to obtain

B := 22680by = 16p + 224p$p; + 1752p] p3 — 464p1p3 + 7020p1 p4
— 3512p3paps + 12336p3 ps + 412pTp3 — 3764p7p3 — 2454p7 paps
+10380p7 pe + 650p1 p3p3 — 4002p:1 p3ps — 36p1paps + 4140p1 p7 + p3
+ 158pap3 — 441p3 + 66p3ps — 672p3ps + 240p2 pe + 630ps.

We now write B as follows:

B = 3365 + 1882p3R + 232p3p2(p3 — p2)?
+ (8p + 3386p7pa + 36p1ps) (2p] — p2) + 46961 pa(p1p2 — p3)
+650p1p3(p5 — pa) + 1752p3 p3(pi — p2) + 9288p3 (ps — paps)
+ 180p3p3 + pi + 158pap3 + 248 ps + 66p3ps + 23103
429763 ps + 8498p3 pe + 240p2pe + 4140p1 py + 294ps

where R and S are given in Lemma 3. We now apply Lemma 3 to obtain

|B| < 336 + 188213 + 2326315 (1 — 15)?
+ (85 + 338613ty + 36t1ts) + 4696t t4(1 — 1)
+650t13(1 — 13) + 17528313 (1 — 13) + 9288t (1 — tat3)
+ 1808213 + t5 + 1581513 + 248t1t, + 6615t + 231¢2
4297615 t5 + 849813t 4 240totg + 4140t t7 + 294ts,

where t; = |p;| (j =1,2,...,8). Note that 0 < ; < 1 by Lemma 3 (i). Hence,

|B| < 336 + 188212 + 232135 (1 — 3)?
+ (88 + 338612 + 3611 ) + 469611 (1 — t11;)
+ 65011 (1 — £3) 4 1752£5 (1 — t3) + 928813
+ 180133 + t5 + 158t + 248t + 6613 4 231
+ 297615 + 849817 + 240t; + 4140t; + 294
=h(h,t2),

where

h(x,y) = 232x%y + 8x° — 1752x° — 464x*y + 248x* + 14016x° + 180x%y°
— 4464x%y + 13766x* — 650xy” + 9522x + y* + 66y> + 398y + 861.

Since

% — x5(1392y + 48) — 8760x* + x3(992 — 18561/) + 42048

+x (360y3 — 8928y + 27532) — 650y2 + 9522
> 48x° — 8760x* — 864x> + 42048x% + 18964x + 8872 > 0

for 0 < x,y < 1, we observe that h(x,y) is increasing in 0 < x < 1 for a fixed y € [0,1].
Therefore, h(x,y) < h(1,y) = y* + 180y> — 584y? — 4298y + 36669 =: H(y). We compute
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H'(y) = 2(2y° + 270y? — 584y — 2149) < 2(2 +270 — 2149) < 0 and thus conclude that
H(y) < H(0) = 36669 for 0 < y < 1. In summary, we have obtained

Bl _ 36669 12223

1bol = 52680 = 22680 — 7360 0167989

The proof is now complete.
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