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Abstract: In this paper, using the concept of Bregman distance, we introduce a new Bregman
subgradient extragradient method for solving equilibrium and common fixed point problems in a
real reflexive Banach space. The algorithm is designed, such that the stepsize is chosen without prior
knowledge of the Lipschitz constants. We also prove a strong convergence result for the sequence
that is generated by our algorithm under mild conditions. We apply our result to solving variational
inequality problems, and finally, we give some numerical examples to illustrate the efficiency and
accuracy of the algorithm.
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1. Introduction

In 1994, Blum and Oettli [1] revisited the Equilibrium Problem (EP) that was first
introduced by Ky Fan which has become a fundamental concept and serves as an impor-
tant mathematical tool for solving many concrete problems. The EP generalizes many
nonlinear problems such as variational inequalities, minimization problems, fixed point
problems, saddle point problems in unified ways, see, for instance [1–4]. It is well known
that several problems arising in many fields of pure and applied mathematics such as
economics, physics, optimization theory, engineering mechanics, management sciences,
network analysis, etc., can be modeled as an EP; see, e.g., [5] for details.

Let E be a real reflexive Banach space, and C ⊂ E be nonempty, closed, and convex
subset. Let g : C× C → R be a bifunction. An EP is defined in the following manner:

Find u∗ ∈ C such that g(u∗, z) ≥ 0, ∀ z ∈ C. (1)

We denote the set of solutions of problem (1) by EP(g). Because the EP and its
applications are of great importance, it has provided a rich area of research for many
mathematicians. Recently, many authors have proposed numerous algorithms for solving
the EP (1); see, for example, [6–9]. Some of those algorithms involve proximal point
methods [10,11], projection methods [12,13], extragradient methods with or without line-
searches [14–16], decent methods based on merit functions [17,18], and methods using
Bregman distance [19,20].

In 1976, Korpelevich [21] introduced the extragradient method for solving variational
inequality problem (which is really a spacial case of the EP) for L-Lipschitz continuous
and monotone operators in Euclidean spaces. Korpelevich proved the convergence of
the generated sequence under the assumptions of Lipschitz continuity and strong mono-
tonicity. Moreover, there is still a need to calculate two projections onto the closed convex
set C in each iteration of the algorithm. The Korpelevich’s extragradient strategy has
been widely concentrated in the literature for taking care of increasingly broad problems,
which comprises of finding a common point that lies in the solution set of a variational
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inequality and the set of fixed points of a nonexpansive mapping. This kind of problems
emerges in different theoretical and modeling contexts, see [22,23], and the references
therein. Several years back, Quoc et al. [15] presented a modified version of Korpelevich’s
method, in which they stretched the method to solve EP’s for the case of pseudomono-
tone and Lipschitz continuous bifunctions. They substituted the two projections on the
feasible set C by solving two convex optimization programs for each and every iteration.
In 2013, Anh Pham Ngoc [24] presented a hybrid extragradient iteration method, where
the extragradient method was extended to fixed point and equilibrium problem. This was
done for a pseudomonotone and Lipschitz-type continuous bifunction in a setting of real
Hilbert space.

As of late, numerous authors have studied and improved Korpelevich’s extragradient
method for variational inequality in various ways, see, for example [25,26]. The subgra-
dient extragradient method is one of the ways in which the Korpelevich’s extragradient
method was studied and improved; see [25]. This involves replacing the second projection
in Korpelevich’s extragradient method with a projection onto a simple half-space. It is
important to say that the projection onto half-spaces can be easily calculated explicitly,
unlike the projection onto the whole set C, which can be complicated when C is not sim-
ple. This process has motivated several improvements for extragradient-like methods
in the literature; see [27–30]. Recently, Dan Van Hieu [31] extended the subgradient ex-
tragradient method to equilibrium problem in real Hilbert spaces. He proved that the
subgradient extragradient method strongly converges to an element x ∈ EP(g) provided
the stepsize condition

0 < λn < min
{

1
2c1

,
1

2c2

}
(2)

is satisfied, where c1 and c2 are the Lipschitz-like constant of g. It is important to note
that the constants c1 and c2 are very difficult to find, even when they are estimated, they
are often too small, which deteriorates the rate of convergence of the algorithm. There
has been an increasing effort on finding iterative methods for solving the EP without a
prior condition consisting of the constant c1 and c2; see, e.g., [32–38]. On the other hand,
Eskandani et al. [39] introduced a hybrid extragradient method for solving EP (1) in a real
reflexive Banach space. They showed that the sequence that is produced by their algorithm
strongly converges to EP(g) (1).

Being motivated by the above results, we introduce a Halpern-subgradient extragradi-
ent method for solving pseudomonotone EP and finding common fixed point of countable
family of quasi-Bregman nonexpansive mappings in real reflexive Banach spaces. The
stepsize of our algorithm is determined by a self-adaptive technique, and we prove a strong
convergence result without prior estimate of the Lipschitz constants. We also provide
an application of our result to variational inequality problems and give some numerical
experiments to show the numerical behaviour of our algorithm. This improves the work of
Eskandami et al. [39] and extends the results of [32–37] to a reflexive Banach space while
using Bregman distance techniques.

Throughout this paper, E denotes a real Banach space with dual E∗; 〈x∗, x〉 denotes the
duality pairing between x ∈ E and x∗ ∈ E∗; ∀ denotes the for all; min{A} is the minimum
of a set A; max{B} is the maximum of a set B; xn → u implies the strong converges of
a sequence {xn} ⊂ X to a point u ∈ E; xn ⇀ u is the weak convergence of xn to u; ‖ · ‖
denotes the norm on E, while ‖ · ‖∗ denotes the norm on E∗; EP denotes the equilibrium
problem, EP( f ) denotes the solution set of the equilibrium problem; F(T) is the set of fixed
point of a mapping T, ∇ f is the gradient of a function f and R is the real number line.

2. Preliminaries

In this section, we recall some definitions and basic facts and notions that we will
need in the sequel.

Let E and C ⊂ E be as defined earlier in the introduction. We denote the dual space
of E by E∗. the function f : E→ (−∞, ∞] is always an admissible, i.e., it is proper, lower
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semicontinuous, and differentiable. Let dom f = {u∗ ∈ E : f (u∗) < ∞} denote the domain
of f . Let u∗ ∈ int dom f . We define the subdifferential of f at u∗ as the convex set that is
defined in the following manner

∂ f (u∗) = {η ∈ E∗ : f (u∗) + 〈z− u∗, η〉 ≤ f (z), ∀z ∈ E}, (3)

and the Fenchel conjugate of f is the function

f ∗ : E∗ → (−∞, ∞], f ∗(η) = sup{〈η, u∗〉 − f (u∗) : u∗ ∈ E}.

It takes less effort to show that f 6∗ is indeed an admissible function.
For any convex mapping f : E → (−∞, ∞], we denote, by f ◦(x, y), the right-hand

derivative of f at x ∈ int dom f in the direction of y, which is,

f ◦(u∗, z) := lim
t→0+

f (u∗ + tz)− f (z)
t

. (4)

If the limit as t→ 0+ in (4) exists for each z, then the function f is said to be Gâteaux
differentiable at x. In this case, the gradient of f at u∗ is the linear function ∇ f (u∗), which
is defined by 〈∇ f (u∗), z〉 := f ◦(u∗, z) for all z ∈ E. The function f is a said to be Gâteaux
differentiable if it is Gâteaux differentiable at each u∗ ∈ dom f . When the limit t→ 0 in (4)
is uniformly attained for any z ∈ E with ‖z‖ = 1, we say that f is Fréchet differentiable
at u∗. Throughout this paper, f : E → R is always an admissible function, under this
condition we know that f is continuous in int dom f .

