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Abstract: One class of cooperative differential games on networks is considered. It is assumed
that interaction on the network is possible not only between neighboring players, but also between
players connected by paths. Various cooperative optimality principles and their properties for such
games are investigated. The construction of the characteristic function is proposed, taking into
account the network structure of the game and the ability of players to cut off connections. The
conditions under which a strong time-consistent subcore is not empty are studied. The formula for
explicit calculation of the Shapley value is derived. The results are illustrated by the example of one
differential marketing game.

Keywords: differential game; network; cooperative game; strong time-consistent subcore; core;
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1. Introduction

One of the current directions of research in game theory is network games. Such
games explore individuals’ interactions connected through a network and whose behavior
depends on their neighbors’ behavior. An overview and structuring of the main trends in
network games can be found in [1–4].

The theory of differential games on networks is commonly used when the evolution
of decision-making occurs continuously in time. The papers investigating applied models
of differential games on networks confirm the relevance of this topic. For example, a
differential game of a duopoly with network externalities is examined in [5]. Differential
games with network structure in marketing are considered in [6]. An application of such
games in regional cooperation is developed in [7]. Adaptation of differential games to the
problem of network traffic is proposed in [8]. Cooperative differential games on networks
were first considered by L. Petrosyan [9], who introduced a new type of strategies. The
possibility of cutting the links with neighboring players during the game is included in
these strategies. When evaluating a coalition’s worth, the classical methods assume that
players who are not in this coalition minimize the coalition’s payoff. The use of the new type
of strategies has led to the possibility of measuring a coalition’s worth without considering
the actions of players who are not members of this coalition. Based on this, a novel form
for characteristic function—named as cooperative-trajectory characteristic function—is
proposed in [10]. Moreover, it satisfies the convexity property. In [11], formulas for the
Shapley value and some core imputations are obtained using the new characteristic function.
In this paper, we generalize the approach used in [10,11] on a more interesting case when
the payoff of a player depends not only on his neighbors’ actions but also on players’
actions with whom paths in the network connect the player. This case differs essentially
from one considered in [10]. In such games, the convexity of the new characteristic function
depends on the structure of the network on which the game is defined.

In this paper, we consider cooperative differential games on networks defined on
a given time-interval. We suppose that payoffs are transferable. Under the cooperation,
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we understand that players choose their strategies to maximize the sum of payoffs and
then define a rule (optimality principle) on how to allocate this joint payoff between them.
There are different optimality principles such as core, NM-solution, the Shapley Value,
and others in classical and differential game theory. However, a serious problem arises
with time-consistency and, in the case of set-valued optimality principles, also with strong
time-consistency, which very often is not satisfied (see [12,13]). This makes questionable
the application of the optimality principles mentioned above.

Thus, our main contributions to the literature on differential network games are
the following:

1. A new characteristic function for the game with interactions through paths is defined.
2. It is found that the properties of such a characteristic function depend on the game’s

network structure.
3. A condition under which the characteristic function is convex is obtained.
4. Under this condition, we prove the non-emptiness of the strong time-consistent

subcore and receive explicit forms for the Shapley value and the IDP of imputations
from the strong time-consistent subcore.

The paper is structured as follows. The definition of the cooperative differential
game on a network is given in Section 2. In Section 3, the definition of the characteristic
function based on cooperative strategies used by players from a coalition is given. As
mentioned above, the basic difference from previous approaches is that, when defining
the value of the characteristic function for a given coalition, it is supposed that the left
out players trying to minimize the payoff of the coalition are cutting connections with
players from this coalition. Based on defined characteristic function, the core is constructed,
and a strong time-consistent solution as a subset of the core is proposed in Section 4. The
formula for the dynamic Shapley value is derived in Section 5. As an illustrative example,
a differential marketing game on the network is investigated in Section 6. For this game,
the characteristic function, the strong time-consistent subset of the core, and the dynamic
Shapley value are computed in explicit form.

2. Problem Formulation

Consider a class of n-person differential games with prescribed duration of T. Let
N = {1; 2; . . . ; n} be the set of players. The players are connected in a network system.
A pair (N, L) is called a network, where N is a set of nodes and L ⊂ N × N is a given
set of links. The nodes are used to represent the players. If pair (i, j) ∈ L, there is a link
connecting players i ∈ N and j ∈ N. It is supposed that all links are undirected.

Denote the set of players directly connected to player i as K(i) = {j : (i; j) ∈ L}.
Denote by Km(i), where m ≥ 2, the set of players connected with player i ∈ N

by a minimal path containing exactly m edges (only paths without cycles and loops are
considered) and let K1(i) = K(i) ∪ i, for i ∈ N.

Every player i ∈ N at any instant of time can cut the connection with any other players
from K(i).

The system dynamics is given by

ẋi(τ) = fi(xi(τ); ui(τ)); xi(t0) = x0
i ; for τ ∈ [t0; T] and i ∈ N. (1)

Here, xi(t) ⊂ Rm is the state variable of player i ∈ N at time t and ui(t) ∈ Ui ⊂ Rk is
the control variable of player i ∈ N. The function fi(xi; ui) is continuously differentiable
in xi and ui.

