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Abstract: With the increase in the varieties products and the increasing uncertainty about product
demand, the production preparation time is a significant factor in addressing these issues. The trade-
off between the reduction of the production preparation time and the associated cost remains a critical
decision. With this backdrop, this study presents a continuous review production-inventory model
with a variable production preparation time and a time-dependent setup cost. The demand during
the preparation time is captured through a min-max distribution-free approach. In a stochastic
framework, the order quantity, reorder point, and setup time are optimized by minimizing the
expected cost considering the time-value effect. Further, a fuzzy model is formulated to tackle the
imprecise nature of the production setup time and demand. Two algorithms are developed using an
analytical approach to obtain the optimal solution. A numerical illustration is given to present the
key insights of the model for effective inventory management. It is observed that order quantity and
total cost are more sensitive at the lower side of the optimal setup time rather than at the higher side.
The discount rate is also found to be a sensitive factor while minimizing the total expected cost.

Keywords: continuous review inventory model; controllable preparation time; distribution-free
approach; time value of money; fuzzy random demand

1. Introduction

With globalization, organizations must cater to ever-changing consumer demand by
offering a wide variety of products. An inventory system is studied to understand the
movement of goods through the different phases of a manufacturing cycle in a systematic
manner. The economic order quantity (EOQ) and economic production quantity (EPQ)
models have been extensively used since their development and have been extended over
time to incorporate more realistic aspects, as well as to relax the basic assumptions. Between
the continuous review and the periodic review, the continuous review has received more
attention due to its mathematical approach and ability to handle diverse problems.

In this study, we focus on the EPQ model in dealing with the preparation time
and related aspects. In the past decade, several authors have developed various EPQ
models with different factors under the stochastic framework [1–5]. Sarker and Coates [6]
considered deterministic demand and the production rate with production lead-time to be
finite range random variables. Sarkar et al. [7] extended the model of Moon and Choi [8] to
reduce the setup cost and improve its quality in a continuous review inventory model by
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applying a distribution-free approach. Panda et al. [1] and Sarkar and Moon [2] formulated
a single period production-inventory model assuming a deterministic production rate
and random demand when scheduling in the stochastic environment. An EPQ model
with an imperfect production process, inflation, and stochastic demand was developed by
Krishnamoorthi and Panayappan [9]. Mukhopadhyay and Goswami [10] developed an
EPQ model for imperfect production using partial fractions to reduce the total production
cost. Kumar and Goswami [5] also developed a stochastic model for the continuous
review production-inventory model considering the min-max distribution-free approach.
Choudri et al. [11] considered the effect of inflation and the time value of money to
analyze an inventory control system for deteriorating products with constant demand.
The imperfect EPQ model introduced by Kundu et al. [12] has the advantage of time-
sensitive production and demand to show the effects of defect rates on production costs.
Lin [13] developed an optimal production-inventory policy for a stochastic EPQ inventory
system with imperfect production processes and rework processes. Recently, Singer and
Khmelnitsky [14] developed a production-inventory model with price-sensitive demand
as a Wiener stochastic process where a manufacturer decides both the operational policy
and the pricing policy with an optimal price for a product.

In general, the preparation time in a production-inventory model is assumed to be zero.
However, there is always a time gap between the decision to start the production process
and the actual start of production, which is termed the “production preparation time”.
The production preparation time includes several mutually independent components
such as: (i) making preparation decisions; (ii) collecting raw materials; (iii) screening raw
materials; and (iv) servicing machines. The setup cost and production cost in a production-
inventory model depend significantly on the production preparation time [15]. Estimating
the production preparation time is difficult due to its imprecise nature. To tackle this issue,
researchers and practitioners have used fuzzy models [16]. Bag et al. [17] developed an
imperfect production system under flexibility and reliability using fuzzy random demand.
Soni and Shah [18] developed an EPQ model with both imprecise demand and production
preparation time as fuzzy variables along with shortages and full backlogs. Jana et al. [19]
considered an inventory model including items that deteriorate over a random planning
period under conditions of inflation and the time value of money. Mondal et al. [20]
analyzed a production-inventory model in the presence of inflation and the time value of
money in a fuzzy rough environment. Soni et al. [21] considered the effects of lost sales
and quality improvements in an imperfect production system in a fuzzy environment.
Bhuiya et al. [22] extended Sana and Goyal’s model [23] by calculating the optimal order
quantity, reorder point, and lead-time simultaneously in a random framework, as well
as considering uncertain demand to be a fuzzy random variable. Dey [24] developed an
integrated single-vendor/single-buyer imperfect production-inventory model in which
fuzziness and randomness simultaneously appear in a mixed environment. Fu et al. [25]
developed a production-inventory model to determine the optimal decision in a single-
vendor/single-buyer supply chain system by considering imperfect quality, the learning
effect, and triangular fuzzy demand. In [26], for the first time, reliable and unreliable
sellers were considered in a coordination supply chain model. The profitability of the
supply chain was determined using a variable setup cost, order quantity, and service level.
This model is seen as more realistic by considering lead-time demand to be stochastic,
where the distribution is unknown. The model also uses a distribution-free approach
to solve the problem. Hemalatha and Annadurai [27] extended the work of Priyan and
Uthayakumar [28] by considering the parameters as the triangular fuzzy number for an
integrated production-distribution inventory system with deteriorating products. Sarkar
and Mahapatra [29] extended the work of Annadurai and Uthayakumar [30] by developing
a periodic review inventory model with a fuzzy demand pattern. They minimized the
expected total annual cost by simultaneously optimizing the cycle length, reorder point,
and lead-time for the whole system based on fuzzy demand. Recently, Mahapatra et al. [31]
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developed a fuzzy EOQ model to analyze the impact of learning to reduce fuzziness within
a finite time horizon, as well as to consider the effect of promoting deteriorating items.

Most research on inventory models does not consider the effect of inflation and the
time value of money in global economics. This is somewhat away from real scenarios,
since the basis of their uniqueness is dependent on when the model is used, which is
highly connected to the stock return. In the case of investment and forecasting, the time
value of money should be critically accounted for. The inflationary effect and influence
of the time value of money are significant for improving decision-making and remaining
financially sound in today’s highly competitive market. Moon and Yun [32] developed
a discounted cash flow approach by considering the time value of money and a random
planning horizon variable. Shah [33] analyzed an inventory model by accounting for a
constant deterioration unit cost and the time value of money when payments are delayed
considerably. Dey et al. [34] considered an inventory model of the deterioration of items
under the time value of money and inflation rates. Hou et al. [35] formulated an inventory
model based on the inflation rate and time value of money for a certain period and a
planning scale, considering deteriorating products with partial back orders. Hung [36] de-
veloped a continuous inventory model using the time value of money in which preparation
time demand follows a normal distribution. Shah and Vaghela [37] developed an inventory
model with effort-dependent and time-dependent demand by considering the time value
of money and inflation effects. Pérez et al. [38] analyzed an EPQ inventory model with pre-
and post-deterioration discounts on the selling price, considering the time value of money
and partial back order shortages.

1.1. Motivation and Objective

Based on the above-mentioned literature, it can be found that studies on variable
preparation time are rare. The same can be easily understood from the comparison of the
previous literature as presented in Table 1. Apart from the particular issue of variable
production time, the model complexity increases as we include other practical aspects
such as stochastic demand, imprecise attributes, and time value features. Therefore, the
reduction of the total inventory cost considering the above-mentioned aspects is a real
challenge that motivates us to take up the problem. In this regard, an effort is made to
address to optimize variable production time in a stochastic environment with imprecise
attributes by minimizing the total expected inventory cost.

Table 1. Comparison of the contributions of different authors.

