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Abstract: A method for identification of structures of a complex signal and noise suppression
based on nonlinear approximating schemes is proposed. When we do not know the probability
distribution of a signal, the problem of identifying its structures can be solved by constructing
adaptive approximating schemes in an orthonormal basis. The mapping is constructed by applying
threshold functions, the parameters of which for noisy data are estimated to minimize the risk. In the
absence of a priori information about the useful signal and the presence of a high noise level, the
use of the optimal threshold is ineffective. The paper introduces an adaptive threshold, which is
assessed on the basis of the posterior risk. Application of the method to natural data has confirmed
its effectiveness.

Keywords: data analysis; nonlinear approximation; wavelet packets; cosmic ray variations; geomag-
netic data

1. Introduction

Currently, scientists are actively conducting research related to the development of
methods for modeling and analyzing complex nonstationary signals [1–3]. The need to
create such methods arises when carrying out a number of fundamental and applied
investigations in such areas as biomedicine, geophysics, ecology, seismology, etc. When
there is no possibility to make direct measurements or observations of the characteristics of
a research object, the task is to determine the cause from the consequences obtained during
observations or experiments (a class of inverse problems). In this case, the determination
of the model parameters is based on the observation results. For example, in cosmophysics,
the problem arises when determining the state of the galactic cosmic ray flux based on
the data of the world network of neutron monitors [4]. In addition, an example of such a
problem is to determine the state of the Earth’s magnetic field based on the measurements
of ground magnetic stations [5].

The recorded natural data have a complex nonstationary structure, but the main
problem of such investigations is the lack of a priori information on the useful signal
and the presence of a high noise level [4]. The absence of an accurate mathematical
apparatus for constructing the estimates of signals with such properties results in the
application of heuristic approaches and methods [6], the spectrum of which is very wide
at the present time. For example, there have been successful attempts to apply machine
learning methods [7], allowing one to obtain approximations of acceptable accuracy even
without complete a priori data. However, a significant disadvantage of such methods
is the need for periodic correction of system parameters (for example, retraining of a
neural network), due to their significant dependence on external conditions. This factor
significantly affects the quality and efficiency of the results obtained.

Taking into account these disadvantages, an approach based on the construction
of nonlinear adaptive approximating schemes on the basis of orthonormal functions is
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proposed. Since the signal distribution has a complex shape, linear approximation is not
effective and nonlinear threshold estimates give better results [6]. In the article, wavelets
are used as approximating functions. It is known that wavelet filtering makes it possible to
effectively detect the structures of a complex signal and suppress noise [6,8–13]. Different
wavelet bases approximate the signal in different ways, therefore, the choice of the best
basis, in the sense of identifying certain structures, provides an effective solution to the
problem. However, we should take into account the fact that if a signal contains different
types of structures localized at different times, then it is impossible to build a basis adapted
to all structures [6]. In this case, it is necessary to use large basis dictionaries [6,13], for
example, as was proposed in [14]. Thus one can extend the class of orthogonal functions
by dictionaries of linearly independent functions. An effective result, in this case, is given
by the pursuit approximation. For example, dictionaries of wavelet packets and local
cosine trees allow for constructing the best approximations of signals of finite length by
minimizing the concave cost function [6].

However, the great computational complexity of this method makes it ineffective.
Consistent pursuit algorithms [15] using the “greedy” strategy make it possible to optimize
the process of constructing a basis and to obtain sufficiently accurate approximations. Even
when there is no knowledge about noise, a signal can be assessed by isolating coherent
structures [6]. However, when the signal energy is small relative to the noise energy,
such estimates give a very small threshold [6] and their application, as was shown by the
estimates made in the work, does not allow for obtaining good results. To solve the problem,
we propose a method based on a heuristic approach that, by minimizing the posterior risk,
makes it possible to obtain the best estimate in the absence of a priori knowledge about a
useful signal and the presence of a high noise level. Applying the example of a wavelet
packet dictionary, the paper shows that larger threshold increases the risk, but allow one
to obtain more accurate estimates. An increase in the detection efficiency of different
types of structures is achieved by applying an adaptive threshold. The effectiveness of the
proposed method is confirmed by the results of experiments with real data. In addition,
the comparison with the machine learning method (using the autoencoder neural network)
showed the effectiveness of the proposed approach.