The payoff function of player i depends on his state variable, the state variables of
players from the sets Km(i), 1 ≤ m ≤ n− 1, and his control variable. In particular, the
payoff of player i is given as

Hi(x0; u1, . . . , un) =
n−1

∑
m=1

δm−1 ∑
j∈Km(i)

T∫
t0

hj
i(xi(τ); xj(τ); ui(τ))dτ. (2)
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The term hj
i(xi(τ); xj(τ); ui(τ)) is the instantaneous gain that player i can obtain

through interaction with player j ∈ Km(i) and hi
i(xi(τ); xi(τ); ui(τ)) is the instantaneous

gain that player i can obtain by itself. Assume that δ ∈ (0, 1). The multiplier δm−1 shows
that, the farther players are in the network from player i, the less their behavior influences
the payoff of this player. Suppose that functions hj

i(xi(τ); xj(τ); ui(τ)), for j ∈ Km(i), j 6= i
are non-negative. We denote by x0 = (x0

1; x0
2; . . . ; x0

n) the vector of initial conditions.
We say that we have the game Γ(x0, T − t0) if the network (N, L) is defined, the

system dynamics (1) and the sets of feasible controls Ui, i ∈ N are given, and the players’
payoffs are determined by (2). Each player, choosing a control variable ui from his set of
feasible controls, steers his own state according to the differential Equation (1) and seeks to
maximize his objective functional (2).

Suppose that players can cooperate in order to achieve the maximum joint payoff

∑
i∈N

n−1

∑
m=1

δm−1 ∑
j∈Km(i)

T∫
t0

hj
i(xi(τ); xj(τ); ui(τ))dτ. (3)

subject to dynamics (1).
The optimal cooperative strategies of players u(t) = (u1(t), . . . , un(t)), for t ∈ [t0; T]

are defined as follows

u(t) = arg max
u1,...,un

∑
i∈N

n−1

∑
m=1

δm−1 ∑
j∈Km(i)

T∫
t0

hj
i(xi(τ); xj(τ); ui(τ))dτ. (4)

The trajectory corresponding to the optimal cooperative strategies (u1(t), . . . , un(t))
is the optimal cooperative trajectory x(t) = (x1(t); x2(t); . . . ; xn(t)). The maximum joint
payoff can be expressed as:

∑
i∈N

n−1

∑
m=1

δm−1 ∑
j∈Km(i)

T∫
t0

hj
i(xi(τ); xj(τ); ui(τ))dτ = max

u1,...,un

∑
i∈N

n−1

∑
m=1

δm−1 ∑
j∈Km(i)

T∫
t0

hj
i(xi(τ); xj(τ); ui(τ))dτ

 (5)

subject to dynamics

ẋi = fi(xi(τ); ui(τ)); xi(t0) = x0
i ; for τ ∈ [t0; T] and i ∈ N. (6)

To determine how to allocate the maximum total payoff among the players under an
agreeable scheme, defining the characteristic function is necessary.

There are many approaches to define the characteristic function (see [14–16]).
In [9], for differential games on networks, it is supposed that the worth of the coalition

S ⊂ N does not take into account the actions of players from the coalition N \ S, since
the worst thing they can do for the coalition S is to cut the connection with players from
S. In [10], it is also proposed to find the value of the characteristic function of S on
the cooperative trajectory when the players from S use cooperative strategies under the
condition that the connections with players from N \ S are cut off. The characteristic
function constructed in this way is easier to compute and possesses some advantageous
properties. In this paper, we apply this approach to the class of games under consideration.

Let S ⊂ N. A pair (S, LS) is called a subnet (subgraph) if it only has subset S of the set
of vertices (players) of the original network and LS contains all links from L whose initial
and final vertices are both within subset S. For player i ∈ S, denote by Km

S (i), where m ≥ 2,
the set of players connected with player i by a minimal path in LS containing exactly m
edges and let K1

S(i) = K(i) ∩ S ∪ i, for i ∈ S.
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The worth of coalition S in the game is evaluated along the cooperative trajectory

V(S; x0, T − t0) = ∑
i∈S

n−1

∑
m=1

δm−1 ∑
j∈Km

S (i)

T∫
t0

hj
i(xi(τ); xj(τ); ui(τ))dτ, (7)

where xi(t) and ui(t) are the solutions obtained in (4) and (6).
Similarly, the cooperative-trajectory characteristic function of the subgame

Γ(x(t), T − t) starting at time t ∈ [t0; T] can be evaluated as

V(S; x(t), T − t) = ∑
i∈S

n−1

∑
m=1

δm−1 ∑
j∈Km

S (i)

T∫
t

hj
i(xi(τ); xj(τ); ui(τ))dτ. (8)

3. Properties of the Characteristic Function

In references [10,11], the characteristic function is constructed in a similar way, but it
was assumed that hj

i = 0 if the players i and j are not connected by an edge. It was shown
that such characteristic function is convex. Characteristic function V(S; x0, T− t0) is called
convex (or supermodular) if for any coalitions S1, S2 ⊆ N the following condition holds:
V(S1 ∪ S2; x0, T − t0) + V(S1 ∩ S2; x0, T − t0) ≥ V(S1; x0, T − t0) + V(S2; x0, T − t0). A
game is called convex if its characteristic function is convex. However, in our case, additional
restrictions on the network are required for the characteristic function to be convex.