Author(s) Model Distribution Variable Order Time Fuzzy Partial Variable
Structures Free Approach Preparation Time Quantity Value Effect Random Demand Backorder Cost Reorder Point

Dey et al. [34] EOQ
√ √ √

Bag et al. [17] EPQ
√

Sarkar and Moon [2] EPQ
√ √

Soni and Shah [18] EPQ
√ √

Wang [39] EOQ
√ √ √ √

Hou et al. [35] EOQ
√ √ √

Mondal et al. [20] EPQ
√

Mukhopadhyay and Goswami [10] EPQ
√

Wee et al. [4] EPQ
√ √

Kumar and Goswami [5] EPQ
√ √ √ √

Soni and Patel [40] SCM
√ √ √ √

Choudri et al. [11] EPQ
√ √

Hung [36] EOQ
√ √ √

Sarkar and Mahapatra [29] EOQ
√ √ √ √ √

Soni et al. [41] EOQ
√ √ √ √

Soni et al. [21] EPQ
√

Shah and Vaghela [37] EPQ
√ √

Tayyab et al. [42] MPS
√ √

Mahapatra et al. [31] EOQ
√ √ √

Kundu et al. [12] EPQ
√ √

Sarkar and Chung [43] SCM
√ √

Mishra et al. [44] EPQ
√ √

Singer and Khmelnitsky [14] EPQ
√ √

This study EPQ
√ √ √ √ √ √ √
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Considering all the features, the contribution and novelty of the present study are
as follows:

1. This study extends the work of [5] by proposing a production-inventory model
that allows for a stochastic environment with a variable production setup time and
partial back orders considering the time value of money. They focused on how to
use the historical data when the demand distribution is not known. It is also a fact
that the adequate demand information does not come with ease. However, through
historical data, the mean and variance of the distribution function of demand can
be calculated. They optimized the inventory strategy against the most unfavorable
distribution of demand by treating it as an FRV and extending the MMDFP for said
FRV. They considered the production setup time as a parameter and performed
sensitivity analysis, whereas the production setup time is a decision variable in this
study where the opportunity for the crashing of sub-tasks is available.

2. In this investigation, an imperfect EPQ model in a fuzzy environment is developed,
which offers more practical scenarios, as well as accounts for the imprecise nature of
demand and the production setup time.

3. The model considers the fuzzy demand rate and production preparation time with
known distribution functions, where the production cost and setup cost are taken as
a function of the preparation time.

4. The shortage cost and holding cost are considered to be a proportion of the produc-
tion cost.

The rest of the paper is organized as follows. Section 2.1 presents all the notations
and necessary assumptions. Section 2.2 describes the stochastic inventory model, and
Section 2.3 describes the fuzzy stochastic inventory model. The results of the numerical
experiments are presented in Section 3 using input data along with the sensitivity analyses
of the key parameters. Finally, Section 4 concludes. Compliance with ethical standards and
a list of the abbreviations used in the model are also given.

2. Mathematical Model

This section starts with the basic assumptions and notations of the model.

2.1. Assumptions and Notations

The following assumptions and notations are used throughout the paper to develop
this model.

Assumptions:

1. The setup cost depends on the setup time as follows: A(L) = a0 + a1L−γ, where
a0 and a1 are non-negative real numbers and γ > 0. If the setup is planned in advance,
some components of the setup cost (e.g., labor, wages) may be reduced (Soni and
Shah [18]).

2. The effect of inflation and the time value of money is considered [45,46].
3. The setup time L has n mutually independent components such as collecting raw

materials, screening raw materials, and servicing machines. There are varying re-
duction costs for each component to curtail the setup time. The rth component has
a minimum duration ar and normal duration br, as well as a reduction cost per unit
time cr. Furthermore, it is assumed that c1 ≤ c2 ≤ . . . ≤ cn.

4. Let L0 = ∑n
r=1 br and Lp be the setup time with the components 1, 2, . . . , p reduced

to their minimum duration; then, Lp can be expressed as Lp = ∑n
r=1 br −∑

p
r=1(br −

ar), p = 1, 2, . . . , n. The per cycle setup time reduction cost C(L) is as follows:

C(L) = cp(Lp − L) +
p−1

∑
r=1

cr(br − ar) (1)

and C(L0) = 0, for all L ∈ [Lp, Lp−1]
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5. During the ith unit of time, the demand rate Xi is random and independent of previous
and forthcoming epochs (i.e., Xi, i = 1, 2, . . . are independent random variables with
identical mean d and variance σ2).

6. Demand during the preparation time, X, is a convolution of the demand rate Xi

and the preparation time L (Kim et al. [47]). Hence, E[X] = ∑L
i=1 E[Xi] = dL and

var[X] = ∑L
i=1 var[Xi] = Lσ2. For notional convenience, dL = dL and σ2

L = σ2L.
7. Preparation time demand, a random variable, follows an unknown distribution func-

tion with finite mean dL and variance σ2L. The min-max distribution-free procedure
finds the worst possible distribution and then minimizes the total expected cost. The
expected shortage is calculated based on the work of Kumar and Goswami [5,48]):

E[X− R]+ =

√
σ2L + (R− dL)2 − (R− dL)

2
(2)

8. The production preparation time is the time between the decision to start production
and actual commencement of production.

9. Shortages are allowed and backlogged partially.
10. The time horizon is infinite (Kumar and Goswami [5]).

Notations:
Model parameters and variables are presented in Table 2.

Table 2. Model parameters and decision variables.

Parameters

D Expected demand per year (units)
P Production rate per unit time (P > D)

A(L) Setup cost per cycle with preparation time
dL Mean demand during the preparation time
σ Standard deviation of demand during the preparation time
τ Proportion of back orders during the stockout period
h Inventory holding cost ($/unit)
s Inventory shortage cost ($/unit)
π Marginal profit ($/unit)
θ Interest rate per year, compounded continuously

Lp Length of the preparation time for component p
where p = 1, 2, . . . , n

ar Minimum preparation time for component r (days)
br Normal preparation time for component r (days)
cr Crashing cost per unit time for component r

E(.) Mathematical expectation of (.)
x+ max{x, 0}
X Random demand during the preparation time, which lies within

the finite interval with mean dL = dL and variance σ2
L = σ2L

Xi Random demand rate, which varies within the finite interval,
i.e., Xi(ω) = x ∈ [xmin, xmax]; the mean and variance of Xi are
dL and σ2

L, respectively
F Family of distribution functions with mean dL and variance σ2

L
F Class of cumulative distribution function with

mean dL and variance σ2
L

Decision variables

Q Order quantity per cycle
R Reorder point
L Preparation time for replenishment
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2.2. Stochastic Inventory Model

In this section, a continuous review production-inventory model is considered in
which items are produced internally and concurrently to meet customers’ demand. The
inventory level pattern can be described as follows: When the inventory level falls to R
units, management decides to start the production of amount Q. Owing to the preparation
time of the production process, the actual production rate of (P− D) is started after the L
unit of time, which continues to time tp = Q

P . Thereafter, the inventory level is reduced at
the rate D due to demand only. The length of one cycle is Q

D . Figure 1 illustrates the model.

Figure 1. Fuzzy random production-inventory model.

Therefore, the total expected cost is given by TEC = Setup cost + Holding cost +
Shortage cost + Lost sales cost + Setup time reduction cost.

In this study, the production-inventory model takes into account the time value of
money. When production starts, the expected on-hand inventory level is R− dL + (1−
τ)E[X− R]+; then, at the end of the production process, the expected maximum inventory
level is (P− D)Q

P + R− dL + (1− τ)E[X− R]+. Since the value of an inventory item is no
longer constant, the holding cost becomes a function of the inflation used to determine the
value of the ending inventory.