2. Materials and Methods
2.1. Nonlinear Signal Approximation Based on Its Expansion in Basis

In the case of nonlinear approximation, the signal f εH (H is the Hilbert space) is
represented by M vectors adaptively selected from the orthonormal basis B = {gm}mεN
(N are natural numbers, including 0) of the space H [6]:

fM = ∑m∈IM
〈 f , gm〉gm, (1)

where IM is a set of indices.
The approximation error is ε[M] = ‖ f − fM‖2 = ∑m/∈IM

|〈 f , gm〉|2.
Obviously, minimization of the error ε[M] is achieved by choosing IM such that M

vectors gm with indices from IM have the largest moduli of the scalar product |〈 f , gm〉|,
that is, correlate with the signal in the best way.

We arrange {|〈 f , gm〉|}mεN in descending order, denoting fB[k] =
〈

f , gmk

〉
the coeffi-

cient of rank k as:
| fB[k]| ≥ | fB[k + 1]|, k > 0.

In this case, approximation (1) with the smallest error ε[M] is

fM = ∑M
k=1 fB[k]gmk , (2)
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It can be obtained by applying the threshold function

T(x) =
{

x, i f |x| ≥ T,
0, i f |x| < T,

for the threshold T : fB[M + 1] < T ≤ fB[M].
Then, (2) takes the form

fM = ∑+∞
m=1 T(〈 f , gm〉)gm, (3)

Approximation error (3) is

ε[M] = ‖ f − fM‖2 = ∑+∞
k=M+1| fB[k]|2.

Considering the base dictionary D, which is the union of orthonormal bases in the
space of signals of finite length N:

D = ∪λεΛB
λ,

the cost of f approximation in the basis Bλ =
{

gλ
m
}

1≤m≤N can be estimated by the concave
Schur sum [16]

C
(

f ,Bλ
)
= ∑N

m=1 Φ

(∣∣( f , gλ
m
)∣∣2

‖ f ‖2

)
, Φ(x) = −xlnx, (4)

and the basis Bα, minimizing the error, is defined as

( f ,Bα) = minλεΛC
(

f ,Bλ
)

.

In the case of wavelet packet bases [6,8], each node of the wavelet packet tree corre-
sponds to the space Wp

j defining an orthonormal basis Bp
j =

{
Ψp

j (2
jt−m)

}
m∈N

[6,8,17].

The space Wp
j is divided into orthogonal subspaces

Wp
j = W2p

j+1 ⊕W2p+1
j+1 . (5)

The basis that minimizes the error is the basis Op
j of the space Wp

j [16]:

Op
j =


O2p

j+1 ∪O2p+1
j+1 , i f C

(
f , O2p

j+1

)
+ C

(
f , O2p+1

j+1

)
< C

(
f ,Bp

j

)
,

B
p
j , i f C

(
f , O2p

j+1

)
+ C

(
f , O2p+1

j+1

)
≥ C

(
f ,Bp

j

)
.

(6)

Recursive calculation of the bases (6) when moving from the bottom up the tree allows
one to determine the wavelet packet basis that minimizes the cost (4).

2.2. Nonlinear Approximation of a Noisy Signal

Let us have a discrete signal f [n], which is defined for 0 ≤ n < N (nεN) and is polluted
with noise:

X[n] = f [n] + V[n], (7)

where X[n] are recorded discrete data, f [n] is the signal, V[n] is noise.
Using mapping (3) gives the estimate

F̃ = DX =
N−1

∑
m=0

T
(〈

X, gλ
m

〉)
gλ

m. (8)
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The risk of estimating F̃ is

r(D, f ) = E
{
‖F̃− f ‖2}

,

where E is the mathematical expectation.
Following Wald’s theory [18], signals f will be considered as elements of a special

set θ, disregarding the probability distribution on this set. Since we do not know the
probability distribution of signals, to minimize the risk r(D, f ), we can use the minimax
approach [6]. The problem is to determine such an operator D that minimizes the maximum
risk (minimax risk) [6]:

rO(θ) = in fDεOsup f εθE
{
‖F̃− f ‖2}

,

O is a set of operators performing mapping (8).
It is clear that to minimize the risk rO(θ), the threshold T in (8) should be chosen so

that there is a high probability that it is greater than the maximum level of noise coefficients
|VBλ [m]|, VBλ [m] =