Define functions W(S; t) that can be interpreted as instantaneous values of the charac-
teristic function according to the following rule:

W(S; t) = ∑
i∈S

n−1

∑
m=1

δm−1 ∑
j∈Km

S (i)
hj

i(xi(t); xj(t); ui(t)). (9)

Proposition 1. Let S1 ⊂ N, S2 ⊂ S1. If there are no cycles in the network (N, L), then the
following inequality holds for each i ∈ N \ S1 and each t ∈ [t0, T]:

W(S1 ∪ {i}; t)−W(S1; t) ≥W(S2 ∪ {i}; t)−W(S2; t). (10)

Proof. For simplicity, we denote

hj
i(xi(t); xj(t); ui(t)) = h

j
i(t).

The absence of cycles in the network (tree or forest) means that there can be only one
path between any two vertices. Suppose i /∈ S1. If vertex i lies on the path between some
vertices in the coalition S1 ∪ {i}, then the path between these vertices does not exist in
(S1, LS1). Let Pm

S (i) be the set of pairs of vertices {p, q} such that p ∈ S \ i, q ∈ S \ i, the
distance between them equals m, all the vertices of the path between p and q belong to S,
and i lies on this path. Then,

W(S1 ∪ {i}; t)−W(S1; t) = h
i
i(t)+

+
n−1

∑
m=1

δm−1 ∑
j∈Km

S1∪{i}
(i)
(h

j
i(t) + h

i
j(t)) +

n−1

∑
m=1

δm−1 ∑
{p,q}∈Pm

S1∪{i}
(i)
(h

p
q (t) + h

q
p(t)), (11)

W(S2 ∪ {i}; t)−W(S2; t) = h
i
i(t)+

+
n−1

∑
m=1

δm−1 ∑
j∈Km

S2∪{i}
(i)
(h

j
i(t) + h

i
j(t)) +

n−1

∑
m=1

δm−1 ∑
{p,q}∈Pm

S2∪{i}
(i)
(h

p
q (t) + h

q
p(t)). (12)
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Since S2 ⊂ S1 and h
i
j(t) ≥ 0, we have

n−1

∑
m=1

δm−1 ∑
j∈Km

S1∪{i}
(i)
(h

j
i(t) + h

i
j(t)) ≥

n−1

∑
m=1

δm−1 ∑
j∈Km

S2∪{i}
(i)
(h

j
i(t) + h

i
j(t)),

n−1

∑
m=1

δm−1 ∑
{p,q}∈Pm

S1∪{i}
(i)
(h

p
q (t) + h

q
p(t)) ≥

n−1

∑
m=1

δm−1 ∑
{p,q}∈Pm

S2∪{i}
(i)
(h

p
q (t) + h

q
p(t)).

It follows that (10) is satisfied.

Remark 1. Note that the presence of a cycle in the network can lead to the violation of property (10).
Indeed, the presence of a cycle in the network allows several paths between two vertices. Let us

assume that there are two paths with the length r between vertices p ∈ S2 and q ∈ S2 . Suppose
that all vertices from the first path belong to S2 ∪ {i}, and vertex i lies on this path. Assume also
that the second path contains vertices from S1 \ S2 and vertex i does not lie on this path.

Note that there exists a path between p and q in (S2 ∪ {i}, LS2∪{i}), but there is no path
between these vertices in (S2, LS2), since the first path goes through player i who is no longer in the
coalition and the second path does not belong to (S2, LS2). Then, there is a term δr−1(h

p
q (t)+ h

q
p(t))

in the right-hand side of (12).
There are two paths with the length r between vertices p and q in (S1 ∪ {i}, LS1∪{i}). One

of them passes through vertex i and the other does not. Thus, there exists path between p and q in
(S1, LS1). This means that, on the right-hand side of (11), there is no term corresponding to the
vertices p and q.

Thus, if h
p
q (t) + h

q
p(t) is large enough, inequality (10) will not hold.

Corollary 1. If there are no cycles in the network (N, L), then the characteristic function defined
in (7) and (8) is convex.

Proof. It is shown that, for each τ ∈ [t0, T], S1 ⊂ N, S2 ⊂ S1 and each i ∈ N \ S1, the
following inequality holds:

W(S1 ∪ {i}; t)−W(S1; t) ≥W(S2 ∪ {i}; t)−W(S2; t). (13)

Integrating both sides of this inequality with respect to t, we have for each t ∈ [t0, T],
each S1 ⊂ N, S2 ⊂ S1, and each i ∈ N \ S1

V(S1 ∪ {i}; x(t), T − t)−V(S1; x(t), T − t) ≥ V(S2 ∪ {i}; x(t), T − t)−V(S2; x(t), T − t).

This means that the characteristic function defined in (7) and (8) is convex (see [17]).