Hence, the expected holding cost for the inventory system with the effect of inflation
for the first cycle is:

h
∫ Q/P

0

{
R− dL + (1− τ)E[X− R]+ + (P− D)t

}
e−θtdt

+ h
∫ Q/D

Q/P

{
(P− D)Q/P + R− dL + (1− τ)E[X− R]+ − D

(
t− Q

P

)}
e−θtdt (3)

=
h
(

R− dL + (1− τ)E[X− R]+
)(

1− e−θQ/D
)

θ
+

hP
(

1− e−θQ/P
)

θ2

−
hD
(

1− e−θQ/D
)

θ2

The discounted cash flow approach is adopted under which cash outflows occur for
the setup cost, shortage cost, lost sales cost, and setup time reduction cost at the beginning
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of each cycle. The basics of the discounted cash flow can be found in the works of Moon
and Yun [32] and Mondal et al. [20]. Therefore, the total relevant expected cost for the first
cycle is given by:

TREC(Q, R, L) = A(L) + h
(

R− dL + (1− τ)E[X− R]+
)(1− e−θQ/D

)
θ

+
hP
(

1− e−θQ/P
)

θ2 −
hD
(

1− e−θQ/D
)

θ2 (4)

+ E[X− R]+[s + π(1− τ)] + C(L)

According to Silver et al. [49], the present value of the expected total relevant cost over
the infinite time horizon, PVC(Q, R, L), is given by:

PVC(Q, R, L) =
1

1− e−θQ/D TREC(Q, R, L) (5)

for 0 < Q, R < ∞ and Ln ≤ L ≤ L0.
In many real-life situations, information on preparation time demand is limited. If

the probability distribution of demand during preparation time X is unknown or many
distribution functions have the same mean and variance, then the exact value of E(X− R)+

cannot be obtained. Hence, the optimal value of PVC(Q, R, L) cannot be found. Therefore,
the min-max distribution-free approach (see Appendix B) is applied to solve the problem
of the following form:

MinQ>0MaxF∈FPVC(Q, R, L)

This task was greatly simplified by Scarf [50], who proved the following Lemma 1.

Lemma 1. For any F ∈ F ,

E[X− R]+ ≤
√

σ2L + (R− dL)2 − (R− dL)

2
(6)

Moreover, for every R, there exists a distribution F∗ ∈ F , where the upper bound is tight.

Thus,

PVC(Q, R, L) ≤ f (R, L)
1− e−θQ/D + g(R, L) +

hP
θ2

1− e−θQ/P

1− e−θQ/D (7)

where

f (R, L) = A(L) + C(L) + [s + π(1− τ)]U(R, L)

g(R, L) =
h[R− dL + (1− τ)U(R, L)]

θ
− hD

θ2

U(R, L) =

√
σ2L + (R− dL)2 − (R− dL)

2

To solve Equation (7), taking the first-order partial derivative of PVC(Q, R, L) with respect
to Q and keeping R fixed, we obtain:

∂PVC(Q, R, L)
∂Q

=
F(Q)

DθeθQ/D
(
1− e−θQ/D

)2 (8)

where F(Q) = h(P− D)e−θQ/P(1 + eθQ/D)− θ2 f (R, L)
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Differentiating F(Q) with respect to Q, we obtain:

dF
dQ

=
hθ(P− D)e−θQ/P

[
(P− D)eθQ/D − D

]
PD

> 0

Thus, F(Q) is a strictly increasing function of Q. Moreover, F(0) = 2h(P − D) −
θ2 f (R, L) and lim

Q→∞
F(Q) = +∞. Hence, if F(0) < 0, then, according to the intermediate

value theorem (Olsen [51]), a unique value of Q exists (e.g., Q∗) such that F(Q∗) = 0.
Hence,

h(P− D)e−θQ∗/P(1 + eθQ∗/D) = θ2 f (R, L) =⇒ e−θQ∗/P + eθQ∗(P−D)/PD =
θ2 f (R, L)
h(P− D)

(9)

Furthermore,

[
∂2PVC(Q, R, L)

∂Q2

]
Q=Q∗

=
h(P− D)e−θQ/P

[
(P− D)eθQ/D − D

]
PD2eθQ/D

(
1− e−θQ/D

)2 > 0

Therefore, PVC(Q, R, L) is a convex function in Q because the second-order sufficient
conditions are satisfied. Again, taking the first- and second-order partial derivatives of
PVC(Q, R, L) with respect to R and keeping Q fixed, we obtain:

∂PVC(Q, R, L)
∂R

=

[
R− dL√

σ2L + (R− dL)2
− 1

][
(s + π(1− τ))

2(1− e−θQ/D)
+

h(1− τ)

2θ

]
+

h
θ

(10)

∂2PVC(Q, R, L)
∂R2 =

[
σ2L

{σ2L + (R− dL)2} 3
2

][
(s + π(1− τ))

2(1− e−θQ/D)
+

h(1− τ)

2θ

]
> 0 (11)

It can be verified that PVC(Q, R, L) is a convex function in R ∈ (0, ∞) by calculating
the second-order sufficient conditions.

Again, when Equation (10) is equal to zero, we obtain:

R− dL√
σ2L + (R− dL)2

= λ⇒ R = dL ±
λσ
√

L√
1− λ2

(12)

where

λ =
[θ{s + π(1− τ)}]− h(1 + τ)[1− e−

θQ
D ]

[θ{s + π(1− τ)}] + h(1− τ)[1− e−
θQ
D ]

Therefore, from Equation (7), we obtain:

PVC(Q∗, R∗, L∗) =
f (R∗, L∗)

1− e−θQ∗/D + g(R∗, L∗) +
hP
θ2

1− e−θQ∗/P

1− e−θQ∗/D (13)

Using the following algorithm, the optimal solution of (Q, R, L) is obtained from
Equations (9), (12), and (13). Moreover, the computational procedure for obtaining the
optimum solution of (Q, R, L) is explained, which is denoted by (Q∗, R∗, L∗). An improved
Algorithm 1 is developed and presented below.
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Algorithm 1: Steps for finding the optimal solution for the stochastic model.
Step 1 Input all the parameters.
Step 2 Perform Step 3 to Step 6 for each L from 63 to 21 in reverse order.
Step 3 Calculate C(L) by crashing components (p = 1, 2, . . . , 4) from the lowest
unit cost to the highest unit cost to have a preparation time of L. For example,
C(L|63) = 0; C(L|62) = 0.04, and so on.
Step 4 Calculate the A(L) values based on the equation A(L) = a0 + a1L−γ, as
mentioned in Assumption 1.
Step 5 Find the optimal values of Q∗L and R∗L and the PVC(Q, R, L) value for the
parametric value of L, as mentioned in Step 2, by minimizing PVC(Q, R, L), as
developed in Equation (13).
Step 6 Calculate the SS values based on R and L.
Step 7 Select the (Q∗, R∗, L∗) corresponding to the lowest value of PVC(Q, R, L).
Step 8 Present all the required outputs.

2.3. Fuzzy Stochastic Inventory Model

Contrary to the crisp inventory model in Section 2.2, a fuzzy stochastic framework
takes into account the variability in certain demand parameters. The mathematical FRV
(fuzzy random variable) model described in Section 1 accounts for the linguistic imprecision
and mathematical uncertainty that occur because of disturbances in inventory frameworks.
However, many researchers consider fuzzy demand [29,41,42], using the distribution-free
approach. The computation of demand must first account for a plethora of factors such as
the collection of data, their proper encoding, presaging the ensuing market conditions, and
documentation, which are extremely erratic and variable. Thus, the estimation of demand
by management must incorporate a fuzzy model that expresses that demand in the ith unit
of time is “about x̃i,” which varies randomly in the interval [xmin, xmax]. This assemblage
can be mathematically expressed in terms of the FRV. Let (Ω,B, Pr) be a probability space
in which Ω is a sample space, B is the σ-algebra of the subsets Ω, and Pr is a probability
measure. Fuzzy random demand X̃, corresponding to the real-valued random demand Xi
at the ith unit of time, is a mapping from Ω to a collection of fuzzy variables FR [52,53].
Without loss of generality, it is assumed that all the observed values of FRV X̃i are triangular
fuzzy numbers; that is, for each ω ∈ Ω, X̃i(ω) = (Xi(ω)− ∆i, Xi(ω), Xi(ω) + ∆′i) with the
membership function µX̃i

as:

µX̃i
(ω) =


ω− xi + ∆i

∆i
, if xi − ∆i ≤ ω ≤ xi

xi + ∆′i −ω

∆′i
, if xi ≤ ω ≤ xi + ∆′i

0, otherwise.