The function f is said to be Legendre if it satisfies the following two conditions:

L1. int dom f 6= ∅, and the subdifferential ∂ f is single-valued on its domain; and,
L2. int dom f ∗ 6= ∅, and ∂ f ∗ is single-valued on its domain.

It is common knowledge that, in E∇ f = (∇ f ∗)−1 (check [40], p. 83). Putting condition
(L1) and (L2) together, we get

ran∇ f = dom∇ f ∗ = int (dom f )∗ and ran∇ f ∗ = dom∇ f = int dom f .

It also follows that f is Lengendre if and only if f ∗ is Legendre [41] (Corollary 5.5,
p. 634), and that the functions f and f ∗ are Gâteaux differentiable and strictly convex in
the interior of their designated domains.

In 1967, Bregman [42] introduced the concept of Bregman distance; furthermore, he
found a rich and compelling method for the utilization of the Bregman distance during the
time spent designing and breaking down feasibility and optimization calculations. From
now on, we assume that f : E→ (−∞, ∞] is also Legendre. The Bregamn distance is the
bifunction D f : dom f × int dom f → [0,+∞), being defined by,

D f (z, u∗) = f (z)− f (u∗)− 〈∇ f (z), z− u∗〉.

The Bregman distance does not fulfill the notable properties of a metric, which is, it is
not symmetric in general and the triangle inequality does not hold. However, it generalizes
the law of cosines, which, in this case, it is known as the three point identity: for any
u∗ ∈ dom f and y, z ∈ int dom f

D f (u∗, z) + D f (z, y)− D f (u∗, y) = 〈∇ f (y)−∇ f (z), u∗ − z〉. (5)

Looking at [43,44], the modulus of total convexity at x ∈ int dom f is the function
v f (x, .) : [0,+∞)→ [0, ∞], as given by

v f (u∗, s) := inf{D f (z, u∗) : z ∈ int dom f , ‖z− u∗‖ = s}.
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f is termed totally convex at u∗ ∈ int dom f if v f (u∗, s) is positive for any s > 0. Addition-
ally, f is termed totally convex when it is totally convex at every point u∗ ∈ int dom f . We
comment in passing that f is totally convex on bounded subsets if and only if f is uni-
formly convex on bounded subsets (check [43]). We remember that f is termed sequentially
consistent [45] if for any two sequences {un} and {zn} in E, such that the first is bounded,

lim
n→∞

D f (un, zn) = 0⇒ lim
n→∞

‖un − zn‖ = 0. (6)

Lemma 1 ([46]). If f : E→ R is uniformly Fréchet differentiable and bounded on bounded subsets
of E, then ∇ f is uniformly continuous on bounded subsets of E from the strong topology E to the
strong topology of E∗.

Lemma 2 ([47]). Let f : E→ R be a Gâteaux differentiable and totally convex function. If x0 ∈ E
and the sequence D f (xn, x0) is bounded, then the sequence {xn} is also bounded.

The Bregman projection [42] with respect to f of x ∈ int dom f onto a nonempty, closed,
and convex set C ⊂ int dom f is defined as the necessarily unique vector ProjC

f (x) ∈ C,
which satisfies

D f (ProjC
f (x), x) = inf{D f (y, x) : y ∈ C}.

Similar to the metric projection in Hilbert spaces, the Bregman projection with respect
to totally convex and Gâteaux differentiable functions has a variational characterization [46]
(Corollary 4.4, p. 23).

Suppose that f is Gâteaux differentiable and totally convex on int dom f . Let
x ∈ int dom f and C ⊂ int dom f be a nonempty, closed, and convex set. If x̂ ∈ C, then the
following conditions are equivalent:

M1. The vector x̂ ∈ C is the Bregman projection of x onto C with respect to f .
M2. The x̂ ∈ C is the unique solution of the variational inequality:

〈z− y,∇ f (x)−∇ f (z)〉 ≥ 0, ∀y ∈ C. (7)

M3. The vector x̂ is the unique solution of the inequality:

D f (y, z) + D f (z, x) ≤ D f (y, x), ∀y ∈ C.

Definition 1. Let T : C → C be a mapping. A point x is called fixed point of T if Tx = x.
The set of fixed points of T is denoted by F(T). Additionally, a point x∗ ∈ C is said to be an
asymptotic fixed point of T if C contains a sequence {xn}∞

n=1 which converges weakly to x∗, and
limn→∞ ‖xn − Txn‖ = 0. The set of asymptotic fixed points of T is denoted by F̂(T).

Definition 2 ([48]). Let C be a nonempty, closed and convex subset of E. A mapping T : C →
int dom f is called

i. Bregman firmly nonexpansive (BFNE for short) if

〈∇ f (Tx)−∇ f (Ty), Tx− Ty〉 ≤ 〈∇ f (x)−∇ f (y), Tx− Ty〉, for all x, y ∈ C.

ii. Bregman strongly nonexpansive (BSNE) with respect to a nonempty F̂(T) if

D f (p, Tx) ≤ D f (p, x),

for all p ∈ F̂(T) and x ∈ C, and if whenever {xn}∞
n=1 ⊂ C is bounded, p ∈ F̂(T) and

lim
n→∞

(D f (p, xn)− D f (p, Txn)) = 0, it follows that the lim
n→∞

(D f (p, xn) = 0,
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iii. Quasi-Bregman nonexpansive (QBNE) if F(T) 6= 0 and

D f (p, Tx) ≤ D f (p, x), for all x ∈ C, p ∈ F(T).

It was remarked in [19] that, in the case where F̂(T) = F(T), the following inclusion holds:

BFNE ⊂ BSNE ⊂ QBNE.

Let B and S be the closed unit ball and the unit sphere of a Banach space E. Let
rB = {z ∈ E : ‖z‖ ≤ r}, for all r > 0. Then, the function f : E→ R is said to be uniformly
convex on bounded subsets (see [49]) if ρr > 0 for all r, t > 0, where ρr : [0, ∞)→ [0, ∞] is
defined by

ρr = inf
x,y∈rB,‖x−y‖=t,α∈(0,1)

α f (x) + (1− α) f (y)− f (αx + (1− α))y
α(1− α)

,

for all t ≥ 0. The function ρr is called the gauge of uniform convexity of f . It is known
that ρr is a nondecreasing function. If f is uniformly convex, then the following Lemma
is known.

Lemma 3 ([50]). Let E be a Banach space, r > 0 be a constant and f : E → R be a uniformly
convex function on bounded subsets of E. Then

f

(
n

∑
k=0

akxk

)
≤

n

∑
k=0

ak f (xk)− aiajρr(‖xi − xj‖),

for all i, j ∈ (0, 1, 2, ..., n), xk ∈ rB, ak ∈ (0, 1) and k = 0, 1, 2, , ..., n with ∑n
k=0 ak = 1, where ρr

is the gauge of uniform convexity of f .

Lemma 4 ([47]). Suppose that f : E → (−∞,+∞] is a Legendre function. The function f is
totally convex on bounded subsets if and only if f is uniformly convex on bounded subsets.

