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Abstract: We consider the important generalisation of Ramsey numbers, namely on-line Ramsey
numbers. It is easiest to understand them by considering a game between two players, a Builder
and Painter, on an infinite set of vertices. In each round, the Builder joins two non-adjacent vertices
with an edge, and the Painter colors the edge red or blue. An on-line Ramsey number r̃(G, H) is the
minimum number of rounds it takes the Builder to force the Painter to create a red copy of graph G
or a blue copy of graph H, assuming that both the Builder and Painter play perfectly. The Painter’s
goal is to resist to do so for as long as possible. In this paper, we consider the case where G is a path
P4 and H is a path P10 or P11.
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1. Introduction

The terminology, definitions and some descriptions are taken from two previous
works by the first author, namely [1,2].

Ramsey numbers and their generalizations have been a fundamentally important area
of study in combinatorics for many years. Particularly well-studied are Ramsey numbers
for graphs. Here, the Ramsey number of two graphs G and H, denoted by r(G, H), is the
least t such that any red-blue edge-coloring of Kt contains a red copy of G or a blue copy
of H.

In this paper, we consider the following generalization of Ramsey numbers defined
independently by Beck [3] and Kurek and Ruciński [4]. Let G and H be two graphs.
Consider a game played on the edge set of the infinite clique KN with two players, a
Builder and Painter. In each round of the game, the Builder chooses an edge and the Painter
colors it red or blue. The Builder wins by creating either a red copy of G or a blue copy
of H, and wishes to do so in as few rounds as possible. The Painter wishes to delay the
Builder for as many rounds as possible. (Note that the Painter may not delay the Builder
indefinitely–for example, the Builder may simply choose every edge of Kr(G,H)).

The on-line Ramsey number r̃(G, H) is the minimum number of rounds it takes the
Builder to win, assuming that both the Builder and Painter play optimally. We call this
game the r̃(G, H)-game. Note that r̃(G, H) ≥ e(G) + e(H)− 1 for all graphs G and H, as
the Painter may simply colour the first e(G)− 1 edges red and all subsequent edges blue.

Intuitively, it is not surprising that determining on-line Ramsey numbers exactly has
proved even more difficult than determining classical Ramsey numbers exactly (the former
are a generalization of the latter). The consequence of this is that there are very few known
exact values of on-line Ramsey numbers. A significant amount of effort has been focused on
the special case where G is a path P3. Cyman, Dzido, Lapinskas and Lo [1] have determined
r̃(P3, P`+1) and r̃(P3, C`) exactly (where Ps is a path on s vertices).
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Theorem 1. In [1]. For all ` ≥ 2, we have r̃(P3, P`+1) = d5`/4e. As well,

r̃(P3, C`) =

{
`+ 2 if ` = 3, 4,
d5`/4e if ` ≥ 5.

The best known bounds on r̃(P4, P`+1) were also proved in [1].

Theorem 2. In [1]. For all ` ≥ 3, we have (7`+ 2)/5 ≤ r̃(P4, P`+1) ≤ (7`+ 52)/5.

Some new general lower and upper bounds for on-line Ramsey numbers r̃(C3, Pk) and
r̃(C4, Pk) were proved in [2]. In this paper, we obtain two new exact values r̃(P4, P10) = 13
and r̃(P4, P11) = 15, furthermore we do so without help of computer algorithms. Our
results agree with the following conjecture which was also proposed by Cyman, Dzido,
Lapinskas and Lo.

Conjecture 1. In [1]. For all ` ≥ 3, we have r̃(P4, P`+1) = d(7`+ 2)/5e.

This provides more evidence for the conjecture that the latter holds for all l ≥ 3.

2. Determining r̃(P4, Pl) for l ≥ 3

First note that r̃(P4, P3) = 4, r̃(P4, P5) = 6 and r̃(P4, P4) = 5, as shown by Prałat [5] and
Grytczuk, Kierstead and Prałat [6] respectively. The results r̃(P4, Pl) where l ∈ {6, 7, 8, 9}
already required help of computer algorithms (see [5]). The first open cases are those of
r̃(P4, P10) and r̃(P4, P11), which are determined later in this paper.

In the following discussion we take on the role of the Builder, and we will assume
for clarity that the Painter will not voluntarily lose the game by creating a red P4. We
first observe that the Builder can obtain a long blue path by using the strategy for shorter
paths twice.

Lemma 1. We have r̃(P4, Pn) ≤ r̃(P4, Pb n
2 c) + r̃(P4, Pd n

2 e) + 3

Proof. First, the Builder will use at most r̃(P4, Pb n
2 c) and r̃(P4, Pd n

2 e) moves to construct
two vertex-disjoint blue paths Pb n

2 c and Pd n
2 e, respectively. Then, the Builder will join their

endpoints together to form a blue Pn in at most 3 rounds.

Lemma 1 implies that r̃(P4, P10) ≤ 2r̃(P4, P5) + 3 = 15. However, the Builder may join
the shorter paths more carefully than in the proof of Lemma 1, resulting in the following.

Theorem 3. We have r̃(P4, P10) = 13.