〈
V, gλ

m
〉

(see (7)). It was proved in [19] that in the case of white noise
with variance σ2, the risk close to rO(θ) gives the threshold TO = σ

√
2 ln N:

F̃O =
N−1

∑
m=0

TO

(〈
X, gλ

m

〉)
gλ

m, (9)

TO

(〈
X, gλ

m

〉)
=

{ 〈
X, gλ

m
〉
, i f

∣∣〈X, gλ
m
〉∣∣ ≥ TO,

0, i f
∣∣〈X, gλ

m
〉∣∣ < TO.

The risk of estimate (9) is associated with the approximation error f in the basis Bλ

and can be estimated as [6]

r( f ) = r(D, f ) =
N−1

∑
m=0

min
(
| fBλ [m]|2, σ2

)
,

where fBλ [m] =
〈

f , gλ
m
〉
.

Therefore, the risk of the resulting estimate r( f ) depends on the basis.
In addition, when the noise V is not white and σ2

m = E
{
|VBλ [m]|2

}
depends on each

vector gλ
m of the basis, Donohoe and Johnston [19] showed that the threshold estimate with

Tm = σm
√

2 ln N also gives a risk close to r( f ).
Note that for wavelet packet bases (see (5)), the noise variance σ2 can be estimated [19]

as: σ2 = MX
0.6745 , where MX is the median of the set {|〈X, Ψp

j,m〉|}0≤m<N/2
, Ψp

j,m = Ψp
j (2

jt−
m) is the basis of the space Wp

j for p = 1.
In turn, it follows from Jaffard’s theorem [20] (Jaffard’s theorem is given below) and

the equivalence of continuous and discrete wavelet expansions [8,17] that when choosing
a threshold higher than the maximum amplitude of the noise coefficients, we, using (8),
suppress noise and with a high probability keep the coefficients in the vicinity of the
signal structural features. It is also clear that the threshold needs to be scaled for better
approximation.

Theorem (Jaffard) [20]: If f εL2(R) satisfies the Lipschitz condition α ≤ n at the point
ν, then ∃A :

∀(a, b) ∈ R× R+ |W f (a, b)| ≤ Abα+ 1
2

(
1 +

∣∣∣∣ a− v
b

∣∣∣∣α),

WΨ f (a, b) = |b|−
1
2

∫ +∞

−∞
f (t)Ψ

(
t− a

b

)
dt.
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Conversely, if α < n is non-integer and ∃A, α′ < α :

∀(a, b) ∈ R× R+ |W f (a, b)| ≤ Abα+1/2

(
1 +

∣∣∣∣ a− v
b

∣∣∣∣α′
)

,

then f satisfies the Lipschitz condition α at the point ν.
In this case, the wavelet Ψ must have n zero moments and n derivatives with fast

decay. The evidence of Jaffard’s theorem is given in [6].
We get the following algorithm for constructing an approximating scheme (ACAS):
1. We decompose the signal X into wavelet packets (see (5)):
W0

j : W0
j = ⊕I

i=0Wp
ji

,
{

Ψp
ji
(2ji t−m)

}
m∈N

is a basis of the space Wp
ji

.