The absence of cycles guarantees the convexity of the characteristic function. However,
even if there are cycles in the network, the characteristic function defined according to a
given rule (7) and (8) may be convex for some parameter values. Therefore, the existing
formula (7) for the characteristic function is relevant not only for networks without cycles.

4. Strong Time-Consistent Subcore

The next problem to define a cooperative solution is to determine an allocation rule to
distribute among the players their maximum joint payoff. We again assume that there are
no cycles in the network (N, L).

The set of all imputations in the game Γ(x0, T − t0), L(x0, T − t0), is given by

L(x0, T − t0) = {ξ(x0, T − t0) = (ξ1(x0, T − t0), . . . , ξn(x0, T − t0)) :

∑
i∈N

ξi(x0, T − t0) = V(N; x0, T − t0), ξi(x0, T − t0) ≥ V({i}; x0, T − t0), i ∈ N}. (14)
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Definition 1 ([17]). The core C(x0, T − t0) of the game Γ(x0, T − t0) is the subset of the imputa-
tion set L(x0, T − t0), such that

C(x0, T − t0) = {ξ(x0, T − t0) ∈ L(x0, T − t0) : ∑
i∈S

ξi(x0, T − t0) ≥ V(S; x0, T − t0), S ⊂ N}. (15)

Similarly, for every t ∈ [t0, T] denote by L(x(t), T − t) the set of all imputations and
by C(x(t), T − t) the core in the subgame Γ(x(t), T − t) along the cooperative trajectory.

The convexity of the characteristic function (7) and (8), which is proved above, guar-
antees that the core is not empty for every t ∈ [t0, T] [17].

The time consistency of cooperative solutions is an important issue when consid-
ering dynamic games. Suppose the optimality principle chosen by the players contains
a set of imputations. In that case, as the game evolves along the cooperative trajectory
x(t), the players can deviate from the imputation chosen in the initial time for any other
imputation in that optimality principle. Will it lead to the payment rule selected in the
game corresponding to the initial optimality principle? This is true only if the cooperative
solution is strong time-consistent. This property of cooperation solution was introduced by
L. Petrosyan [13]. Let us show that there is a subset of the core in the class of games under
consideration, which is strong time-consistent.

Definition 2 (see [18]). A function β(t) = (β1(t), . . . , βn(t)), t ∈ [t0, T] is the imputation
distribution procedure (IDP) for imputation α ∈ L(x0, T − t0), if

αi =

T∫
t0

βi(τ)dτ, i ∈ N.

Definition 3 (see [13]). An optimality principal M(x0, T − t0) ⊂ L(x0, T − t0) is called strong
time-consistent if

1. M(x(t), T − t) 6= ∅, ∀ t ∈ [t0, T].
2. For each α ∈ M(x0, T − t0) there exists an IDP β(τ) = (β1(τ), . . . , βn(τ)), τ ∈ [t0, T],

such that α =
T∫

t0

βi(τ)dτ, i ∈ N and

M(x0, T − t0) ⊃
t∫

t0

β(τ)dτ ⊕M(x(t), T − t), ∀t ∈ [t0, T]. (16)

For a ∈ Rn, B ⊂ Rn, the symbol ⊕means the following: a⊕ B = {a + b : b ∈ B}.
In [19], a method for constructing a strong time-consistent subset of the core is pro-

posed. Furthermore, conditions under which such a subset exists are obtained. In this
paper, we implement this approach for the class of games under consideration, taking into
account the peculiarities of the definition of the characteristic function.

Using the functions W(S; t) introduced in (9), we define B(t) for each t ∈ [t0, T] as the
set of functions β(t) = (β1(t), . . . , βn(t)) such that

∑
i∈S

βi(t) ≥W(S; t) ∀S ⊂ N,

∑
i∈N

βi(t) = W(N; t).
(17)

Note that, if we consider W(S; t) : 2N → R as a characteristic function of the stationary
game, then β(t) ∈ B(t) is an imputation in this game and B(t) coincides with its core.
Taking into account the fulfillment of property (10), we can conclude that, for each t ∈ [t0, T],
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the set B(t) is not empty in the considered class of games since the characteristic function
W(S; t) in each moment t is convex [17].

To prove that β(t) ∈ B(t) is an IDP in the initial differential game Γ(x0, T − t0), let us
consider β(t) ∈ B(t). Now, we define ξ i(x0, T − t0) in the following way

ξ i(x0, T − t0) =

T∫
t0

βi(τ)dτ, i ∈ N. (18)

According to (17),
βi(t) ≥W({i}; t),
∑

i∈N
βi(t) = W(N; t). (19)

Then,

ξ i(x0, T − t0) =

T∫
t0

βi(t)dt ≥
T∫

t0

W({i}; t)dt = V({i}; x0, T − t0),

and

∑
i∈N

ξ i(x0, T − t0) = ∑
i∈N

T∫
t0

βi(t)dt =
T∫

t0

W(N; t)dt = V({N}; x0, T − t0),

which proves that ξ(x0, T− t0) ∈ L(x0, T− t0). β(t) is an IDP for this imputation. Similarly,
it can be proved that, for every t ∈ [t0, T] vector ξ i(x(t), T − t), defined by

ξ i(x(t), T − t) =
T∫

t

βi(τ)dτ, i ∈ N, (20)

is an imputation in Γ(x(t), T − t).
Denote by C(x(t), T − t) the set of all imputations ξ(x(t), T − t), specified by Equa-

tion (20) for all β(t) ∈ B(t).