If the length of the preparation time is L, then demand during the setup time is an
L-fold convolution of the distribution X̃i, which is represented by:

X̃ = X̃1 ⊕ X̃2 ⊕ · · · ⊕ X̃L

where X̃i is the FRV, representing demand at the ith unit of time. Hence, X̃ = (X −
δ1, X, X + δ2), where X = ∑L

1 Xi, δ1 = ∑L
1 ∆i, and δ2 = ∑L

1 ∆′i. Since the demand rate is
fuzzy random in nature, the cycle time Q/D is also fuzzy random in nature.

Therefore, the current value of the expected total relevant cost over an infinite time
horizon in the fuzzy sense, P̃VC(Q, R, L), is given by:

F̃PVC(Q, R, L) =
M̃(R, L)

1− e−θQ/D̃
+ Ñ(R, L) +

hP
θ2

1− e−θQ/P

1− e−θQ/D̃
(14)
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where
M̃(R, L) = A(L) + C(L) + [s + π(1− τ)]E[X̃− R]+,

Ñ(R, L) =
h[R− d̃L + (1− τ)E[X̃− R]+]

θ
− hD̃

θ2

From the decomposition theorem, the objective function F̃PVC(Q, R, L) is repre-
sented by:

F̃PVC(Q, R, L) =
⋃

α∈[0,1]

[
FPVC−α , FPVC+

α ; α
]

(15)

Employing the signed distance method (Yao and Wu [54]) (see Appendix C) to de-

fuzzify the fuzzy annual cost F̃PVC(Q, R, L), we obtain:

F̃PVC(Q, R, L) =
1
2

1∫
0

[
FPVC−α + FPVC+

α

]
dα (16)

2.4. Calculation of the α-Cut of E[X̃− R]+

For a fixed reorder point R, the expressions of E([X̃ − R]+)+α and E([X̃ − R]+)−α ,
which correspond to the random variables ([X̃− R]+)+α and ([X̃− R]+)−α , respectively, can
be estimated using the relationship between the value of x of fuzzy demand during the
preparation time X̃(x) and reorder point R. For every x ∈ Ω, (X̃− R)(x) = (x− R− δ1, x−
R, x− R + δ2). Thus, for fixed values of R, δ1, and δ2, the expressions of ([X̃− R]+)+α and
([X̃− R]+)−α can be determined based on the following four situations, where demand x
falls into the intervals [R + δ1, ∞), [R, R + δ1], [R− δ2, R], and (−∞, R− δ2]. To simplify the
notation, let us denote Ỹ = [X̃−R]+. For each situation, the α-cut of Ỹ and correspondingly
the α-cut of the expectation E[Ỹ] are found.

Situation 1: x ∈ [R + δ1, ∞), i.e., x− R− δ1 ≥ 0. Figure 2 shows the fuzzy shortage
quantity Ỹ.

Figure 2. Membership function of the fuzzy shortage quantity when R + δ1 ≤ x.

The membership function µỸ of Ỹ is:

µỸ(y) =


y− (x− R− δ1)

δ1
, x− R− δ1 ≤ y ≤ x− R

(x− R + δ2)− y
δ2

, x− R ≤ y ≤ x− R + δ2

0, otherwise.

where α-cut [Ỹ−α , Ỹ+
α ] = [x− R− δ1 + αδ1, x− R + δ2 − αδ2], 0 ≤ α ≤ 1. The expectation of

the random interval above is:[
E[Ỹ−α ], E[Ỹ+

α ]
]
=

[∫ ∞

R+δ1

(x− R− δ1 + αδ1)dF(x),
∫ ∞

R+δ1

(x− R + δ2 − αδ2)dF(x)
]

(17)
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Situation 2: x ∈ [R, R + δ1), i.e., x− R− δ1 < 0 and x− R ≥ 0. Figure 3 shows the
fuzzy shortage quantity Ỹ.

Figure 3. Membership function of the fuzzy shortage quantity when R ≤ x < R + δ1.

The membership function µỸ of Ỹ is:

µỸ(y) =


y− (x− R− δ1)

δ1
, 0 ≤ y ≤ x− R

(x− R + δ2)− y
δ2

, x− R ≤ y ≤ x− R + δ2

0, otherwise,

where α-cut
[
Ỹ−α , Ỹ+

α

]
=


[
0, x− R + δ2 − αδ2

]
, x ∈

[
R, R + δ1 − αδ1

]
;[

x− R− δ1 + αδ1, x− R + δ2 − αδ2

]
; x ∈

[
R + δ1 − αδ1, R + δ1

]
.

The expectation of the random interval above is:

[
E[Ỹ−α ], E[Ỹ+

α ]
]
=


[
0,
∫ R+δ1−αδ1

R (x− R + δ2 − αδ2)dF(x)
][∫ R+δ1

R+δ1−αδ1
(x− R− δ1 + αδ1)dF(x),

∫ R+δ1
R+δ1−αδ1

(x− R + δ2 − αδ2)dF(x)
] (18)

Situation 3: x ∈ [R− δ2, R), i.e., x− R + δ2 ≥ 0 and x− R < 0. Figure 4 shows the
fuzzy shortage quantity Ỹ.

Figure 4. Membership function of the fuzzy shortage quantity when R− δ2 ≤ x < R.

The membership function µỸ of Ỹ is:

µỸ(y) =


(x− R + δ2)− y

δ2
, 0 ≤ y ≤ x− R + δ2

0, otherwise,
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where α-cut [Ỹ−α , Ỹ+
α ] =

{
[0, 0], x ∈ [R− δ2, R + δ2 − αδ2];
[0, x− R + δ2 − αδ2], x ∈ [R + δ2 − αδ2, R].

The expecta-

tion of the random interval in this situation is:[
E[Ỹ−α ], E[Ỹ+

α ]
]
=

[
0,
∫ R

R−δ2+αδ2

(x− R + δ2 − αδ2)dF(x)
]

(19)

Situation 4: x ∈ (−∞, R− δ2), i.e., x− R + δ2 < 0. In this situation, there is no shortage
quantity, as shown in Figure 5.

Figure 5. Membership function of the fuzzy shortage quantity when x < R− δ2.