2. Based on the estimation of normalized energies, we determine the tree branches
corresponding to the structural components of the signal: the basis Bp

ji
of the space Wp

ji
is

the basis:

Bp
ji
=


{

Ψp
ji
(2ji t−m)

}
m∈N

, if ∑m∈IP

∣∣∣〈X,Ψp
ji ,m

〉∣∣∣2
‖X‖2 ≥ ∑m∈I2P

∣∣∣〈X,Ψ2p
ji+1,m

〉∣∣∣2
‖X‖2 + ∑m∈I2P+1

∣∣∣〈X,Ψ2p+1
ji+1,m

〉∣∣∣2
‖X‖2 ,{

Ψ2p
ji+1

}
m∈N
∪
{

Ψ2p+1
ji+1

}
m∈N

, if ∑m∈IP

∣∣∣〈X,Ψp
ji ,m

〉∣∣∣2
‖X‖2 < ∑m∈I2P

∣∣∣〈X,Ψ2p
ji+1,m

〉∣∣∣2
‖X‖2 + ∑m∈I2P+1

∣∣∣〈X,Ψ2p+1
ji+1,m

〉∣∣∣2
‖X‖2 ,

. (10)

where the set of indices Il , l = P, 2P, 2P + 1 is defined as follows: the index m ∈
Il , if |〈X, Ψl

ji ,m
〉| ≥ Tji , threshold Tji = K ∗ σl

ji
,, where X, Ψl

ji ,m
is the mean of the set

{|〈X, Ψl
ji ,m
〉|}

0≤m<L
, L is the number of elements.

The nodes of the wavelet packet tree selected on the basis of (10) determine the
components that have the greatest correlation with the basis (coherent structures).

The threshold Tji = K ∗ σl
ji

can be estimated by posterior risk [21].
The threshold splits the space of values of the analyzed function into two nonoverlap-

ping areas Θ0 and Θ1. When using a certain threshold for a given state hs, the loss average
can be determined as

Rs(x) =
1

∑
z=0

∏
sz

P
{

x ∈ Θz

hs

}
,

where ∏sz is the loss function, P{x ∈ Θz/hs} is the conditional probability of falling within
the area Θz, if in reality there is a state hs, s 6= z, s, z are the state indices (“/” sign means
the conditional probability). Averaging the conditional risk function over all states hs, we
obtain the average risk:

R =
1

∑
s=0

psRs,

where ps is the prior probability of the state hs.
When we do not know the probability distribution of the signal, the posterior probabil-

ities P{hs/x}, s = 0, 1 are the most complete characteristics of the states hs with available

a priori data. For a simple loss function ∏sz =

{
1, s 6= z,
0, s = z,

the posterior risk is

R = ∑s 6=z P{hs/xεΘz}.

3. Results
3.1. Detection of Geomagnetic Pulsations in Geomagnetic Data

Geomagnetic data are the Earth’s magnetic field variations, which are obtained by
magnetometer direct measurements at a magnetic station network [5]. Analysis of geomag-
netic data is important in solving practical problems of space weather forecasting [5,22].
The negative impact of geomagnetic anomalies on technical objects determines the impor-
tance of developing methods for their detection. The main source of impact is geomagnetic



Mathematics 2021, 9, 737 6 of 15

pulsations (short-period variations of the geomagnetic field) and their detection is of key
importance [23]. The structure of geomagnetic data is complex. They contain local features
of different structure and duration. Therefore, detection of geomagnetic anomalies is a
complex and urgent task. The results of applying the method to geomagnetic data are
shown in Figures 1–5.

Figure 1 shows the histograms of two nodes of the wavelet packet tree, the dashed
line shows the estimated σ. The results support the need to adapt the threshold to the
scale. The tree constructed on the basis of the ACAS up to the 6th level using Coiflet 3 is
shown in Figure 2. Geomagnetic pulsations are determined by the detailing nodes of the
tree, therefore the nodes (ji, 0) are not analyzed below. Table 1 and Figure 3 present the
error estimation results, which show that Coiflet 5 provides the smallest losses for different
periods of solar activity. The results of detection of geomagnetic pulsations using different
wavelets are shown in Figure 4.

The results of risk estimates (errors of the 1st and 2nd kind) are presented in Table 2.
They show that the threshold coefficient K = 2.5 gives the best results. Risks were estimated
based on statistical modeling. As a comparison, Figure 5 shows the results of the application
of the threshold To = σ

√
2 ln N and the threshold Tji = K ∗ σl

ji
, with K = 2.5. It can be seen

that threshold To, which is close to optimal one, does not allow us to suppress the noise. The
results confirm the effectiveness of the proposed method.
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Table 1. Estimation of the approximation error.