Proposition 2. In the class of games under consideration, the sets C(x(t), T − t) are non-empty
for every t ∈ [t0, T] and C(x(t), T − t) ⊂ C(x(t), T − t).

Proof. The sets B(t) are non-empty for each t ∈ [t0, T] because functions W(S; t) are convex
for each t ∈ [t0, T]. Then, C(x(t), T − t) are non-empty for each t ∈ [t0, T].

Now, we prove that C(x(t), T − t) ⊂ C(x(t), T − t).
Let ξ(x(t), T − t) ∈ C(x(t), T − t). Then, for ξ(x(t), T − t), there exists an IDP β(t) ∈

B(t), such that
∑

i∈S
βi(t) ≥W(S; t) ∀S ⊂ N,

∑
i∈N

βi(t) = W(N; t).
(21)

Then,

∑
i∈S

ξ i(x(t), T − t) =
T∫

t

∑
i∈S

βi(τ)dτ ≥
T∫

t

W(S; τ)dτ = V(S; x(t), T − t) i ∈ N. (22)

From (22), it follows that the imputation ξ(x(t), T− t) belongs to the core C(x(t), T− t)
for each t ∈ [t0, T]. This means that C(x(t), T − t) ⊂ C(x(t), T − t) for each t ∈ [t0, T].

Proposition 3. C(x(t0), T − t0) is a strong time-consistent optimality principle in the game
Γ(x0, T − t0).
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Proof. The proof follows directly from Theorem 5.1 in [19].

Consider also a rule for constructing some IDP from the set B(t).
Denote by Dm(i) the set of pairs {k, l}, where k ∈ N, l ∈ N, the distance between k

and l equals m, and vertex i belongs to the path between k and l (i can coincide with k
or l). Let Dm

S (i) be the set of pairs {k, l}, where k ∈ S, l ∈ S, with the distance between k
and l equal to m, all vertices from this path belonging to S, and vertex i lying on the path
between k and l.

For each pair of vertices {p, q}, p, q ∈ N, we denote by Φp,q the set of vectors φp,q =

(φγ1
p,q, . . . , φ

γm+1
p,q ), such that

m+1
∑

j=1
φ

γj
p,q = 1, 0 ≤ φ

γj
p,q ≤ 1, for each j = 1, m + 1. Here, we

assume the length of the path between p and q equals m (for each vertex γj, j = 1, m + 1,

belonging to the path between p and q, the coefficient φ
γj
p,q is given).

Proposition 4. In the class of games under consideration, the IDP defined by the Equation (23)
belongs to the set B(t) for any φp,q ∈ Φp,q for each pair of vertices p ∈ N, q ∈ N

βi(t) = h
i
i(t) +

n−1

∑
m=1

δm−1 ∑
{k,l}∈Dm(i)

φi
k,l

(
h

k
l (t) + h

l
k(t)

)
, i ∈ N. (23)

Proof. We prove that the vector defined by Equation (23) satisfies conditions (17). Indeed,

n

∑
i=1

βi(t) =
n

∑
i=1

h
i
i(t) +

n

∑
i=1

n−1

∑
m=1

δm−1 ∑
{k,l}∈Dm(i)

φi
k,l

(
h

k
l (t) + h

l
k(t)

)
=

n

∑
i=1

h
i
i(t) +

n−1

∑
m=1

δm−1 ∑
{k,l}∈ ⋃

i∈N
Dm(i)

(φγ1
k,l + . . . φ

γm+1
k,l )

(
h

k
l (t) + h

l
k(t)

)

=
n

∑
i=1

h
i
i(t) +

n−1

∑
m=1

δm−1 ∑
{k,l}∈ ⋃

i∈N
Dm(i)

(
h

k
l (t) + h

l
k(t)

)
= W(N, t). (24)

∑
i∈S

βi(t) = ∑
i∈S

h
i
i(t) + ∑

i∈S

n−1

∑
m=1

δm−1 ∑
{k,l}∈Dm(i)

φi
k,l

(
h

k
l (t) + h

l
k(t)

)
= ∑

i∈S
h

i
i(t) + ∑

i∈S

n−1

∑
m=1

δm−1 ∑
{k,l}∈Dm

S (i)
φi

k,l

(
h

k
l (t) + h

l
k(t)

)

+ ∑
i∈S

n−1

∑
m=1

δm−1 ∑
{k,l}∈Dm(i)\Dm

S (i)
φi

k,l

(
h

k
l (t) + h

l
k(t)

)

= ∑
i∈S

h
i
i(t) +

n−1

∑
m=1

δm−1 ∑
{k,l}∈ ⋃

i∈S
Dm

S (i)
(φγ1

k,l + . . . + φ
γm+1
k,l )

(
h

k
l (t) + h

l
k(t)

)

+ ∑
i∈S

n−1

∑
m=1

δm−1 ∑
{k,l}∈Dm(i)\Dm

S (i)
φi

k,l

(
h

k
l (t) + h

l
k(t)

)

= W(S, t) + ∑
i∈S

n−1

∑
m=1

δm−1 ∑
{k,l}∈Dm(i)\Dm

S (i)
φi

k,l

(
h

k
l (t) + h

l
k(t)

)
≥W(S, t). (25)

This concludes the proof.
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Denote the set of all IDP constructed with Equation (23) as Bφ(t). Proposition 4 shows
that Bφ(t) ⊂ B(t) for each t ∈ [t0, T]. Formula (23) allows finding IDP in explicit form.