Obviously, the membership function of Ỹ is zero for all y. Consequently,
[

E[Ỹ−α ], E[Ỹ+
α ]
]

= [0, 0]. Combining Equations (17)–(19), the α-cut of the expectation of the FRV, Ỹ, is given
by:

[
E[Ỹ−α ], E[Ỹ+

α ]
]
=

[ ∫ ∞

R+δ1−αδ1

(x− R− δ1 + αδ1)dF(x),

∫ ∞

R−δ2+αδ2

(x− R + δ2 − αδ2)dF(x)

] (20)

Now, using the above lemma, the maximum value of the α-cut of E[Ỹ] for 0 ≤ α ≤ 1
can be calculated as follows:

∫ ∞

R+δ1−αδ1

(x− R− δ1 + αδ1)dF(x) = E[x− (R + δ1 − αδ1)]
+

≤

√
σ2

L + (R + δ1 − αδ1 − dL)2 − (R + δ1 − αδ1 − dL)

2
= U1(R, L; α)(say) (21)

and

∫ ∞

R−δ2+αδ2

(x− R + δ2 − αδ2)dF(x) = E[x− (R− δ2 + αδ2)]
+

≤

√
σ2

L + (R− δ2 + αδ2 − dL)2 − (R− δ2 + αδ2 − dL)

2
= U2(R, L; α)(say) (22)
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Now, from Equations (16), (21), and (22), the deterministic cost function equivalent to
the fuzzy expected cost is as follows:

F̃PVC(Q, R, L) ≤ 1
2

∫ 1

0

[
[A(L) + C(L)]

1− e−θQ/(D−(1−α)∆i)

]
dα

+
1
2

∫ 1

0

[
[s + π(1− τ)]U1(R, L; α)

1− e−θQ/(D−(1−α)∆i)

]
dα

+
h

2θ

∫ 1

0
[R− dL − (1− α)δ2 + (1− τ)U1(R, L; α)]dα

+
1
2

∫ 1

0

[
hP(1− e−θQ/P)

θ2(1− e−θQ/(D−(1−α)∆i))
+

hP(1− e−θQ/P)

θ2(1− e−δQ/(D+(1−α)∆′i))

]
dα

− 1
2

∫ 1

0

h
θ2

[
D + (1− α)∆′i + D− (1− α)∆i

]
dα

+
1
2

∫ 1

0

[
[A(L) + C(L)]

1− e−θQ/(D+(1−α)∆′i)

]
dα

+
1
2

∫ 1

0

[
[s + π(1− τ)]U2(R, L; α)

1− e−θQ/(D+(1−α)∆′i)

]
dα

+
h

2θ

∫ 1

0
[R− dL + (1− α)δ1 + (1− τ)U2(R, L; α)]dα

Therefore,

F̃PVC(Q, R, L) =
[A(L) + C(L)]

2
Γ(Q; α) +

[s + π(1− τ)]

2
Ψ(Q, R, L; α)

+
h
θ
(R− d′L) +

h(1− τ)

2θ
U3(R, L; α)− h(1− τ)

2θ
(R− d′L)

+
hP(1− e−θQ/P)

2θ2 Γ(Q; α)− h
θ2 D′

(23)

Similarly, in the fuzzy sense, we apply the min-max distribution-free process to find
the optimum solution of the following form:

Min
Q>0

Max
F∈F

F̃PVC(Q, R, L)

where

F̃PVC(Q, R, L) =

[
A(L) + C(L)

]
2

Γ(Q; α) +
[s + π(1− τ)]

2
Ψ(Q, R, L; α)

+
h
θ
(R− d′L) +

h(1− τ)

2θ
U3(R, L; α)− h(1− τ)

2θ
(R− d′L)

+
hP(1− e−θQ/P)

2θ2 Γ(Q; α)− h
θ2 D′

over

[
(Q, R, L)|Q > 0, R ≥ DL +

∆′i − ∆i

4

]
(24)

It can also be verified that ˜FPVC(Q, R, L) is a convex function in Q and R by satisfying
the second-order sufficient conditions (see Appendix A).
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Now, for a global optimal solution, ∂ ˜FPVC(Q,R,L)
∂Q = 0 and

∂ ˜FPVC(Q, R, L)
∂R

= 0 for the

L of the interval L ∈ [Ln, L0]. Hence,

he−θQ/P

2θ
Γ(Q; α) =

[
[A(L) + C(L)]

2
+

hP(1− e−θQ/P)

2θ2

]

×
∫ 1

0

 θe
− θ Q

D−(1−α)∆i

(V1(Q; α))2(D− (1− α)∆i)

dα

+

[
[A(L) + C(L)]

2
+

hP(1− e−θQ/P)

2θ2

]

×
∫ 1

0

 θe
− θ Q

D+(1−α)∆′i

(V2(Q; α))2(D + (1− α)∆′i)

dα

+
[s + π(1− τ)]

2

∫ 1

0

 θU1(R, L; α)e
− θQ

D−(1−α)∆i

(V1(Q; α))2(D− (1− α)∆i)

dα

+
[s + π(1− τ)]

2

∫ 1

0

 θU2(R, L; α)e
− θQ

D+(1−α)∆′i

(V2(Q; α))2(D + (1− α)∆′i)

dα

(25)

and

−h(1 + τ)

2θ
=

[s + π(1− τ)]

2

∫ 1

0

[
V1(Q; α)

2

(
R + δ1 − αδ1 − dL√

σ2L + (R + δ1 − αδ1 − dL)2
− 1

)]
dα

+
[s + π(1− τ)]

2

∫ 1

0

[
V2(Q; α)

2

(
R− δ2 + αδ2 − dL√

σ2L + (R− δ2 + αδ2 − dL)2
− 1

)]
dα

+
h(1− τ)

2θ

∫ 1

0

[
R + δ1 − αδ1 − dL√

σ2L + (R + δ1 − αδ1 − dL)2

]
dα +

h(1− τ)

2θ

×
∫ 1

0

[
R− δ2 + αδ2 − dL√

σ2L + (R− δ2 + αδ2 − dL)2

]
dα

(26)

Therefore, from Equation (14), we obtain:

F̃PVC(Q∗f , R∗f , L∗f ) =
M̃(R∗f , L∗f )

1− e−θQ∗f /D̃
+ Ñ(R∗f , L∗f ) +

hP
θ2

1− e−θQ∗f /P

1− e−θQ∗f /D̃
(27)

Using the following algorithm, the fuzzy optimal solution of (Q, R, L) is obtained from
Equations (25)–(27). Moreover, the computational procedure is explained to obtain the
optimum solution of (Q, R, L), which is denoted by (Q∗f , R∗f , L∗f ). An improved Algorithm 2
is developed and presented below.
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Algorithm 2: Steps for finding the optimal solution for the fuzzy stochastic model.
Step 1 Input all the parameters.
Step 2 Perform Step 3 to Step 6 for each L from 63 to 21 in reverse order.
Step 3 Calculate C(L) by crashing components (p = 1, 2, . . . , 4) from the lowest

unit cost to the highest unit cost to have a preparation time of L. For example,
C(L|63) = 0, C(L|62) = 0.04, and so on.

Step 4 Calculate the A(L) values based on the equation A(L) = a0 + a1L−γ, as
mentioned in Assumption 1.

Step 5 Find the optimal values of Q∗L and R∗L and the PVC(Q, R, L) value for the
parametric value of L, as mentioned in Step 2, by minimizing PVC(Q, R, L), as
developed in Equation (27).

Step 6 Calculate the SS values based on R and L.
Step 7 Select the (Q∗f , R∗f , L∗f ) corresponding to the lowest value of PVC(Q, R, L).
Step 8 Present all the required outputs.

3. Numerical Illustration
3.1. Input Parameters

To illustrate the two inventory models developed in the previous section and demon-
strate the solution methods described in Algorithms 1 and 2, the following parametric
values are considered as presented in Table 3. Table 4 presents the data on the production
preparation time of four components, which are used for the reduction of preparation time.

Table 3. Input parameters.

Parameters Value

Expected annual demand (D) 10,000
Annual production rate (P) 50,000
Replenishment preparation time (L) 63 (days)
Unit holding cost (h) 0.6
Setup time reduction cost (C(L)) 0
(a0, a1) (60, 10)
Unit shortage cost (s) 1.6
Standard deviation (σ) of demand during the preparation time

√
800

Proportion of back orders during the stockout period (τ) 0.5
Interest rate per year (θ) 0.08
γ 0.2
(∆ i, ∆′i) (1560, 1560)
DL

DL
365

(∆L1, ∆L2) (∆ i L
365 , ∆′i L

365 )

Table 4. Preparation times of different components.