Proof. Theorem 2 implies that r̃(P4, P10) ≥ 13. It therefore suffices to prove that Builder
can win the r̃(P4, P10)-game within 13 rounds.

The Builder starts with 2 disjoint r̃(P4, P5)-games. Recall that both the Builder and
Painter play optimally, so the Painter wants to avoid a red P4 and the Builder will force the
Painter to create two separate blue P5. At the beginning, let’s observe that if the Builder
was able to construct a blue P5 in at most 5 moves and a second, separate blue P5 in at
most 5 moves, then using similar reasoning as in the proof of Lemma 1 we have the result.
Now we will be very carefully considering the strategy for the r̃(P4, P5)-game described by
Prałat in [5]. We will use this strategy for the two above-mentioned r̃(P4, P5)-games.

In this strategy, the Builder first shows a path P4. Therefore, one of the four possible
color patterns appears: bbb, bbr, brb, and rrb. The Builder has to avoid the pattern rbr,
otherwise, the Painter has a strategy to ‘survive’ to the end of the sixth round. In order to
do that, the Builder can use the same strategy as for the R(P3, P5) case described by Prałat
in [5]. Finally, the Builder obtains a blue P5 in the next three moves (the details as shown in
Figure 3 in [5]).
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The Builder’s strategy for r̃(P4, P5)-game will be to build up one of the five noniso-
morphic structures independent of the Painter’s choices, as shown in Figure 1.

S1 for case bbb
b b

b 4

5

6

S2 for case rrb
4 5

6 br r

S2 for case bbr
b b

r56 4©

S3 for case bbr
b 5

b

4©

r 6

S4 for case brb
5 b

b 64©
r

S5 for case brb
4© b

b

5

6r

Figure 1. All possible final structures in the strategy for r̃(P4, P5)-game.

Recall that the Builder’s start of the strategy for r̃(P4, P10)-game is to play two separate
r̃(P4, P5)-games with the strategy described in [5].

Lemma 2. Suppose that in the r̃(P4, P10)-game, the Builder has already obtained a structure S1 or
S5 in the first r̃(P4, P5)-game. Then, regardless of the strategy used by the Painter in the second
r̃(P4, P5)-game, after the end of this game and one more move there is either a red copy of P4 or a
blue copy of P10.

Proof. The Builder can join an endpoint of a red P3 in S1 or S5, which is at the same time
the endpoint of a blue path P5, with an endpoint of a blue P5 in the structure obtained after
the end of the second r̃(P4, P5)-game.

Lemma 3. Suppose that in the r̃(P4, P10)-game, the Builder has obtained a structure S3 or S4 in
both r̃(P4, P5)-games. Then, after one move there is either a red copy of P4 or a blue copy of P10.

Proof. The Builder can join an endpoint of a blue P5 in the first structure, which is at the
same time the middle of a red path P3, with the vertex of the same type in the structure
obtained in the second r̃(P4, P5)-game.

Note that the structure S2 could have occurred when the Painter started the r̃(P4, P5)-
game from the configuration rrb or bbr.

Lemma 4. Suppose that in the r̃(P4, P10)-game, the Builder has obtained a structure rrb or bbr in
both r̃(P4, P5)-games after 3 moves. Then, after 7 moves there is either a red copy of P4 or a blue
copy of P10.

Proof. There are only three possible patterns that can appear. Let us consider these three
cases depending on the Painter’s choice.

Case 1: the Builder has obtained two structures rrb, say v0v1v2v3 and v4v5v6v7.

The Builder chooses the edges v2v8, v0v8, v0v4, v1v4, v1v5, v5v9 and v6v9, where
v8 and v9 are new vertices. If the Painter colours any of the edges red, then we
have a red P4. Then the Painter colours them all blue and we obtain the blue P10:
v3v8v0v4v1v5v9v6v7.

Case 2: the Builder has obtained structures rrb and bbr, say v0v1v2v3 and v4v5v6v7, respec-
tively.
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The Builder chooses the edges v2v8, v0v3, v0v4, v1v6 and v1v7, where v8 is a new
vertex. If the Painter colors any of the edges red, then we have a red P4. Then the
Painter colors them all blue. The Builder then chooses the edge v8v9, where v9 is a
new vertex. If the Painter colours v8v9 blue, then we have a blue P10. So we may
assume that the Painter colors v8v9 red. The Builder then chooses the edge v7v9
and we are done.

Case 3: the Builder has obtained two structures bbr, say v0v1v2v3 and v4v5v6v7.

The Builder chooses the edges v2v7, v3v6, and v3v7. If the Painter colors any of
the edges red, then we have a red P4. Then the Painter colors them all blue. The
Builder then chooses the edges v0v8 and v4v9, where v8 and v9 are new vertices. If
the Painter colors them blue, then we have a blue P10. If the Painter colors them
red, then the Builder chooses the edges v0v9 and v4v8 and we are done. So we may
assume that the Painter colors v0v8 red and v4v9 blue. The Builder then chooses
the edge v9v10, where v10 is a new vertex. If the Painter colours v9v10 blue, then we
have a blue P10. So we may assume that the Painter colors v9v10 red. The Builder
then chooses the edge v8v9 and we are done.