For each u ∈ C, the subgradient of the convex function f (u, ·) at u is denoted by
∂2 f (u, u), i.e.,

∂2 f (u, u) = {w ∈ H : f (u, v) ≥ f (u, u) + 〈w, v− u〉, ∀ v ∈ C}
= {w ∈ H : f (u, v) ≥ 〈w, v− u〉, ∀ v ∈ C}.

Lemma 5 ([51]). Let C be a nonempty convex subset of E and f : C → R be a convex and
subdifferentiable function on C. Subsequently, f attains its minimum at x ∈ C if and only if
0 ∈ ∂ f (x) + NC(x), where NC(x) is the normal cone of C at x, that is

NC(x) := {x∗ ∈ E∗ : 〈x− z, x∗〉 ≥ 0, ∀z ∈ C}

Throughout this paper, we assume that the following assumptions hold on g:

A1. g is pseudomonotone, i.e., g(x, y) ≥ 0 and g(y, x) ≤ 0 for all x, y ∈ C,
A2. g is Bregman-Lipschitz-type condition, i.e., there exist two positive constants c1, c2,

such that

g(x, y) + g(y, z) ≥ g(x, z)− c1D f (y, x)− c2D f (z, y), ∀x, y, z ∈ C. (8)

A3. g(x, x) = 0 for all x ∈ C,
A4. g(·, y) is continuous on C for every y ∈ C, and
A5. g(x, ·) is convex, lower semicontinuous, and subdifferentiable on C for every fixed

x ∈ C.
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Lemma 6 ([52]). Let E be a reflexive Banach space, f : E → R be a strong coercive Bregman
function and Vf : E× E→ [0,+∞) be defined by

Vf (u, u∗) = f (u)− 〈u, u∗〉+ f ∗(u∗), u ∈ E, u∗ ∈ E∗.

Subsequently, the following assertions hold:

i. D f (u,∇ f (u∗)) = Vf (u, u∗), ∀u ∈ E, u∗ ∈ E∗, and
ii. Vf (u, u∗) + 〈∇ f ∗(u∗)− u, y∗〉 ≤ Vf (u, u∗ + y∗), ∀u ∈ E, y∗ ∈ E∗.

In addition, if f : E→ (−∞, ∞] is a proper lower semicontinuous function, then f ∗ : E∗ →
(−∞, ∞] is a proper weak lower semicontinuous and convex. Hence, Vf is convex in the second
variable. Thus, for all z ∈ E, we have

D f

(
z,∇ f ∗

(
N

∑
i=1

ti∇ f (xi)

))
≤

N

∑
i=1

D f (z, xi), (9)

where {xi}N
i=1 ⊂ E and {ti}N

i=1 ⊂ (0, 1) with ∑N
i=1 ti = 1.

Lemma 7 ([53]). Let {Θn} be a sequence of non-negative real numbers satisfying the following
identity:

Θn+1 ≤ (1− αn)Θn + αnδn, n ≥ 0,

where {αn} ⊂ (0, 1) and {δn} ⊂ R, such that ∑∞
n=0 αn = ∞ and lim supn→∞ δn ≤ 0 or

∑∞
n=0 |αnδn| < ∞. Afterwards, limn→∞ Θn = 0.

Lemma 8 ([54]). Let {Θn} be a sequence of real numbers such that there exists a subsequence
{Θni} of {Θn} with Θni < Θni+1 for all i ∈ N. Consider the integer {mk} that is defined by

mk = max{j ≤ k : Θj < Θj+1}.

Subsequently, {mk} is a non-decreasing sequence verifying limn→∞ mk = ∞, and for all
k ∈ N, the following estimate hold:

Θmk ≤ Θmk+1, and Θk ≤ Θmk+1.

3. Main Results

In this section, we present our algorithms and establish convergence analysis.
Let E be a real reflexive Banach space, and C be a nonempty, closed, and convex subset

of E. Let g : C× C → R be a bifunction satisfying (A1)–(A5). For i ∈ ℵ, where ℵ = N\{0},
let Ti : E → E be a countable family of quasi-Bregman nonexpansive mappings, such
that I − Ti are demiclosed at zero. Let f : E → R be a uniformly Fréchet differentiable,
coercive, Legendre, totally convex, and bounded on bounded subsets of E. Suppose that
the solution set

Sol = EP( f ) ∩
∞⋂

i=1

F(Ti) 6= ∅.

We assume that the control sequences satisfy the following condition.

(C1) {αn} ⊂ (0, 1), limn→∞ αn = 0 and ∑∞
n=0 αn = +∞;

(C2) {βn,i} ⊂ (0, 1), ∑∞
n=0 βn,i = 1 and lim infn→∞ βn,0βn,i > 0.

Now, suppose that the sequence {xn} is generated by the following algorithm.

Remark 1. Note that when xn = yn = un, we are at a common solution of the EP and fixed points
of Ti for i ∈ ℵ. More so, the following present some of the importance of Algorithm 1.

(i) Eskandami et al. [39] introduced a hybrid extragradient method whose convergence depends on
the Lipschitz constants c1 and c2 which are very difficult to estimate. Moreover, our Algorithm
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1 does not depend on the Lipschitz constants and the second argmin problem can be easily
solved over the half-space Dn.

(ii) Hieu and Strodiot [55] proposed an extragradient method with the line search technique
(Algorithm 4.1) in two uniformly convex Banach spaces. It is known that such line search
method is not always efficient because it consist of inner loop which may consume extra
computation time. In Algorithm 1, the stepsize is selected self-adaptively and does not involve
any inner loop.

(iii) Our algorithm also extends the subgradient extragradient method of [32–37] to reflexive
Banach spaces using Bregman distance.

Algorithm 1: Halpern-Subgradient Extragradient Method (H-SEM)
Initialization: Choose x0 ∈ C, u ∈ E, λ0 > 0, σ ∈ (0, 1) and Set n = 1.
Step 1: Compute

yn = argmin{λng(xn, y) + D f (y, xn) : y ∈ C}.

If xn = yn : set xn = zn and go to Step 3. Else, do Step 2.
Step 2: Compute

zn = argmin{λng(yn, y) + D f (y, xn) : y ∈ Dn},

where Dn = {y ∈ E : 〈∇ f (xn)− λnwn −∇ f (yn), y− yn〉 ≤ 0},
and wn ∈ ∂2g(xn, yn).

Step 3: Compute
un = ∇ f ∗

(
αn∇ f (u) + (1− αn)∇ f (zn)

)
.

Step 4: Calculate xn+1 and λn+1 as follows

xn+1 = ∇ f ∗
(

βn,0∇ f (un) +
∞

∑
i=1

βn,i∇ f (Tiun)
)
,

and

λn+1 =


min

{
λn,

σ(D f (yn ,xn)+D f (zn ,yn))

g(xn ,zn)−g(xn ,yn)−g(yn ,zn)

}
if g(xn, zn)− g(xn, yn)− g(yn, zn) 6= 0,

λn, otherwise.

Set n→ n + 1 and go to Step 1.

We now give the convergence analysis of Algorithm 1. We begin by proving the
following necessary results.

Lemma 9. The sequence {λn} that is generated by our algorithm is bounded by

min
{

λ0,
σ

max{c1, c2}

}
.

