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Abstract: In this paper, we investigate the adaptive state-quantized control problem of uncertain
lower-triangular systems with input delay. It is assumed that all state variables are quantized for the
feedback control design. The error transformation method using an auxiliary time-varying signal is
presented to deal with the compensation problem of input delay. Based on the error surfaces with the
auxiliary variable, a neural-network-based adaptive state-quantized control scheme is constructed
with the design of the input delay compensator. Different from existing results in the literature, the
proposed method exhibits the following features: (i) compensating for the input delay effect by using
quantized states; and (ii) establishing the stability of the adaptive quantized feedback control system
in the presence of input delay. Furthermore, the boundedness of all the signals in the closed-loop
and the convergence of the tracking error are analyzed. The effectiveness of the developed control
strategy is demonstrated through the simulation on a hydraulic servo system.

Keywords: state-quantized control; neural network; input delay; uncertain triangular nonlinear
systems

1. Introduction

Owing to theoretical challenges and several practical applications, the feedback con-
trol problems of triangular nonlinear systems have been actively addressed in the control
community (see [1–3] and references therein). Especially, as network-based industrial appli-
cations increase, input delays caused by the network transformation become unavoidable in
the control system [4,5]. Therefore, the control design strategies for uncertain nonlinear sys-
tems with input delay have been developed. In [6–9], predictor-based control approaches
are presented for nonlinear systems with input delay. A truncated-predictor-based control
method has been studied for nonlinear systems with Lipschitz nonlinearities [10]. How-
ever, these results [6–10] only consider uncertain nonlinearities matched to the delayed
control input. To deal with uncertain nonlinearities unmatched to the delayed control
input, adaptive control design strategies using Pade approximation have been developed
for uncertain triangular nonlinear systems with input delay [11–14]. In [15–19], input
delay compensation approaches using the high-order auxiliary dynamics are presented
to eliminate the influence of input delay on the recursive controller design. However,
these studies do not consider the state quantization problem that is important with the
input delay problem in network-based control environments with the communication
channel bandwidth and limited computation resources. To the best of our knowledge, the
state-quantized control problem of uncertain lower-triangular systems with input delay is
still open.

The quantized control problem under capability-limited communication network is at-
tracting much research attention recently, owing to extensive industrial applications [20,21].
To overcome the capability-limited communication problem, the quantization of all mea-
sured state variables is required to transmit state-feedback signals to the controller through
the network. In this procedure, the quantization errors in the closed-loop cause control
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performance degradation and even instability. Motivated by the above-mentioned is-
sues, state-quantized control methods have been proposed for lower-triangular nonlinear
systems with Lipchitz conditions [22,23]. To approximate unknown and unmatched non-
linearities in nonlinear systems, a neural-network-based quantized feedback control result
is presented in [24]. This approach has been extended to nonlinear strict-feedback systems
with state delays [25] where the Lyapunov–Krasovskii functional technique is employed
to remove the effects of state delays. Despite these studies, the input delay problem has
not been investigated in the quantized feedback control framework of triangular nonlinear
systems. The main difficulty in dealing with input delay in the state-quantized control
design is to provide the input delay compensator using quantized states and to analyze the
stability of the closed-loop signals including the input delay compensator.

In this paper, we aim at addressing the adaptive state-quantized control problem
in the presence of input delay in uncertain triangular nonlinear systems with unknown
nonlinearities and external disturbances. The measured full states are quantized by state
quantizers and the quantized states are only used to design the controller. Different from
the existing quantized feedback control results [22–25], our primary contribution is to es-
tablish an input delay compensation strategy using quantized states in the state-quantized
control framework while ensuring the robustness against unknown nonlinearities and
external disturbances. To this end, an error coordinated transformation using the auxiliary
variable is derived to design the delay compensator and the neural-network-based adap-
tive controller. An adaptive state-quantized control scheme is designed to guarantee the
boundedness of all involved signals and the quantization errors. In the proposed control
structure, the delay compensator and adaptive tuning laws based on quantized states are
induced from the Lyapunov-based stability analysis methodology. It is shown that the
control error is guaranteed to converge to a set that can be reduced as small as desired by
adjusting design parameters. The simulation result on a hydraulic servo system is provided
to demonstrate the effectiveness of the developed theoretical strategy.

The paper is organized as follows. In Section 2, the state-quantized control problem in
the presence of input delay is formulated and the neural network approximation property
is introduced. In Section 3, the adaptive state-quantized control scheme with a delay
compensator and its closed-loop stability analysis are given. In Section 4, the simulation
result on a hydraulic servo system is presented to illustrate the effectiveness of the state-
quantized control scheme. Finally, the paper is concluded in Section 5.