Lemma 5. Suppose that after 3 rounds for r̃(P4, P10)-game, the Builder has obtained a structure
rrb or bbr in the first r̃(P4, P5)-game and after 3 rounds he has obtained a structure bbb or brb in
the second r̃(P4, P5)-game. Then, after next 7 moves there is either a red copy of P4 or a blue copy
of P10.

Proof. First, the Builder continues the second game and he forces the Painter to construct
one of the structures S1, S4 or S5. If he obtains structure S1 or S5, then by applying
Lemma 2, we have the result. So we may assume that the Builder has structure S4 after
second r̃(P4, P5)-game. The Builder now is able to finish the game in the next 4 moves, as
shown in Figure 2. The final edge is drawn with a dotted line and a circled number means
that the Painter had a choice in that move, which led to branching into subcases.

Case 1 for rrb Case 2a for bbr Case 2b for bbr

1

2

3

b

r r

1

2©

3

r

b

b

1

2©

3

r

b

b

Figure 2. Three possible final structures in the strategy for S4.

Finally, notice that since r̃(P4, P5) = 6 and Lemmas 2–5 exhaust all possible situations
of playing r̃(P4, P5)-games, then r̃(P4, P10) ≤ 13. Taking into account the lower bound, the
proof is complete.

Now we prove that the Builder can obtain either a longer blue path or a red P4 by
simply extending an existing blue path.

Lemma 6. Suppose Q is a non-trivial blue path with endpoints a and b. Then the Builder can force
the Painter to construct either a red P4 or a blue path of length e(Q) + 1 in at most 3 moves.

Proof. Let c and d be the new vertices. The Builder chooses the edges ac, bc and bd. If the
Painter colors any of the edges blue, then we have a blue path of length e(Q) + 1. Then the
Painter colors them all red and we have a red P4.

Theorem 4. We have r̃(P4, P11) = 15.
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Proof. Theorem 2 implies that r̃(P4, P11) ≥ 15. It therefore suffices to prove that the Builder
can win the r̃(P4, P11)-game within 15 rounds.

The Builder starts with r̃(P4, P10)-game and he uses it to force a blue copy of P10 in at
most 13 moves. If the Builder has achieved this goal in 12 or fewer moves, then by using
Lemma 6 we have the result. The case that remains to be considered is when the r̃(P4, P10)-
game ends by forcing the Painter to create a blue P10 in the 13th round. We will apply the
strategy described in the proof of Theorem 3 and prove that in each of the cases considered
in Lemmas 2–5, two moves are enough to force the Painter to create a red P4 or a blue P11.

The result is achieved by case-by-case analysis of the last two moves as shown in
Figure 3. The final edge is drawn with a dotted line and a circled number means that the
Painter had a choice in that move, which led to branching into subcases.

Case 1 for Lemma 2

14

14 15

Case 2 for Lemma 2

Case 1 for Lemma 3

15

14

the common
part of
S3 or S4

Case 2 for Lemma 3

1415 the common
part of
S3 or S4

Case 1 for Lemma 4

14 15

Case 2a for Lemma 4

13©

14
15

Case 2b for Lemma 4

13©
14

15

Case 3a for Lemma 4

14

15

Case 3b for Lemma 4

14

Case 1 for Lemma 5 Case 2a for Lemma 5 Case 2b for Lemma 5

14
15

14

1415

Figure 3. All possible final structures in the strategy for r̃(P4, P11).

As a result of the application of Lemma 1 and known numbers we obtain new upper
bounds for the numbers r̃(P4, Pn) where 12 ≤ n ≤ 22. The following Table 1 presents old
bounds obtained by using Theorem 2 and new results.

It remains an open question whether similar methods of finding the values of R(P4, P10)
and R(P4, P11) could be used for longer paths. This would make it possible to confirm or
disprove the hypothesis proposed by Cyman, Dzido, Lapinskas and Lo in [1].
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Table 1. New upper bounds for the numbers r̃(P4, Pn) where 12 ≤ n ≤ 22

Number Old Upper Bound New Upper Bound

r̃(P4, P12) ≤25 ≤18 (by Lemma 6)
r̃(P4, P13) ≤27 ≤20
r̃(P4, P14) ≤28 ≤21
r̃(P4, P15) ≤30 ≤23
r̃(P4, P16) ≤31 ≤25
r̃(P4, P17) ≤32 ≤26
r̃(P4, P18) ≤34 ≤27
r̃(P4, P19) ≤35 ≤28
r̃(P4, P20) ≤37 ≤29
r̃(P4, P21) ≤38 ≤31
r̃(P4, P22) ≤39 ≤33
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2. Dybizbański, J.; Dzido, T.; Zakrzewska, R. On-line Ramsey numbers for paths and short cycles. Discret. Appl. Math. 2020,

282, 265–270. [CrossRef]
3. Beck, J. Achievement games and the probabilistic method. Comb. Paul Erdos Eighty 1993, 1, 51–78.
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