Proof. We deduce from the Definition of λn+1 that λn+1 ≤ λn. This implies that λn+1 is
monotonically decreasing. It follows from (8) that

c1D f (yn, xn) + c2D f (zn, yn) ≥ g(xn, zn)− g(xn, yn)− g(yn, zn).
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Thus

σ(D f (yn, xn) + D f (zn, yn))

g(xn, zn)− g(xn, yn)− g(yn, zn)
≥

σ(D f (yn, xn) + D f (zn, yn))

c1D f (yn, xn) + c2D f (zn, yn)

≥
σ(D f (yn, xn) + D f (zn, yn))

max{c1, c2}(D f (yn, xn) + D f (zn, yn))

=
σ

max{c1, c2}
.

Hence, the sequence {λn} is bounded by min
{

λ0, σ
max{c1,c2}

}
. This also implies that

there exists
lim

n→∞
λn = λ > 0.

Lemma 10. For all u∗ ∈ EP(g), the following inequality holds:

D f (u
∗, zn) ≤ D f (u

∗, xn)−
(

1− λn

λn+1
σ

)
D f (yn, xn)−

(
1− λn

λn+1
σ

)
D f (zn, yn), n ≥ 0. (10)

Proof. Because zn ∈ Dn, then from Algorithm 1, we have

〈∇ f (xn)− λnwn −∇ f (yn), zn − yn〉 ≤ 0,

hence
〈∇ f (xn)−∇ f (yn), zn − yn〉 ≤ λn〈wn, zn − yn〉. (11)

Additionally, since wn ∈ ∂2g(xn, yn),, then

g(xn, y)− g(xn, yn) ≥ 〈wn, y− yn〉 ∀y ∈ E.

This implies that
g(xn, zn)− g(xn, yn) ≥ 〈wn, zn − yn〉. (12)

Combining (11) and (12), we get

〈∇ f (xn)−∇ f (yn), zn − yn〉 ≤ λn{g(xn, zn)− g(xn, yn)}. (13)

Additionally, since zn = argmin{λng(yn, y) + D f (y, xn) : y ∈ Dn}, it follows from
Lemma 5 that

0 ∈ ∂
(

λng(yn, y) + D f (y, xn)
)
(zn) + NDn(zn).

This implies that there exists w̄n ∈ ∂2g(yn, zn) and η ∈ NDn(zn), such that

λnw̄n +∇ f (zn)−∇ f (xn) + ξ = 0.

Because ξ ∈ NDn(zn), then 〈ξ, y− zn〉 ≤ 0 for all y ∈ Dn. Hence,

λn〈w̄n, y− zn〉 ≥ 〈∇ f (xn)−∇ f (zn), y− zn〉 ∀y ∈ E. (14)

Additionally, w̄n ∈ ∂2g(yn, zn), then

g(yn, y)− g(yn, zn) ≥ 〈w̄n, y− zn〉 ∀y ∈ E.

Thus,
λn

(
g(yn, y)− g(yn, zn)

)
≥ λn〈w̄n, y− zn〉 ∀y ∈ E. (15)
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From (14) and (15), we get

〈∇ f (xn)−∇ f (zn), y− zn〉 ≤ λn

(
g(yn, y)− g(yn, zn)

)
∀y ∈ E. (16)

Now, let y = u∗ ∈ EP(g) in (16), then we have

〈∇ f (xn)−∇ f (zn), u∗ − zn〉 ≤ λn

(
g(yn, u∗)− g(yn, zn)

)
.

Because g(u∗, yn) ≥ 0 and g is pseudomonotone, then g(yn, u∗) ≤ 0. This implies that

〈∇ f (xn)−∇ f (zn), u∗ − zn〉 ≤ −λng(yn, zn). (17)

Adding (13) and (17), we have

〈∇ f (xn)−∇ f (zn), u∗ − zn〉+ 〈∇ f (xn)−∇ f (yn), zn − yn〉
≤ λn{g(xn, zn)− g(xn, yn)− g(yn, zn)}.

By Bregman three point identity (5), it follows that:

D f (u∗, zn) ≤ D f (u∗, xn)−D f (yn, xn)−D f (zn, yn) + λn{g(xn, zn)− g(xn, yn)− g(yn, zn)}

Additionally, from the Definition of λn, we have:

D f (u∗, zn) ≤ D f (u∗, xn)− D f (yn, xn)− D f (zn, yn)

+
λn

λn+1
λn+1{g(xn, zn)− g(xn, yn)− g(yn, zn)}

≤ D f (u∗, xn)− D f (yn, xn)− D f (zn, yn) +
λn

λn+1
σ(D f (yn, xn) + D f (zn, yn))

= D f (u∗, xn)−
(

1− λn

λn+1
σ

)
D f (yn, xn)−

(
1− λn

λn+1
σ

)
D f (zn, yn).

Lemma 11. The sequence {xn} that is generated by Algorithm 1 is bounded.

Proof. Let u∗ ∈ Sol. Afterwards, u∗ ∈ EP(g) and u∗ ∈ F(Ti), for all i ∈ ℵ. Because
limn→∞ λn exists (see Lemma 9), then λn

λn+1
→ 1 and so there exists N ∈ N, such that

1− λn

λn+1
σ = 1− σ > 0 ∀n ≥ N.

Thus, from Lemma 10, we have

D f (u∗, zn) ≤ D f (u∗, xn).

Therefore,

D f (u∗, un) = D f (u∗,∇ f ∗
(
αn∇ f (u) + (1− αn)∇ f (zn)

)
≤ αnD f (u∗, u) + (1− αn)D f (u∗, zn)

≤ αnD f (u∗, u) + (1− αn)D f (u∗, xn)

(18)
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Additionally,

D f (u∗, xn+1) = D f (u∗,∇ f ∗
(

βn,0∇ f (un) +
∞

∑
i=1

βn,i∇ f (Tiun)
)

≤ βn,0D f (u∗, un) +
∞

∑
i=1

βn,iD f (u∗, Tiun)

≤ βn,0D f (u∗, un) +
∞

∑
i=1

βn,iD f (u∗, un)

= D f (u∗, un).

(19)

Hence, by (18) and (19), we have

D f (u∗, xn+1) ≤ D f (u∗, un)

≤ αnD f (u∗, u) + (1− αn)D f (u∗, xn)

≤ max{D f (u∗, u), D f (u∗, xn)}
...

≤ max{D f (u∗, u), D f (u∗, x0)}.

Therefore, {D f (u∗, xn)} is bounded and, by Lemma 2, the sequence {xn} is also
bounded.

Lemma 12. Let s = sup{‖∇ f (yn)‖, ‖∇ f (Tiyn)‖} and let ρ∗ : E∗ → R be the gauge of uniform
convexity of the conjugate function f ∗. Subsequently,

D f (u∗, xn+1) ≤ αnD f (u∗, u) + (1− αn)D f (u∗, xn)

−βn,0

∞

∑
i=1

βn,iρ
∗
s (‖∇ f (yn)−∇ f (Tiyn)‖). (20)

Proof. From our algorithm, we have:

D f (u∗, xn+1) = D f

(
u∗,∇ f ∗

(
βn,0∇ f (un) +

∞

∑
i=1

βn,i∇ f (Tiun)
))

= Vf

(
u∗, βn,0∇ f (un) +

∞

∑
i=1

βn,i∇ f (Tiun)
)

.