Wavelet, Ψ Number of Tree Nodes Approximation Error, ε[M]

Daubechies 2 44 57.95443552
Daubechies 2 44 57.95443552
Daubechies 3 44 95.03347346
Daubechies 4 37 73.25697093
Daubechies 5 61 63.16288707

Coiflet 2 42 77.63664436
Coiflet 3 40 70.45379894
Coiflet 4 44 61.81353236
Coiflet 5 48 56.32646977

Table 2. Risks.

Signal/Noise
Threshold Coefficient K = 2.5 Threshold Coefficient K = 1.5

Part of Detected (%) Part of False (%) Part of Detected (%) Part of False (%)

1 89 4 87 13
0.8 81 7 49 15
0.7 72 10 66 17

3.2. Detection of Sporadic Features in Neutron Monitor Data

Cosmic ray dynamics are studied using neutron monitor data. Neutron monitor
data represent particle counts per unit time and reflect the secondary cosmic ray intensity.
In addition to the useful information, the data contain a high level of noise, including
natural and human-made interferences [4]. Periodic variations correspond to the regular
course and anomalous (sporadic) features characterize Forbush effect occurrences and
strong ground level enhancements (GLE events). Sporadic features have different shapes
and durations, and their detection is a difficult problem [4]. Of particular interest is the
problem of detecting low-amplitude sporadic features that serve as predictors of magnetic
storms [4].

Figures 6–11 show the results of applying the method to the neutron monitor (NM)
data of the Inuvik station (USA, [24]). Figure 6 shows the histograms of two nodes of the
wavelet packet tree. The dashed line shows the estimated σ. The results are similar to
geomagnetic data.
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To assess the effectiveness of the proposed method, its results were compared with
the results of the autoencoder method [25]. Autoencoder is a deep feed forward neural
network using back propagation and unsupervised learning. The autoencoder network is
described in detail in [25]. The work used undercomplete autoencoders. Minimizing the
approximation error, the undercomplete autoencoders allow one to isolate dependencies in
the data and to suppress noise. The logistic sigmoidal function was used as the encoder
transfer function:

f (z) =
1

1 + e−z

As the transfer function of the decoder, a linear transfer function was used:

f (z) = z.

To train the network, we used NM data for 2013–2015. Figure 7 shows the results of NM
data processing by different methods. The threshold To = σ

√
2 ln N, the threshold Tji =

K ∗ σl
ji

and the autoencoder network were used. It is clear that the threshold To = σ
√

2 ln N
does not allow us to suppress all the noise. The error of network approximation increases
sharply in the test data. That is associated with the effect of retraining and the need to
adapt the network. The best results are obtained by the proposed method with the threshold
Tji = 2.5 ∗ σl

ji
. Table 3 shows the errors of different methods. Analysis of Table 3 also confirms

the effectiveness of the proposed method. Figures 8 and 9 show the results of detecting
Forbush effects in NM data based on the proposed method and autoencoder. Data were
processed sequentially. First, the data were processed based on the ACAS (algorithm for
constructing an approximating scheme). Then, the anomaly detection algorithm described
in Appendix A [26] was applied. Alternatively, the data were processed by the autoencoder
network, then the anomaly detection algorithm was applied. Forbush effects were detected
on 4, 6, 8, 10, 11, 12 September 2014 [27]. In Figure 9, the periods of Forbush effects are marked
with red vertical lines. The results show that application of both the autoencoder and the
proposed method makes it possible to detect anomalies. It can be seen that the Forbush effect
on 22 December was successfully detected based on the proposed method (Figure 9a), and
the Forbush effect on 31 December was detected by a neural network (Figure 9b). For detailed
comparison of the results, Figures 10 and 11 show periods of Forbush effects of different
structures. Figure 10 shows the Forbush effect of a multiscale structure, which was detected
by the proposed method. As the result in Figure 11 shows, the Forbush effect of a narrower
spectrum was detected by the autoencoder.

Thus, the joint application of these methods increases the efficiency of the problem
solution. Estimation of the efficiency of the proposed method is illustrated in Table 4. It
shows that its efficiency (over 86%) exceeds that of the autoencoder neural network.
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Table 3. Estimation of the approximation error.