Preparation Time Normal Duration Minimum Duration Unit Crashing
Component p br (Days) ar (Days) Cost cr ($/Day)

1 18 4 0.04
2 18 4 0.60
3 13 6 1.90
4 14 7 6.00

3.2. Optimal Solution

The detailed solutions for all possible values of the preparation time L ∈ [21, 63] are
evaluated for the stochastic model using Algorithm 1 and the above-mentioned data set.
Table 5 presents the detailed solutions for the preparation time L ∈ [28, 42]. The minimum
value of PVC(Q∗, R∗, L∗) is found to be $16,363.39 at L = 35 days with Q∗ = 2269.69 and
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R∗ = 1302.03. Figure 6 shows the cost profile of PVC(Q, R, L) for the preparation time
L = 35 days, and Figure 7 presents the change in order quantity (Q), reorder point (R),
safety stock (SS), and PVC(Q, R, L) under different preparation times (L). Following a
similar approach, the detailed solutions for all possible values of the preparation time
L f ∈ [21, 63] are evaluated for the fuzzy stochastic model using Algorithm 2. Table 6
presents the detailed solutions for the preparation time L f ∈ [28, 42]. The minimum value

of P̃VC(Q∗f , R∗f , L∗f ) is found to be $17,290.75 at L = 35 days with Q∗ = 2314.97 and

R∗ = 1293.99. Figure 8 presents the cost profile of P̃VC(Q f , R f , L f ) for the preparation
time L f = 35 days, and Figure 9 presents the change in order quantity (Q f ), reorder point

(R f ), safety stock (SS) f , and P̃VC(Q f , R f , L f ) under different preparation times (L f ).

Figure 6. Plot of the total cost function for the stochastic model.

30 40 50 60

Replenisment preparation time

2200

2300

2400

2500

2600

2700

O
rd

er
 q

u
an

ti
ty

30 40 50 60

Replenisment preparation time

500

1000

1500

2000

2500

R
eo

rd
er

 p
o

in
t

30 40 50 60

Replenisment preparation time

200

300

400

500

S
af

et
y

 s
to

ck

30 40 50 60

Replenisment preparation time

1.6

1.65

1.7

1.75

1.8

P
re

se
n

t 
v

al
u

e 
o

f 
to

ta
l 

co
st

10
4

Figure 7. Plots of Q, R, SS, and PVC(Q, R, L) under different L.
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Figure 8. Plot of the total cost function for the fuzzy stochastic model.

Table 5. Optimal solution for the stochastic model.

L A(L) C(L) Q R SS PVC(Q, R, L)

42 64.74 4.76 2273.98 1526.16 375.47 16,639.08
41 64.76 5.36 2273.59 1494.30 371.01 16,602.37
40 64.78 5.96 2273.15 1462.39 366.50 16,564.83
39 64.81 6.56 2272.71 1430.42 361.93 16,526.42
38 64.83 7.16 2272.00 1398.42 357.32 16,487.11
37 64.86 7.76 2271.34 1366.35 352.65 16,446.86
36 64.88 8.36 2270.55 1334.22 347.92 16,405.63
35 64.91 8.96 2269.69 1302.03 343.13 16,363.39
34 64.94 10.86 2281.96 1268.67 337.16 16,392.17
33 64.97 12.76 2293.80 1235.30 331.19 16,419.49
32 65.00 14.66 2305.67 1201.89 325.18 16,445.34
31 65.03 16.56 2317.20 1168.47 319.15 16,469.66
30 65.06 18.46 2328.61 1135.01 313.09 16,492.43
29 65.10 20.36 2339.74 1101.52 306.99 16,513.59
28 65.14 22.26 2350.72 1067.98 300.85 16,533.10
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Table 6. Optimal solution for the fuzzy stochastic model.

L f A(L f ) C(L f ) Q f R f (SS) f P̃VC(Q f , R f , L f )

42 64.74 4.76 2321.79 1523.42 372.73 17,699.25
41 64.76 5.36 2321.08 1490.74 367.46 17,643.63
40 64.78 5.96 2320.30 1458.04 362.15 17,587.16
39 64.81 6.56 2319.32 1425.31 356.82 17,529.80
38 64.83 7.16 2318.46 1392.53 351.44 17,471.52
37 64.86 7.76 2317.40 1359.72 346.03 17,412.28
36 64.88 8.36 2316.26 1326.88 340.58 17,352.04
35 64.91 8.96 2314.97 1293.99 335.09 17,290.75
34 64.94 10.86 2326.66 1260.14 328.63 17,299.07
33 64.97 12.76 2337.88 1226.29 322.18 17,305.95
32 65.00 14.66 2348.97 1192.43 315.72 17,311.35
31 65.03 16.56 2359.97 1158.55 309.23 17,315.22
30 65.06 18.46 2370.66 1124.65 302.74 17,317.53
29 65.10 20.36 2381.12 1090.74 296.22 17,318.23
28 65.14 22.26 2391.4 1056.79 289.67 17,317.24
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Figure 9. Plots of Q, R, SS, and PVC(Q, R, L) under different L.

3.3. Sensitivity Analysis
3.3.1. Effect of the Holding Cost (H)

To analyze the effect of the holding cost, a sensitivity analysis is carried out by
changing the values on both sides (i.e., taking values between 0.40 and 0.80 with an
interval of 0.05). Table 7 presents the detailed outcome of the sensitivity analysis. The
expected total cost increases for both models with an increasing holding cost and vice
versa. Moreover, the order quantity (Q) increases substantially as the unit holding cost (h)
decreases, and so do the reorder point and safety stock. The expected total cost and order
quantity are lower in the stochastic model than in the fuzzy stochastic model, whereas the
reorder point (R) and safety stock (SS) are higher in the stochastic model.
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Table 7. Effect of the holding cost in the stochastic and fuzzy stochastic models.

Stochastic Model Fuzzy Stochastic Model

h L A(L) C(L) Q R SS PVC(Q, R, L) L f A(L f ) C(L f ) Q f R f (SS) f P̃VC(Q f , R f , L f )

0.40 35 64.91 8.96 2716.27 1348.94 390.04 12,953.15 35 64.91 8.96 2768.45 1334.31 375.40 13,611.96
0.45 35 64.91 8.96 2577.68 1334.86 375.96 13,860.52 35 64.91 8.96 2627.73 1322.2 363.30 14,587.72
0.50 35 64.91 8.96 2460.05 1322.58 363.68 14,727.81 35 64.91 8.96 2508.34 1311.65 352.75 15,522.49
0.55 35 64.91 8.96 2358.51 1311.73 352.83 15,560.64 35 64.91 8.96 2405.23 1302.33 343.42 16,422.01
0.60 35 64.91 8.96 2269.69 1302.03 343.13 16,363.39 35 64.91 8.96 2314.97 1293.99 335.09 17,290.75
0.65 35 64.91 8.96 2191.09 1293.28 334.37 17,139.57 35 64.91 8.96 2235.12 1286.46 327.56 18,132.31
0.70 35 64.91 8.96 2120.96 1285.30 326.40 17,892.04 35 65.14 22.26 2232.00 1044.22 277.09 18,940.51
0.75 35 64.91 8.96 2057.80 1278.00 319.10 18,623.17 35 65.14 22.26 2164.41 1038.71 271.59 19,717.70
0.80 35 64.91 8.96 2000.42 1271.28 312.38 19,334.96 35 65.14 22.26 2102.99 1033.65 266.52 20,474.84

3.3.2. Effect of the Shortage Cost (S)

To analyze the effect of the shortage cost, a sensitivity analysis is carried out by
changing the values on both sides (i.e., taking values between 0.80 and 2.40 with an interval
of 0.20). Table 8 presents the detailed outcome of the sensitivity analysis. The expected total
cost increases for both models with an increasing shortage cost and vice versa. Moreover,
the order quantity (Q) increases substantially as the unit shortage cost (s) increases. The
expected total cost and order quantity are lower in the stochastic model than in the fuzzy
stochastic model, whereas the reorder point (R) and safety stock (SS) are higher in the
stochastic model as the shortage cost (s) increases.