5. The Shapley Value

Consider also the problem of constructing the Shapley value (see [20]) in differential
games on networks. It turned out that using the characteristic function (7) in the considered
class of games, the construction of the Shapley value does not require the calculation of the
characteristic function of every S ⊂ N. Proposition 5 demonstrates this specific result.

Proposition 5. If the characteristic function in the cooperative differential game on network
(1) and (2) is defined under the rule (7) and the network (N, L) has no cycles, then the Shapley
value in this game has the following form

Shi(x0, T − t0) = V({i}; x0, T − t0)+

+
n−1

∑
m=1

δm−1

m + 1 ∑
{k,l}∈Dm(i)

T∫
t0

(
hk

l (xl(τ); xk(τ); ul(τ)) + hl
k(xk(τ); xl(τ); uk(τ))

)
dτ. (26)

Proof. The formula for the Shapley value [20] is as follows

Shi(x0, T − t0) = ∑
S: i∈S

(s− 1)!(n− s)!
n!

(V(S; x0, T − t0)−V(S \ i; x0, T − t0)).

Consider the term V(S; x0, T − t0) − V(S \ i; x0, T − t0). This is the value that the
coalition S loses when a player i leaves it. This value consists of

• V({i}; x0, T − t0) =
T∫

t0

hi
i(xi(τ); xi(τ); ui(τ))dτ is the payoff of player i that he can

obtain by itself.

•
n−1
∑

m=1
δm−1 ∑

j∈Km
S (i)

T∫
t0

hj
i(xi(τ); xj(τ); ui(τ))dτ is the payoff that player i receives from

interaction with players from S \ i.

•
n−1
∑

m=1
δm−1 ∑

j∈Km
S (i)

T∫
t0

hi
j(xj(τ); xi(τ); uj(τ))dτ is the payoff that players from S \ i receive

from interaction with player i.

•
n−1
∑

m=1
δm−1 ∑

{p,q}

T∫
t0

(
hp

q (xq(τ); xp(τ); uq(τ)) + hq
p(xp(τ); xq(τ); up(τ))

)
dτ are the payoffs

that players p and q receive from interaction with each other, where p and q are such
vertices from S \ i that there exists a path with the length m between them in S, and
player i lies on this path (since there is no path in S \ i between p and q, because player
i leaves the set S).

Rewrite the values from the last three items into one summand using the definition of
sets Dm

S (i):

Shi = V({i}; x0, T − t0) + ∑
S: i∈S

(s− 1)!(n− s)!
n!

n−1

∑
m=1

δm−1 ∑
{k,l}∈Dm

S (i)

T∫
t0

(
h

k
l (τ) + h

l
k(τ)

)
dτ. (27)

Consider two fixed players k and l with the length of the path between them equal to
m. These two vertices (players), together with all vertices (players) from the path between
them, are included in Cs−m−1

n−m−1 coalitions of power s. Then,
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Shi = V({i}; x0, T − t0)+

+
n−1

∑
m=1

δm−1 ∑
s≥m+1

(s− 1)!(n− s)!
n!

Cs−m−1
n−m−1 ∑

{k,l}∈Dm(i)

T∫
t0

(
h

k
l (τ) + h

l
k(τ)

)
dτ, (28)

where ∑
s≥m+1

(s−1)!(n−s)!
n! Cs−m−1

n−m−1 = 1
m+1 .

Then,

Shi(x0, T − t0) = V({i}; x0, T − t0)+

+
n−1

∑
m=1

δm−1

m + 1 ∑
{k,l}∈Dm(i)

T∫
t0

(
hk

l (xl(τ); xk(τ); ul(τ)) + hl
k(xk(τ); xl(τ); uk(τ))

)
dτ. (29)

This concludes the proof.

Remark 2. Sh(x0, T− t0) belongs to the strong time-consistent subcore. This can be verified by
choosing an IDP for it, constructed according to (23) with all coefficients φi

k,l equal to 1
m+1 .

6. One Cooperative Differential Network Marketing Game

As an illustrative example, we consider a simple model of network marketing. There
are n distributors (players) selling the same product or brand. Let xi denote the sales rate of
player i. The sales rate dynamics of player i evolves according to the accumulation equation

ẋi(t) = ui(t), xi(t0) = x0
i , (30)

where ui(t) ≥ 0 is the promotional effort of distributor i, x0
i ≥ 0.