It follows from Lemma 6 that:

D f (u∗, xn+1) = f (u∗)− 〈u∗, βn,0∇ f (un) +
∞

∑
i=1

βn,i∇ f (Tiun)〉

+ f ∗
(

βn,0∇ f (un) +
∞

∑
i=1

βn,i∇ f (Tiun)
)

.
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By Lemma 3 and (18), we have that:

D f (u
∗, xn+1) = βn,0 f (u∗) +

∞

∑
i=1

βn,i f (u∗)− βn,0〈u∗,∇ f (un)〉 −
∞

∑
i=1

βn,i〈u∗,∇ f (Tiun)〉

+βn,0 f ∗(∇ f (un)) +
∞

∑
i=1

βn,i f ∗(∇ f (Tiun))

−βn,0

∞

∑
i=1

βn,iρ
∗
s (‖∇ f (yn)−∇ f (Tiun)‖)

= βn,0[ f (u∗)− 〈u∗,∇ f (un)〉+ f ∗(∇ f (un))]

+
∞

∑
i=1

βn,i[ f (u∗)− 〈u∗,∇ f (Tiun)〉+ f ∗(∇ f (Tiun))]

−βn,0

∞

∑
i=1

βn,iρ
∗
s (‖∇ f (yn)−∇ f (Tiun)‖)

≤ βn,0D f (u
∗, un) +

∞

∑
i=1

βn,iD f (u
∗, Tiun)

−βn,0

∞

∑
1=1

βn,iρ
∗
s (‖∇ f (un)−∇ f (Tiun)‖)

≤ D f (u
∗, un)− βn,0

∞

∑
i=1

βn,iρ
∗
s (‖∇ f (un)−∇ f (Tiun)‖)

≤ αnD f (u
∗, u) + (1− αn)D f (u

∗, xn)− βn,0

∞

∑
i=1

βn,iρ
∗
s (‖∇ f (un)−∇ f (Tiun)‖).

Next, we prove the strong convergence of the sequence that is generated by our algorithm.

Theorem 1. The sequence {xn} generated by Algorithm 1 converges strongly to z, where z = Proj f
Sol(u).

Proof. Let u∗ ∈ Sol and put Γn = D f (u∗, xn). We divide the proof into two cases.
Case 1: suppose that there exists N ∈ N such that {Γn} is monotonically decreasing for all
n ≥ N. This implies that limn→∞ Γn exists since {xn} is bounded and, thus, we have

Γn − Γn+1 → 0, as n→ ∞.

From Lemma 10 and Lemma 11, we have the following:

D f (u∗, xn+1) = αnD f (u∗, u) + (1− αn)D f (u∗, zn)

≤ αnD f (u∗, u) + (1− αn)
{

D f (u∗, xn)−
(

1− λn

λn+1
σ

)
D f (yn, xn)

−
(

1− λn

λn+1
σ

)
D f (zn, yn)

}
≤ αnD f (u∗, u) + (1− αn)D f (u∗, xn)− (1− αn)

(
1− λn

λn+1
σ

)
D f (yn, xn)

− (1− αn)

(
1− λn

λn+1
σ

)
D f (zn, yn).

Thus, we have

(1− αn)

(
1− λn

λn+1
σ

)(
D f (yn, xn) + D f (zn, xn)

)
≤ αnD f (u∗, u) + (1− αn)D f (u∗, xn)

−D f (u∗, xn+1).
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Because αn → 0, and Γn − Γn+1 → 0, it follows that(
1− λn

λn+1
σ

)(
D f (yn, xn) + D f (zn, xn)

)
→ 0 as n→ ∞. (21)

Note that λn
λn+1
→ 1. Thus, from (21), we obtain

(1− σ)
(

D f (yn, xn) + D f (zn, xn)
)
→ 0.

Also, since σ ∈ (0, 1) then

D f (yn, xn) + D f (zn, xn)→ 0.

Therefore

lim
n→∞

D f (yn, xn) = 0, and lim
n→∞

D f (zn, xn) = 0.

By (6), we have
lim

n→∞
‖yn − xn‖ = 0 = lim

n→∞
‖zn − xn‖. (22)

Accordingly,

‖zn − yn‖ ≤ ‖zn − xn‖+ ‖xn − yn‖ → 0 as n→ ∞.

Moreover, since f is Fréchet differentiable, then ∇ f is uniformly continuous on
bounded subsets of E. Hence, we have

‖∇ f (un)−∇ f (zn)‖ = ‖αn∇ f (u) + (1− αn)∇ f (zn)−∇ f (zn)‖
= αn‖∇ f (u)−∇ f (zn)‖ → 0 as n→ ∞.

Additionally, ∇ f ∗ is uniformly continuous on bounded subsets of E∗. Hence,

lim
n→∞

‖un − zn‖ = 0. (23)

Remember, from (20), we have

D f (u∗, xn+1) ≤ αnD f (u∗, u) + (1− αn)D f (u∗, xn)− βn,0

∞

∑
i=1

βn,iρ
∗
s (‖∇ f (un)−∇ f (Tiun)‖)

This implies that

βn,0

∞

∑
i=1

βn,iρ
∗
s (‖∇ f (un)−∇ f (Tiun)‖) ≤ αnD f (u

∗, u) + (1− αn)D f (u
∗, xn)− D f (u

∗, xn+1)→ 0.

Therefore,

lim
n→∞

βn,0

∞

∑
i=1

βn,iρ
∗
s (‖∇ f (un)−∇ f (Tiun)‖) = 0.

It follows from (C2) that

lim
n→∞

‖∇ f (un)−∇ f (Tiun)‖ = 0,

Hence,
lim

n→∞
‖un − Tiun‖ = 0. (24)
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Because {xn} is bounded, there exists a subsequence {xnk} of {xn}, such that xnk ⇀
z ∈ C. It follows from the fact that limn→∞ ‖yn − xn‖ → 0, then ynk ⇀ z. Additionally

yn = argmin{λng(xn, y) + D f (y, xn) : y ∈ C},

it follows from Lemma 5 that

0 ∈ ∂
(

αng(xn, y) + D f (y, xn)
)
(yn) + NC(yn), ∀y ∈ C.

This implies that

λnwn +∇ f (yn)−∇ f (xn) + ξ = 0, where ξ ∈ NC(yn). (25)

Note that
〈ξ, y− yn〉 ≤ 0, ∀y ∈ C.

Hence, from (25), we get

〈λnwn, y− yn〉+ 〈ξ, y− yn〉 = 〈∇ f (xn)−∇ f (yn), y− yn〉,

which implies that

λn〈wn, y− yn〉 ≥ 〈∇ f (xn)−∇ f (yn), y− yn〉. (26)

Additionally, since wn ∈ ∂2g(xn, yn), then

g(xn, y) + g(xn, yn) ≥ 〈wn, y− zn〉, ∀ y ∈ C.

From (26) and (27), we have

λn

(
g(xn, y)− g(xn, yn)

)
≥ 〈∇ f (xn)−∇ f (yn), y− yn〉, ∀ y ∈ C. (27)

Because limn→∞ ‖xn − yn‖ → 0, f is uniformly Fréchet differentiable. Afterwards,
∇ f is uniformly continuous on bounded subsets of E. Hence,

lim
n→∞

‖∇ f (xn)−∇ f (yn)‖ = 0. (28)

Therefore, passing limit to (27) as n→ ∞ and using (28), we have

g(z, y) ≥ 0 y ∈ C.