Method Approximation Error, ε[M]

Autoencoder, training 310.2346
Autoencoder testing 4.2870 × 105

Threshold T = σ
√

2 ln N, Coiflet 1 7.2196 × 10−10

Threshold Tji = K ∗ σl
ji
, K = 1, Coiflet 1 176.0616

Threshold Tji = K ∗ σl
ji
, K = 1.5, Coiflet 1 273.2969

Threshold Tji = K ∗ σl
ji
, K = 2.5, Coiflet 1 376.4855

Threshold Tji = K ∗ σl
ji
, K = 1, Coiflet 2 177.1038

Threshold Tji = K ∗ σl
ji
, K = 1.5, Coiflet 2 273.45

Threshold Tji = K ∗ σl
ji
, K = 2.5, Coiflet 2 375.741

Threshold Tji = K ∗ σl
ji
, K = 1, Coiflet 3 176.9381

Threshold Tji = K ∗ σl
ji
, K = 1.5, Coiflet 3 274.2327

Threshold Tji = K ∗ σl
ji
, K = 2.5, Coiflet 3 376.1264
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Table 4. Estimation of the efficiency of the proposed method.

Year The Number of Forbush
Effects in the Signal Proposed Method Autoencoder

2013 98
Detected: 86% Detected: 79%

Not detected: 14% Not detected: 21%
False alarm: 16 events False alarm: 11 events

2014 96
Detected: 89% Detected: 84%

Not detected: 11% Not detected: 16%
False alarm: 12 events False alarm: 9 events

2015 91
Detected: 84% Detected: 76%

Not detected: 16% Not detected: 24%
False alarm: 10 events False alarm: 8 events

4. Conclusions

In this paper, a new method for the identification of structures of a complex signal
and noise suppression based on nonlinear approximating schemes is proposed. The
experimental results confirmed the effectiveness of the method for the tasks of analyzing
natural data and detecting anomalies. Estimates have shown:

1. Application of the proposed adaptive threshold increases the error of nonlinear
approximation, but increases the efficiency of anomaly recognition in a complex signal.

2. For signals of an a priori defined structure, a threshold close to optimal is more effective,
since it provides the construction of a nonlinear approximating scheme with minimal risk. In
the case of white noise, an optimal threshold can be obtained by minimizing the cost function.
In addition, the use of this method allows you to control the resulting risk.

3. Comparison of the proposed method with the autoencoder neural network con-
firmed its high efficiency for natural signals (over 86%) and showed its effectiveness for
detecting the features of a multiscale structure. However, the frequency of false alarms
(error of the first kind) in the autoencoder is less than that of the proposed method. The
autoencoder also detects narrow spectrum features more efficiently.
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Appendix A

Algorithm for detection of anomalies in cosmic rays dynamics and estimation of their
intensity [26].

Step 1. Continuous wavelet transform

(WΨ fb,s) := |s|−
1
2

∫ +∞

−∞
f (t)Ψ

(
t− b

s

)
dt,

f ∈ L2(R), s, b ∈ R, s 6= 0

Step 2. Application of threshold function PTs :

PTs(WΨ fb,s) =


WΨ fb,s, i f (WΨ fb,s −WΨ f med,l

b,s ) ≥ Tl
s

0, i f
∣∣∣WΨ fb,s −WΨ f med,l

b,s

∣∣∣ < Tl
s

−WΨ fb,s, i f (WΨ fb,s −WΨ f med,l
b,s ) < −Tl

s

where WΨ f med,l
b,s is the median value calculated in a moving time window of length l.

Tl
s = U ∗ σl

s is the threshold,

σl
s =

√√√√1
l

l

∑
k=1

(WΨ fb,s −WΨ fb,s)
2

is the standard deviation calculated in a moving time window of length l, WΨ fb,s is the
average, U is the threshold coefficient.

Step 3. Estimation of anomaly intensity:

SUMs(t) = ∑b PTs(WΨ fb,s),

which is positive in the case of CR local increase and is negative in the case of CR
local decrease.
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