We assume that each player’s payoff depends on their own sales and those of other
distributors. First, we consider the general case where a player’s payoff depends on all
participants’ sales, taking into account the distance between players on the network. Then,
we apply the obtained solution to a multi-level marketing model on a directed network.
The directions of arcs are supposed to indicate the hierarchy between players. In this case,
distributors can only benefit from down-line distributors.

If each agent extracts linear utility from his own sales and sales of other participants
and the cost function has a quadratic form, then the objective functions are given by

Hi(x0, u1, . . . , un) =

T∫
t0

(
aixi(τ)− ci(ui(τ))

2 +
n−1

∑
m=1

δm−1 ∑
j∈Km(i)

bi(j)xj(τ)

)
dτ. (31)

Here, aixi(τ) is the instantaneous gain that player i can obtain by himself, δm−1bi(j)xj(τ)
is the instantaneous gain that player i obtains through interaction with player j ∈ Km(i),
and ci(ui(τ))

2 is a cost function of agent i. Parameter bi(j) indicates the percentage of sales
of player j that player i receives.

Suppose that the game is played in a cooperative scenario and players have the
opportunity to cooperate in order to achieve maximum total payoff:

max
u1,...,un

∑
i∈N

( T∫
t0

(
aixi(τ)− ci(ui(τ))

2 +
n−1

∑
m=1

δm−1 ∑
j∈Km(i)

bi(j)xj(τ)

)
dτ

)
. (32)
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To define the cooperative strategies, we use the Bellman dynamic programming
technique. We denote by V(N, x, T − t) the Bellman function in a subgame starting at the
moment t from x(t):

V(N, x, T − t) = max
u1,...,un

∑
i∈N

( T∫
t

(
aixi(τ)− ci(ui(τ))

2 +
n−1

∑
m=1

δm−1 ∑
j∈Km(i)

bi(j)xj(τ)

)
dτ

)
. (33)

The Hamilton–Jacobi–Bellman (HJB) equation has the following expression:

−Vt(N, x, T − t) = max
u1,...,un

∑
i∈N

(
aixi(t)− ci(ui(t))2 +

n−1

∑
m=1

δm−1 ∑
j∈Km(i)

bi(j)xj(t)
)
+ ∑

i∈N
Vxi (N, x, T − t)ui(t)

]
, (34)

V(N, x(T), 0) = 0.

The solution of (34) is found in the form

V(N, x, T − t) = ∑
i∈N

Ai(t)xi + B(t). (35)

The maximization problem in (34) yields a strategy for player i:

ui =
Vxi (N, x, T − t)

2ci
=

Ai(t)
2ci

, i = 1, n. (36)

Substituting it into (34), we have the following system of differential equations for
Ai(t) and B(t):

Ȧi(t) = −ai −
n−1
∑

m=1
δm−1 ∑

j∈Km(i)
bj(i), Ai(T) = 0.

Ḃ(t) = − ∑
i∈N

A2
i (t)
4ci

, B(T) = 0.
(37)

The solution of (37) is the following

Ai(t) = (T − t)(ai + bi), i ∈ N,

B(t) = (T − t)3 ∑
i∈N

(ai+bi)
3

12ci
, (38)

where bi =
n−1
∑

m=1
δm−1 ∑

j∈Km(i)
bj(i).

Then, the optimal cooperative strategies have the form

ui(t) =
(T − t)(ai + bi)

2ci
, i = 1, n. (39)

The optimal cooperative trajectory is

xi(t) = x0
i +

ai + bi
4ci

(2T − t− t0)(t− t0). (40)

The value function for the cooperative joint payoff of all n players can be obtained as

V(N, x0, T − t0) = ∑
i∈N

(
(T − t0)(ai + bi)x0

i + (T − t0)
3 (ai + bi)

3

12ci

)
. (41)

According to (7), the characteristic function becomes
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V(S, x0, T − t0) = ∑
i∈S

(
aix0

i (T − t0) +
ai(T − t0)

3(ai + bi)

6ci
−

− (T − t0)
3(ai + bi)

2

12ci
+

n−1

∑
m=1

δm−1 ∑
j∈Km

S (i)
bi(j)(x0

j (T − t0) +
(T − t0)

3(aj + bj)

6cj
)

)
. (42)

Consider now the numeric example for the case of multi-level marketing game. This
model assumes that the graph is directed. The direction of edge from player i to player j
means that player i has recruited player j.

Figure 1 shows the structure of the network in the game. It is assumed that distributors
can only benefit from down-line distributors. In the framework of the considered example
of network marketing, this means that b2(1) = b3(1) = b3(2) = b4(1) = b4(2) = b4(3) =
b3(4) = 0.

Figure 1. A four-player multi-level marketing game.