Hence,
z ∈ EP(g, C). (29)

Furthermore, since ‖un − Tiun‖ → 0 and un ⇀ z, then z ∈ F̂(Ti). By the demiclosed-
ness of I − Ti, we have z ∈ F(Ti) , ∀i. Therefore, it follows that

z ∈
∞⋂

i=1

F(Ti) (30)

Therefore, by (29) and (30), we have

z ∈ Sol = EP(g, C) ∩
∞⋂

i=1

F(Ti). (31)
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Now, we prove that {xn} strongly converges strongly to u∗. Lemma 6, we have

D f (u∗, xn+1) ≤ D f (u∗, un)

= D f

(
u∗,∇ f ∗(αn∇ f (u) + (1− αn)∇ f (zn))

)
= Vf

(
u∗, αn∇ f (u) + (1− αn)∇ f (zn)

)
≤ Vf

(
u∗, αn∇ f (u) + (1− αn)∇ f (zn)− (αn∇ f (u)− αn∇ f (u∗))

)
− 〈∇ f ∗

(
αn∇ f (u) + (1− αn)∇ f (zn)

)
− u∗,−(αn∇ f (u)− αn∇ f (u∗))〉

= Vf

(
u∗, (1− αn)∇ f (zn) + αn∇ f (u∗)

)
+ 〈∇ f ∗

(
αn∇ f (u) + (1− αn)∇ f (zn)

)
− u∗, αn∇ f (u)− αn∇ f (u∗)〉

≤ (1− αn)Vf (u∗,∇ f (zn)) + αnVf (u∗,∇ f (u∗))

+ αn〈∇ f ∗
(
αn∇ f (u) + (1− αn)∇ f (zn)

)
− u∗,∇ f (u)−∇ f (u∗)〉

= (1− αn)D f (u∗, zn) + αnD f (u∗, u∗) + αn〈un − u∗,∇ f (u)−∇ f (u∗)〉
= (1− αn)D f (u∗, zn) + αn〈un − u∗,∇ f (u)−∇ f (u∗)〉
≤ (1− αn)D f (u∗, xn) + αn〈un − u∗,∇ f (u)−∇ f (u∗)〉. (32)

Let bn = 〈un − u∗,∇ f (u)−∇ f (u∗)〉. It suffices to show that lim supn→∞ bn ≤ 0. It
follows from (7) that

lim sup
n→∞

〈xn − u∗,∇ f (u)−∇ f (u∗)〉 = lim
k→∞
〈xnk − u∗,∇ f (u)−∇ f (u∗)〉

= 〈z− u∗,∇ f (u)−∇(u∗)〉
≤ 0.

Hence,
lim sup

n→∞
〈xn − u∗,∇ f (u)−∇ f (u∗)〉 ≤ 0.

Because ‖un − xn‖ → 0, then

lim sup
n→∞

〈un − u∗,∇ f (u)−∇ f (u∗)〉 ≤ 0. (33)

Therefore, using Lemma 7, (32) and (33), we have D f (u∗, xn)→ 0. This implies that
limn→∞ ‖xn − u∗‖ = 0. Hence, {xn} converges strongly to u∗.

Case 2: suppose that {xn} is monotonically increasing. This means that

D f (u∗, xn) < D f (u∗, xn+1).

Afterwards, by Lemma 8, we have that there exits a sequence {mn} ⊂ N, such that
amn ≤ amn+1 and an ≤ amn+1 , where mn = max{j ≤ n : aj ≤ aj+1}. Following similar
analysis, as above, we have

lim
n→∞

‖ymn − xmn‖ = 0,

lim
n→∞

‖zmn − xmn‖ = 0,

lim
n→∞

‖umn − xmn‖ = 0,

and
lim

n→∞
‖umn − Tiumn‖ = 0.
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Additionally, we have

lim sup
n→∞

〈umn − u∗,∇ f (u)−∇ f (u∗)〉 ≤ 0, (34)

and

D f (u∗, xmn+1) ≤ (1− αmn)D f (u∗, xmn) + αmn〈umn − u∗,∇ f (u)−∇ f (u∗)〉.

Because amn ≤ amn+1 , then

0 ≤ D f (u∗, xmn+1)− D f (u∗, xmn)

Therefore,

D f (u∗, xmn+1) ≤ (1− αmn)D f (u∗, xmn) + αmn〈umn − u∗,∇ f (u)−∇ f (u∗)〉 − D f (u∗, xmn).

Hence,
D f (u∗, xmn) ≤ 〈umn − u∗,∇ f (u)−∇ f (u∗)〉,

It follows from (34) that

lim sup
n→∞

D f (u∗, xmn) ≤ 0

Therefore
lim

n→∞
D f (u∗, xmn) = 0.

Consequently,
lim

n→∞
D f (u∗, xn) ≤ lim

n→∞
D f (u∗, xmn+1) = 0.

Hence, {xn} converges strongly to u∗. This completes the proof.

The following can be obtained as consequences of our main Theorem.

Corollary 1. Let E be a real reflexive Banach space, and C be a nonempty, closed, and convex subset
of E. Let g : C × C → R be a bifunction satisfying (A1)–(A5). For i ∈ ℵ, where ℵ = N\{0},
let Ti : E → E be finite a family of Bregman strongly nonexpansive mappings. Let f : E → R
be a uniformly Fréchet differentiable, coercive, Legendre, totally convex, and bounded on bounded
subsets of E. Suppose that the solution set

Sol = EP( f ) ∩
∞⋂

i=1

F(Ti) 6= ∅.

Subsequently, the sequence {xn} that is generated by the Algorithm 1 converges strongly to a
point u∗ ∈ Γ.

Corollary 2. Let E be a real reflexive Banach space, and C be a nonempty, closed, and convex subset
of E. Let g : C× C → R be a bifunction satisfying (A1)–(A5) and T : E→ E be a quasi-Bregman
nonexpansive mappings, such that I − T is demiclosed at zero. Let f : E → R be a uniformly
Fréchet differentiable, coercive, Legendre, totally convex, and bounded on bounded subsets of E.
Suppose that the solution set

Sol = EP( f ) ∩ F(T) 6= ∅.

Subsequently, the sequence {xn} generated by Algorithm 1 converges strongly to a point
u∗ ∈ Sol.
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4. Application: Variational Inequality

In this section, we consider the classical variational inequality problem, which is a
particular case of equilibrium problem.

Let A : C → E∗ be a mapping. A variational inequality problem, denoted by VIP, is
to find

z ∈ C such that 〈Az, y− z〉 ≥ 0, ∀y ∈ C.

We denote the solution set of the VIP by VIP(C, A). Variational inequalities are
important mathematical tools for solving many problems arising in applied sciences, such
as optimization, network equilibrium, mechanics, engineering, economics, etc., (see, for
example, [28–30] and references therein).

The following results are important in this section.

Lemma 13 ([48]). Let E be a real valued reflexive Banach space and C be a nonempty, closed, and
convex subset of E. Let g : C× C → R be a function, such that g(x, x) = 0 and f : E → R be
Legendre and totally coercive function. Subsequently, a point x∗ ∈ EP(C, g) if, and only if, x∗

solves the following minimization problem:

min{λg(x, y) + D f (y, x) : y ∈ C}, where x ∈ C and λ > 0.