Table 8. Effect of the shortage cost in the stochastic and fuzzy stochastic models.

Stochastic Model Fuzzy Stochastic Model

s L A(L) C(L) Q R SS PVC(Q, R, L) L f A(L f ) C(L f ) Q f R f (SS) f P̃VC(Q f , R f , L f )

0.80 35 64.91 8.96 2186.09 1241.62 282.72 15,415.01 35 64.91 8.96 2221.96 1242.55 283.64 16,269.58
1.00 35 64.91 8.96 2208.39 1258.19 299.28 15,671.40 35 64.91 8.96 2246.78 1256.71 297.81 16,545.34
1.20 35 64.91 8.96 2229.86 1273.66 314.75 15,913.70 35 64.91 8.96 2270.52 1269.91 311.00 16,806.15
1.40 35 64.91 8.96 2250.17 1288.24 329.33 16,143.85 35 64.91 8.96 2293.20 1282.29 323.39 17,054.08
1.60 35 64.91 8.96 2269.69 1302.03 343.13 16,363.39 35 64.91 8.96 2314.97 1293.99 335.09 17,290.75
1.80 35 64.91 8.96 2288.40 1315.15 356.24 16,573.57 35 64.91 8.96 2335.93 1305.09 346.19 17,517.48
2.00 35 64.91 8.96 2306.54 1327.65 368.75 16,775.39 28 65.14 22.26 2427.03 1076.50 309.38 17,710.24
2.20 35 64.91 8.96 2324.05 1339.62 380.72 16,969.71 28 65.14 22.26 2443.92 1085.71 318.59 17,895.92
2.40 35 64.91 8.96 2340.97 1351.12 392.21 17,157.25 28 65.14 22.26 2460.29 1094.56 327.43 18,075.30

3.3.3. Effect of the Back Order Cost (τ)

Similarly, a sensitivity analysis is performed on the back order cost by changing the
values on both sides (i.e., taking values between 0.30 and 0.70 with an interval of 0.05).
Table 9 presents the detailed outcome of the sensitivity analysis. The expected total cost
decreases for both models with an increasing back order cost and vice versa. Moreover, the
order quantity (Q) increases substantially as the unit back order cost (τ) decreases. The
expected total cost and order quantity are lower in the stochastic model than in the fuzzy
stochastic model, whereas the reorder point (R) and safety stock (SS) are higher in the
stochastic model.
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Table 9. Effect of the back order cost in the stochastic and fuzzy stochastic models.

Stochastic Model Fuzzy Stochastic Model

τ L A(L) C(L) Q R SS PVC(Q, R, L) L f A(L f ) C(L f ) Q f R f (SS) f P̃VC(Q f , R f , L f )

0.30 35 64.91 8.96 2303.99 1329.76 370.86 16,802.46 28 65.14 22.26 2443.14 1065.83 298.71 17,992.66
0.35 35 64.91 8.96 2295.57 1323.08 364.18 16,696.10 28 65.14 22.26 2430.23 1063.80 296.67 17,825.20
0.40 35 64.91 8.96 2287.15 1316.23 357.33 16,587.55 28 65.14 22.26 2417.39 1061.61 294.49 17,656.85
0.45 35 64.91 8.96 2278.48 1309.22 350.32 16,476.70 35 64.91 8.96 2329.99 1296.60 337.70 17,484.30
0.50 35 64.91 8.96 2269.69 1302.03 343.13 16,363.39 35 64.91 8.96 2314.97 1293.99 335.09 17,290.75
0.55 35 64.91 8.96 2260.75 1294.64 335.74 16,247.49 35 64.91 8.96 2299.90 1291.19 332.28 17095.92
0.60 35 64.91 8.96 2251.61 1287.05 328.15 16,128.80 35 64.91 8.96 2284.78 1288.16 329.26 16,899.70
0.65 35 64.91 8.96 2242.29 1279.24 320.34 16,007.15 35 64.91 8.96 2269.58 1284.90 326.00 16,702.02
0.70 35 64.91 8.96 2232.82 1271.19 312.29 15,882.31 35 64.91 8.96 2254.33 1281.38 322.47 16,502.75

3.3.4. Effect of the Time Value of Money (θ)

To analyze the effect of the time value of money, a sensitivity analysis is carried out by
changing the values on both sides (i.e., taking values between 0.04 and 0.12 with an interval
of 0.01). Table 10 presents the detailed outcome of the sensitivity analysis. The expected
total cost decreases for both models with an increasing θ and vice versa. Moreover, the
order quantity (Q) increases substantially as θ decreases. The expected total cost and order
quantity are lower in the stochastic model than in the fuzzy stochastic model, whereas the
reorder point (R) and safety stock (SS) change less as θ changes.

Table 10. Effect of the time value of money in the stochastic and fuzzy stochastic models.

Stochastic Model Fuzzy Stochastic Model

θ L A(L) C(L) Q R SS PVC(Q, R, L) L f A(L f ) C(L f ) Q f R f (SS) f P̃VC(Q f , R f , L f )

0.04 35 64.91 8.96 2273.22 1300.84 341.94 32,652.08 35 64.91 8.96 2318.65 1292.98 334.08 34,504.14
0.05 35 64.91 8.96 2272.43 1301.13 342.23 26,136.61 35 64.91 8.96 2317.52 1293.25 334.34 27,618.78
0.06 35 64.91 8.96 2271.44 1301.44 342.53 21,792.95 35 64.91 8.96 2316.82 1293.49 334.58 23,028.54
0.07 35 64.91 8.96 2270.52 1301.74 342.83 18,690.35 35 64.91 8.96 2315.99 1293.73 334.83 19,749.81
0.08 35 64.91 8.96 2269.69 1302.03 343.13 16,363.39 35 64.91 8.96 2314.97 1293.99 335.09 17,290.75
0.09 35 64.91 8.96 2268.93 1302.32 343.41 14,553.54 35 64.91 8.96 2314.02 1294.25 335.34 15,378.16
0.10 35 64.91 8.96 2267.95 1302.62 343.72 13,105.66 35 64.91 8.96 2313.16 1294.49 335.59 13,848.08
0.11 35 64.91 8.96 2267.08 1302.92 344.01 11,921.03 35 64.91 8.96 2312.23 1294.75 335.84 12,596.20
0.12 35 64.91 8.96 2266.21 1303.21 344.31 10,933.84 35 64.91 8.96 2311.32 1295.00 336.10 11,552.97

3.3.5. Effect of ∆

A sensitivity analysis is performed on ∆ (i.e., the percentage change) to study the
impact of demand impreciseness in the fuzzy stochastic case. Table 11 presents the solution
details, showing that for lower values (i.e., −40 percent to 40 percent) of ∆, the optimal
setup time is 35 days, and it becomes 28 days thereafter. With an increasing ∆, the order
quantity (Q) reduces for the same optimal setup time, whereas the reorder point (R) and
safety stock (SS) increase. The total expected cost in the fuzzy stochastic case increases as
∆ increases.