We assume the following values of the remaining parameters: x0
1 = 2, x0

2 = 1, x0
3 = 0,

x0
4 = 0, a1 = 1

2 , a2 = 1
3 , a3 = a4 = 1

4 , c1 = 2, c2 = 1, c3 = 3, c4 = 2, b1(2) = b1(3) = b1(4) =

b2(3) = b2(4) = 1
8 , T = 10, t0 = 0, δ = 1

2 .
According to Proposition 5, the Shapley value has the form

Sh1 = V({1}; x0, T − t0) +
1
2

T∫
t0

b1(2)x2(τ)dτ + 1
3 δ

T∫
t0

(b1(3)x3(τ) + b1(4)x4(τ))dτ,

Sh2 = V({2}; x0, T − t0) +
1
2

T∫
t0

(b1(2)x2(τ) + b2(3)x3(τ) + b2(4)x4(τ))dτ+

+ 1
3 δ

T∫
t0

(b1(3)x3(τ) + b1(4)x4(τ))dτ,

Sh3 = V({3}; x0, T − t0) +
1
2

T∫
t0

b2(3)x3(τ)dτ + 1
3 δ

T∫
t0

b1(3)x3(τ)dτ,

Sh4 = V({4}; x0, T − t0) +
1
2

T∫
t0

b2(4)x4(τ)dτ + 1
3 δ

T∫
t0

b1(4)x4(τ)dτ.

(43)
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Thus, to obtain the Shapley value, it is not necessary to calculate all the values of the
characteristic function; it is enough to find the following quantities:

V(N, x0, T − t0) = 55.798,

V({1}, x0, T − t0) = 20.417,

V({2}, x0, T − t0) = 11.291,

V({3}, x0, T − t0) = 0.76,

V({4}, x0, T − t0) = 1.139,
T∫

t0

b1(2)x2(τ)(τ)dτ = 10.799,

T∫
t0

b1(3)x3(τ)dτ = 3.038,

T∫
t0

b1(4)x4(τ)dτ = 4.557,

T∫
t0

b2(3)x3(τ)dτ = 3.038,

T∫
t0

b2(4)x4(τ)dτ = 4.557.

Then,

Sh(x0, T − t0) = (27.082; 21.753; 2.785; 4.178).

To construct IDP from Bφ(t), we use a set of coefficients that satisfy the system:

φ1
1,3 + φ2

1,3 + φ3
1,3 = 1,

φ1
1,4 + φ2

1,4 + φ4
1,4 = 1,

φ1
1,2 + φ2

1,2 = 1,
φ2

2,3 + φ3
2,3 = 1,

φ2
2,4 + φ4

2,4 = 1,
φk

i,j ≥ 0.

(44)

Then, the formulas for IDP have the form:

β1(t) = a1x1(t)− c1(u1(t))2 + φ1
1,2b1(2)x2(t) + δ(φ1

1,3b1(3)x3(t) + φ1
1,4b1(4)x4(t)),

β2(t) = a2x2(t)− c2(u2(t))2 + φ2
1,2b1(2)x2(t) + φ2

2,3b2(3)x3(t) + φ2
2,4b2(4)x4(t)+

+δ(φ2
1,3b1(3)x3(t) + φ2

1,4b1(4)x4(t)),
β3(t) = a3x3(t)− c3(u3(t))2 + φ3

2,3b2(3)x3(t) + δφ3
1,3b1(3)x3(t),

β4(t) = a4x4(t)− c4(u4(t))2 + φ4
2,4b2(4)x4(t) + δφ4

1,4b1(4)x4(t).

(45)

Choosing φ1
1,2 = φ2

1,2 = φ2
2,3 = φ3

2,3 = φ2
2,4 = φ4

2,4 = 1
2 , φ1

1,3 = φ2
1,3 = φ3

1,3 = φ1
1,4 =

φ2
1,4 = φ4

1,4 = 1
3 we obtain the IDP for the Shapley Value.

Finally, we show the graphical representation of the obtained solutions. Expressing
ξ4 = V(N, x0, T − t0)− ξ1 − ξ2 − ξ3 and passing to the system of inequalities with three
variables (15) to find the core, we plot the resulting area in Figure 2. The Shapley value
(red color) and imputations from the strong time-consistent subcore, calculated according
to (23) (blue color), are also indicated in Figure 2.
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Figure 2. Cooperative solutions in a four-player multi-level marketing game.

The example considered in Section 6 illustrates a possible application of the proposed
model and shows how to distribute the joint payoff between the players connected by the
network. This example also shows the possibility of applying the obtained solutions to the
case of a directed graph.

7. Conclusions

One class of cooperative differential games on networks is investigated. It is assumed
that each player’s payoff depends not only on his neighbors’ actions but also on players’
actions with whom paths in the network connect the player. A novel form for characteristic
function in such games is proposed. It is shown that the convexity of this characteristic
function not always takes place and essentially depends on the structure of the network
on which the game is defined. It is proved that, if the network has no cycles, then the
characteristic function is convex and the strong time-consistent subcore is not empty. The
formula for explicit calculation of the Shapley value is derived. An algorithm for the
construction of IDP, corresponding to imputations from the strong time-consistent subcore
is given. An illustrative example demonstrating this result is considered.

Further research can be done on cooperative differential games on networks. It will
be interesting to use the approach based on cooperative trajectory characteristic functions
to differential games defined on general networks containing cycles. It seems that, in this
case, the convexity of the corresponding characteristic function will not take place, but the
existence of the core could be proved, and the dynamic Shapley value could be calculated
in explicit form. It would also be interesting to obtain such values of δ for which the
characteristic function turns out to be convex even in the presence of cycles in the network.
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