Lemma 14 ([39]). Let C be a nonempty and closed convex subset of a reflexive Banach space E,
A : C× → E∗ be a mapping, and f ∗ : E→ R be a Legendre function. Afterwards,

Proj f
C
(
∇ f ∗( f (x)− λA(y))

)
= argminw∈C{λ〈w− y, A(y)〉+ D f (w, x)〉},

for all x ∈ E, y ∈ C, and λ ∈ (0,+∞).

Now, by setting g(x, y) = 〈Ax, y− x〉 for all x, y ∈ C, it follows from Lemma 13 and
14 that

argmin{λng(xn, y) + D f (y, xn) : y ∈ C} = argmin{λn〈Axn, y− xn〉+ D f (y, xn) : y ∈ C}

= Proj f
C
(
∇ f (∇ f (xn)− λn Ayn)

)
.

Similarly,

argmin{λng(yn, y) + D f (y, xn) : y ∈ Tn} = Proj f
Tn

(
∇ f ∗(∇ f (xn)− λn Ayn)

)
.

Note that

g(xn, zn)− g(xn, yn)− g(yn, zn) = 〈Axn, zn − xn〉 − 〈Axn, yn − xn〉 − 〈Ayn, zn − yn〉
= 〈Axn, zn − yn〉 − 〈Ayn, zn − yn〉
= 〈Axn − Ayn, zn − yn〉.

We assume that A : C → E∗ satisfies the following assumptions.

(B1) A is pseudomonotone, i.e., for x, y ∈ C we have

〈Ax, y− x〉 ≥ 0⇒ 〈Ay, y− x〉 ≥ 0;

(B2) A is L-Lipschitz continuous with respect to D f , i.e., there exists L > 0, such that

D f (Ax, Ay) ≤ LD f (x, y) x, y ∈ C;

(B3) A is weakly sequentially continuous, i.e., for any sequence {xn} ⊂ C, such that
xn ⇀ x̄ ∈ C, then Axn ⇀ Ax̄.

Therefore, we can apply our result to solving the VIP as follows:
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Theorem 2. Let E be a real reflexive Banach space, and C be a nonempty, closed, and convex
subset of E. Let A : C → E∗ be a mapping satisfying (B1)–(B3). For i ∈ ℵ, where ℵ = N\{0},
let Ti : E → E be a finite family of quasi-Bregman nonexpansive mappings, such that I − Ti are
demiclosed at zero. Let f : E→ R be a uniformly Fréchet differentiable, coercive, Legendre, totally
convex, and bounded on bounded subsets of E. Suppose that the solution set

Sol = VI(C, A) ∩
∞⋂

i=1

F(Ti) 6= ∅.

Subsequently, the sequence {xn} generated by the following algorithm converges strongly to a
point u∗ ∈ Γ.

For x0, u ∈ C, λ0 > 0, Compute

yn = Proj f
c
(
∇ f ∗(∇ f (xn)− λn Axn)

)
Tn = {y ∈ E : 〈∇ f (xn)− λn Axn −∇ f (yn), y− yn〉 ≤ 0}
zn = Proj f

Tn

(
∇ f ∗(∇ f (xn)− λn Ayn)

)
un = ∇ f ∗

(
αn∇ f (u) + (1− αn)∇ f (zn)

xn+1 = ∇ f ∗
(

βn,0∇ f (un) + ∑∞
i=1 βn,i∇ f (Tiun)

)
λn+1 =

min{λn,
σ(D f (yn ,xn)+D f (zn ,yn))

〈Axn−Ayn ,zn−yn〉 } if 〈Axn − Ayn, zn − yn〉 > 0,

λn, if otherwise.

where {αn} and {βn,i} are sequences in (0, 1), such that condition (C1) and (C2) are satisfied.

5. Numerical Examples

In this section, we perform some numerical experiments to illustrate the performance
of the proposed method and also compare with the method proposed by Eskandami
et al. [39] (shortly, H-EGM), Algorithm 3.1 of Hieu and Strodiot [55] (shortly, HS-ALG. I)
and Algorithm 4.1 of Hieu and Strodiot [55] (shortly, HS-ALG. II). All of the optimization
subproblems are viably addressed by the quadprog function in Matlab. The calculations
are completed utilizing MATLAB program on a Lenovo X250, Intel (R) Center i7 vPro
consisting of RAM 8.00GB. All of the optimization subproblems are effectively solved
by the quadprog function in Matlab. The computations are carried out using MATLAB
program on a Lenovo X250, Intel (R) Core i7 vPro with RAM 8.00GB.

Example 1. First, we consider the generalized Nash equilibrium problem described as follows:
Assume that there are m companies that produce a specific item. Let x mean the vector whose

section xj represents the amount of the item that is delivered by organization j. We accept that the
value cost pj(s) is a decreasing affine function of s with s = ∑m

j=1 xj, i.e. pj(s) = αj − β js, where
αj > 0 and β j > 0. It follows that the profit that is generated by company j is given by

gj(x) = pj(s)xj − cj(xj),

where cj(xj) is the tax expense for delivering xj. Assume that C = [xmin
j , xmax

j ] is the system set
of company j. At that point, the methodology set of the model is C : C1 × C2 × · · · × Cm. Indeed,
each company looks to optimize its benefit by picking the corresponding production level under the
assumption that the production of different companies is a parametric input. The renowned Nash
equilibrium idea established a commonly utilized method to deal with this model.

We recall that that a point x∗ ∈ C = C1 × C2 × · · · × Cm is called an equilibrium point of
the model if

gj(x∗) ≥ gj(x∗[xj]) for all xj ∈ Cj, j = 1, 2, · · · , m,
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where the vector x∗[xj] stands for the vector obtained from x∗ by substituting x∗j with xj. By taking
g(x, y) := ψ(x, y) − ψ(x, x) := −∑m

j=1 gj(x[yj]), the problem of finding a Nash equilibrium
point of the model can be formulated, as follows:

Find x∗ ∈ C : g(x∗, x) ≥ 0 for all x ∈ C.

Presently, let us guess that the tax-charge function cj(xj) is expanding and affine for each
j ≥ 1. This presumption implies that both the tax and charge for creating a unit are expanding as
the amount of the production gets larger. All things considered, the bifunction g can be formed in
the following structure:

g(x, y) = 〈Px + Qy + q, y− x〉,

where q ∈ <m and P, Q are two matrices of order m, such that Q is symmetric positive semidefinite
and Q− P is symmetric negative semidefinite. This shows that g is pseudomonotone. Moreover, it
is easy to show that g satisfies the Lipschitz-type condition with c1 = c2 = ‖P−Q‖

2 .
We suppose that the set C has the form

C = {x ∈ <m : −2 ≤ xj ≤ 5, j = 1, 2, . . . , m}.

The matrices P, Q are randomly generated, such that their properties are satisfied and the vector
q is generated randomly with its entries being in (−2, 2). The mapping Ti : <m → <m is defined
as the projection PC and the initial vector x0 ∈ <m is generated randomly for m = 10, 30, 50, 100.
For Algorithm 1, we choose u ∈ <m, λ0 = 0.36, αn = 1

10(n+1) and for each n ∈ N, i ≥ 1, {βn,i}
is defined by

βn,i =


0 if n < i,
1− n

n+1 ∑n
k=1

1
2k if n = i,

1
2i+1

( n
n+1
)

if n > i.

For H-EGM, we take N = 1, M = 5, αn = 1
10(n+1) , βn,r = 1

6 and choose the best stepsize

λn = 1
2.02c for the algorithm. Also for HS-ALG. I, we take αn = 1

10(n+1) , βn = 2n
5n+8 , λn = 1

2.02c .