3.4. Discussion

In the previous section, we observed that the optimal preparation time significantly
depends on the components’ attributes, i.e., the amount of reduction in component duration
possible, the unit crashing cost. If we closely look at the component details, it can be found
that the reduction in preparation time is happening step-wise, i.e., the activity with the
lowest unit crashing cost is reduced to the lowest possible duration followed by the next
component. In our case, the preparation time comes out to be 35 days, which is 28 days
less than the sum of normal activity. At L = 35 days, C(L) = 8.96, which indicates
that Component 1 and Component 2 are fully exploited through crashing. The effect of
preparation time reduction can also be observed in the order quantity and reorder level. As
the preparation time decreases, the reorder level decreases and the order quantity increases
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and vice versa. It may be noted that this result is in sync with the findings of Kumar and
Goswami [5]. They carried out a sensitivity analysis on the lead-time and showed that the
reorder level increases as the lead-time increases and vice versa. However, our objective is
to find the optimal lead-time when a reduction of lead-time is possible through crashing of
component time. Moreover, in the previous section, we carried out a sensitivity analysis
to understand the effect of parameters such as holding cost, shortage cost, and backorder
cost on the solution outcome. With the increasing holding cost the reorder level decreases,
and so for the backorder cost. However, with the increasing shortage cost, the reorder
level increases.

Table 11. Effect of ∆ in the fuzzy stochastic model.

∆ L f A(L f ) C(L f ) Q f R f (SS) f P̃VC(Q f , R f , L f )

−40 35 64.91 8.96 2321.70 1272.42 313.51 17,133.62
−30 35 64.91 8.96 2320.20 1276.93 318.03 17,166.16
−20 35 64.91 8.96 2318.63 1282.05 323.15 17,203.30
−10 35 64.91 8.96 2316.82 1287.75 328.85 17,244.88
00 35 64.91 8.96 2314.97 1293.99 335.09 17,290.75
10 35 64.91 8.96 2312.98 1300.75 341.84 17,340.73
20 35 64.91 8.96 2310.86 1307.99 349.08 17,394.66
30 28 65.14 22.26 2386.86 1073.06 305.94 17,439.14
40 28 65.14 22.26 2385.25 1079.18 312.06 17,485.54

4. Conclusions

In this study, a stochastic production-inventory model is developed with a varying
production preparation time and demand, a partial back order, and lost sales. This model
considers the time value of money to find the optimal order quantity, reorder point, and
production preparation time, while minimizing the total expected cost. In the stochastic
model, the min-max distribution-free approach is applied, and analytical results are de-
rived to identify the optimal solutions. The stochastic model is extended by introducing
impreciseness in demand during the preparation time, and the new model is formulated in
a fuzzy-stochastic environment. The fuzzy cost function for the second model is defuzzified
using the signed distance method. Similar to the stochastic model, analytical results are
derived, and an algorithmic procedure is developed to identify the optimal solution for the
fuzzy-stochastic model.

A numerical illustration is carried out to demonstrate the developed models, as well
as the applicability of these models. It is found that order quantity and total cost are more
sensitive towards the lower side of the optimal setup time rather than the higher side. The
discount rate is also found to be a sensitive factor, while minimizing the total expected cost.
Further, the sensitivity analyses on the key model parameters are performed to show the
specific effect on the model.

The following aspects may be considered as limitations of the present study and can
be taken up as the future research scope.

1. In the present study, the signed distance method is used for defuzzification. However,
it would be interesting to examine the outcomes of different defuzzification techniques
within the existing settings.

2. Demand is considered to be a fuzzy parameter, whereas the consideration of other
parameters as fuzzy would make the problem more interesting and complex. Instead
of a triangular fuzzy number, other approaches can be applied. It is also important to
note that the concept of fuzzy learning in line with Soni and Patel [41] can be explored.

3. We can explore the use of meta-heuristic algorithms such as the genetic algorithm,
particle swarm optimization, and others to find the solution.
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Appendix A

A similar argument is applied as discussed in the stochastic model and taking the

first- and second-order partial derivatives of F̃PVC(Q, R, L) with respect to Q for the fuzzy
case, which the setup, production, holding, and backlogging costs are defuzzified. Now:

∂F̃PVC(Q, R, L)
∂Q

=

[
[A(L) + C(L)]

2

]
∂Γ(Q; α)

∂Q
+

[s + π(1− τ)]

2
∂Ψ(Q, R, L; α)

∂Q

+
hP(1− e−θQ/P)

2θ2
∂Γ(Q; α)

∂Q
+

he−θQ/P
2θ

Γ(Q; α)

−
[
[A(L) + C(L)]

2
+

hP(1− e−θQ/P)

2θ2

]

×
∫ 1

0

 θe
− θ Q

D−(1−α)∆i

(V1(Q; α))2(D− (1− α)∆i)

dα

−
[
[A(L) + C(L)]

2
+

hP(1− e−θQ/P)

2θ2

]

×
∫ 1

0

 θe
− θ Q

D+(1−α)∆′i

(V2(Q; α))2(D + (1− α)∆′i)

dα
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− [s + π(1− τ)]

2

∫ 1

0

 θU1(R, L; α)e
− θ Q

D−(1−α)∆i

(V1(Q; α))2(D− (1− α)∆i)
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0
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2θ
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∂2 F̃PVC(Q, R, L)
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]
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0
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Γ(Q; α) > 0

Hence, F̃PVC(Q, R, L) is a convex function in the fuzzy sense for fixed L and R.
Again, obtaining the partial derivatives of the first- and second-order with respect to

R, when L and Q are fixed, one gets:

∂F̃PVC(Q, R, L)
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∂2 F̃PVC(Q, R, L)
∂R2 =

[s + π(1− τ)]

2

∫ 1

0

[
V1(Q; α)
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σ2L

{σ2L + (R + δ1 − αδ1 − dL)2} 3
2
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Hence, F̃PVC(Q, R, L) is a convex function in the fuzzy sense when R ∈ (0, ∞); where

FPVC−α =
M−α

1− e−θQ/(D−(1−α)∆i)
+ N−α +

hP
θ2
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4

Γ(Q; α) =
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1
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, V2(Q; α) =

1
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,

U3(R, L; α) =
∫ 1

0

[√
σ2L + (R + δ1 − αδ1 − dL)2 +

√
σ2L + (R− δ2 + αδ2 − dL)2

]
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Ψ(Q, R, L; α) =
∫ 1

0

[
U1(R, L; α)V1(Q; α) + U2(R, L; α)V2(Q; α)

]
dα.

Appendix B

Distribution-free approach: In many real-life situations, the information regarding the
protection interval of demand is often quite limited. If the probability distribution of the
lead-time or preparation time demand X is unknown, we cannot obtain the exact value
of E(X − R)+, and hence, the optimal value of PVC(Q, R, L) cannot be found. Thus, we
apply the min-max distribution-free procedure to solve this problem. Let Ω denote the
class of probability density functions with finite mean dL and standard deviation σ

√
L. The

min-max approach is used to obtain the most unfavorable probability density function
fX in Ω for each (Q, R, L), and then, it is used to minimize the expected total annual cost
function over (Q, R, L), i.e., our problem is of the form:

MinQ>0MaxF∈FPVC(Q, R, L)
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Appendix C

Signed distance method: Two fuzzy numbers Ã and B̃ are defined as Ã = ∪
α∈[0,1]

[A−α , A+
α ]

and B̃ = ∪
α∈[0,1]

[B−α , B+
α ]. For each α ∈ [0, 1], then the sign distance of Ã and B̃ is the distance

between the mid-points M(A(α))[= 1
2{A−α + A+

α }], M(B(α))[= 1
2{B−α + B+

α }] of fuzzy
intervals [A−α , A+

α ] and [B−α , B+
α ], respectively.

Therefore:

d(Ã, B̃) =
1

1− 0

∫ 1

0
[M(A(α))−M(B(α))]dα =

1
2

∫ 1

0
[A−α + A+

α − B−α − B+
α ]dα

In particular, if Ã and B̃ are both triangular fuzzy number (TFN) represented as (a, b, c)
and (0, 0, 0), respectively, then d(Ã, 0) = a+4b+c

4 .
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