Similarly for HS-ALG II, we choose αn = 1
10(n+1) , βn = 2n

5n+8 , γ = 0.08, α = 0.64, ν = 0.8.

We use Dn = ‖xn+1 − xn‖2 < ε to illustrate the convergence of the algorithms, where
ε = 10−5. The numerical results are shown in Table 1 and Figure 1.

From Table 1 and Figure 1, we see that Algorithm 1 performs better than H-EGM, HS-ALG I,
and HS-ALG II. This is due to the fact that Algorithm 1 uses a self-adaptive technique to select its
stepsize, while H-EGM and HS-ALG I used the choice λn = 1

2.02c which deteriorate the performance
of the algorithms as the value of m increases. Furthermore, HS-ALG II used a computationally
expensive line search procedure to determine its stepsize at each iteration. This technique uses inner
iteration and consumed additional computational time.

Table 1. Computational result for Example 1.

Algorithm 1 H-EGM HS-ALG. I HS-ALG. II

m = 10 No of Iter. 8 22 45 36
Time (s) 0.2286 0.3976 1.2179 0.7832

m = 30 No of Iter. 9 23 114 37
Time (s) 0.6215 0.8026 4.2133 1.9558

m = 50 No of Iter. 11 26 263 37
Time (s) 0.6991 1.3149 6.5156 2.3046

m = 100 No of Iter. 11 27 391 41
Time (s) 0.5226 1.3937 8. 8943 2.5175
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Figure 1. Example 1, Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV.

Example 2. Let E = `2(R) be the linear spaces whose elements are all 2-summable sequences
{xj}∞

j=1 of scalars in R, that is

`2(R) :=

{
x = (x1, x2, · · · , xj, · · · ), xj ∈ R and

∞

∑
j=1
|xj|2 < ∞

}

with inner product 〈·, ·〉 : `2 × `2 → R and || · || : `2 → R defined by 〈x, y〉 :=
∞
∑

j=1
xjyj and

||x|| =
(

∞
∑

j=1
|xj|2

) 1
2

, where x = {xj}∞
j=1, y = {yj}∞

j=1. Let C = {x ∈ E : ||x|| ≤ 1}. Define the

bifunction g : C× C → R by

g(x, y) = (3− ||x||)〈x, y− x〉 ∀x, y ∈ C.

It is easy to show that g is a pseudomonotone bifunction that is not monotone and g satisfies
condition (A1)–(A5) with Lipschitz-like constant c1 = c2 = 5

2 . We define the mapping Ti : `2 → `2
by Tix =

( x1
2 , x2

2 , . . . , xi
2 , . . .

)
. Subsequently, Ti is QBNE and F(Ti) = {0} and, thus, Sol = {0}.

We use similar parameters and stopping criterion, as used in Example 1, for the algorithms with the
following initial value:

Case I: x0 = (5, 5, 5, . . . , 5, . . . ),
Case II: x0 = (2, 4, 0, . . . , 0, . . . ),
Case III: x0 = (3, 1, 3, . . . , 3, . . . ),
Case IV: x0 = (2, 2, 0, . . . , 0, . . . ).

Table 2 and Figure 2 show the numerical results.
From Figure 2 and Table 2, we see that Algorithm 1 performs better than H-EGM, HS-ALG I,

and HS-ALG II. Note that the Lipschitz-like constant for the cost operator in this example is c = 5
2 .

Subsequently, the prior estimate of the stepsize for H-EGM and HS-ALG I can easily be obtained,
which is fixed for every iteration. More so, HS-ALG II used a line search method to determine an
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appropriate stepsize for each iteration. However, Algorithm 1 updated its stepsize at every iteration
while using a computational inexpensive method.

Table 2. Computational result for Example 2.

Algorithm 1 H-EGM HS-ALG. I HS-ALG. II

Case I No of Iter. 17 40 28 52
Time (s) 0.5182 0.5853 0.5489 0.6420

Case II No of Iter. 23 43 29 51
Time (s) 0.6556 1.2869 1.1739 1.5896

Case III No of Iter. 15 41 28 52
Time (s) 0.3120 1.0660 1.0479 1.2412

Case IV No of Iter. 24 43 29 54
Time (s) 0.6264 1.1696 0.8184 1.4417
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Figure 2. Example 1, Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV.

Example 3. In this example, we take E = L2([0, 1]) with the inner product 〈x, y〉 =
∫ 1

0 x(t)y(t)dt,

and norm ||x|| =
(∫ 1

0 x2(t)dt
) 1

2 for all x, y ∈ L2([0, 1]). The set C is defined by C = {x ∈ H :∫ 1
0 (t

2 + 1)x(t)dt ≤ 1} and the function g : C × C → R is given by g(x, y) = 〈Ax, y − x〉,
where Ax(t) = max{0, x(t)}, t ∈ [0, 1] for all x ∈ H. We defined the mapping T : L2([0, 1])→
L2([0, 1]) by T(x) =

∫ 1
0

x(t)
2 . It is not difficult to show that T is QBNE and Sol = {0}. We

take αn = 1
n+1 , βn,i =

3n
8n+11 for all the algorithms. For Algorithm 1, we take λ0 = 0.28 and

u = sin(3t). For H-EGM and HS-ALG I., we take N = M = 1 and λn = 1
3 . Additionally,

for HS-ALG. II, we take γ = 0.05, α = 0.28, ν = 0.5. We test the algorithms for the following
initial values:

Case I: x0 = t2 + 1,
Case II: x0 = cos(4t)

4 ,

Case III: x0 =
exp(3t)

3 ,
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Case IV: x0 = cos(2t).

We use ||xn+1 − xn|| < 10−4 as the stopping criterion for the numerical computation and
plot the graphs of ||xn+1 − xn|| against number of iterations in each case. Table 3 and Figure 3
present the numerical results.

From Table 3 and Figure 3, we see that Algorithm 1 also performs better than H-EGM,
HS-ALG I, and HS-ALG II. The reason for this advantage is similar to that in Example 2.

Table 3. Computational result for Example 3.

Algorithm 1 H-EGM HS-ALG. I HS-ALG. II

Case I No of Iter. 5 8 8 13
Time (s) 0.3849 0.3887 0.7988 2.1976

Case II No of Iter. 6 10 11 16
Time (s) 1.3104 1.8696 1.5608 4.9464

Case III No of Iter. 6 11 11 16
Time (s) 1.1448 1.5351 1.6029 3.8841

Case IV No of Iter. 6 10 10 15
Time (s) 1.1819 1.9065 2.0439 2.8720

Figure 3. Example 1, Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV.

6. Conclusions

In this paper, we introduced a Halpern-type Bregman subgradient extragradient
method for solving the pseudomonotone equilibrium problem in a real reflexive Banach
space. The stepsize of the algorithm is chosen by a self-adaptive method that does not
require computing the prior estimate of the Lipschitz-like constants of the cost operator.
We also proved a strong convergence theorem for the sequence that is generated by our
algorithm to a common solution of the equilibrium and fixed point problem. Finally, we
presented some numerical experiments to illustrate the performance and efficiency of the
proposed method. The numerical results showed that the proposed algorithm performs



Mathematics 2021, 9, 743 22 of 24

better than other related methods in the literature in terms of the number of iterations and
CPU time taken for the computation.
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