2. Problem Formulation

In this paper, we consider the following class of uncertain lower-triangular nonlinear
systems with input delay:

ẋi(t) = xi+1(t) + gi(x̄i(t)) + δi(t)
ẋn(t) = u(t− d) + gn(x̄n(t)) + δn(t)
y(t) = x1(t)

(1)

where i = 1, . . . , n− 1, x̄j = [x1, . . . , xj] ∈ Rj, j = 1, . . . , n, are the state variable vectors,
y ∈ R denotes the system output, d is a non-negative input delay, u(t − d) ∈ R is the
control input with input delay, δj, j = 1, . . . , n, are uncertain exogenous disturbances, and
gj(x̄j) :Rj 7→ R, j = 1, . . . , n, are unknown C1 nonlinear functions. The networked-based
control problem with state quantization is considered in this paper. Then, all state variables
xj, j = 1, . . . , n, are quantized via the following uniform quantizer

Q(xj) =


ρl , ρl − ω

2 ≤ xj < ρl +
ω
2

0, −ω
2 ≤ xj <

ω
2

−ρl , −ρl − ω
2 ≤ xj < −ρl +

ω
2

(2)

where j = 1, . . . , n, l ∈ Z+, ω is the quantization level, ρ1 = ω, and ρl+1 = ρl +ω. Then, the
quantization error is defined as ζxj , xj −Q(xj) that satisfies the property |ζxj | ≤ ω [26].
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Thus, Q(xj) instead of xj are available for the design of the feedback control law u where
j = 1, . . . , n.

The main objective of this paper is to design an adaptive tracking law u using quantized
states Q(xj) for nonlinear systems (1) with input delay so that the system output y follows
the desired signal yr while all the closed-loop signals remain bounded where yr, ẏr, and ÿr
are bounded.

Assumption 1. The disturbances δj are bounded as |δj| ≤ δ̄j where j = 1, . . . , n and δ̄j are
unknown constants.

In the proposed control scheme, the unknown nonlinear functions gj, j = 1, . . . , n, are
online approximated via the radial basis function neural networks (RBFNNs) over compact
sets Ξj ⊂ Rj as follows [27]:

gj(x̄j) = Θ>j Bj(x̄j) + ε j(x̄j) (3)

where x̄j ∈ Ξj denotes an input vector, Θj ∈ RN is an ideal bounded weighting vector
satisfying ‖Θj‖ ≤ Θ̄j with a constant Θ̄j, ε j denotes a reconstruction error satisfying
|ε j| ≤ ε̄ j with a constant ε̄ j, and Bj = [bj,1, . . . , bj,N ]

> ∈ RN is the Gaussian function vector

with elements bj,m(x̄j) = e−‖x̄j−cj,m‖2/w2
j,m , m = 1, . . . , N. Here, cj,m ∈ Rj and wj,m are the

center and width of the Gaussian functions, respectively.

Lemma 1. [28,29] The Gaussian basis function vector Bj is bounded as ‖Bj‖ ≤ B̄j with a
constant B̄j.

3. Adaptive State-Quantized Tracking Control in the Presence of Input Delay

In this section, we design the neural-network-based adaptive state-quantized con-
troller using the following coordinated transformation:

s1 = y− yr
si = xi − βi−1,1, i = 2, . . . , n− 1
sn = xn − βn−1,1 − ku tanh ρ
β̃m,1 = βm,1 − vm, m = 1, . . . , n− 1

(4)

where sj, j = 1, . . . , n, denote error surfaces, ku > 0 is a design parameter, ρ is the auxiliary
time-varying signal for compensating for the input delay effect, vm are virtual controllers,
and βm,1 are the signals obtained by the following low-pass command filters

β̇m,1 = βm,2
β̇m,2 = −2am,1am,2βm,2 − a2

m,2(βm,1 − vm)
(5)

where βm,1(0) = vm(0), βm,2(0) = 0, and am,1 > 0 and am,1 > 0 are design constants. Notice
that the command filters (5) are employed based on the command filtered backstepping
approach [3].

Remark 1. Compared with the existing adaptive control works for state-quantized nonlinear
systems [22–25], this paper presents the error transformation method using the auxiliary variable ρ
to deal with the input delay problem in the quantized feedback control framework. We design the
input delay compensator using quantized states at the last design step and the stability analysis
strategy of the total closed-loop system including this input delay compensator is presented in this
paper. This is the main contribution of our study.

The controller design is presented from the Lyapunov-based recursive design step
by step.
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Step 1: Using (1) and (4), the dynamics of s1 is defined as ṡ1 = x2 + g1 + δ1 − ẏr. By
considering a Lyapunov function V1 = (1/2)s2

1 and using (3), we have

V̇1 = s1[s2 + β̃1,1 + v1 + Θ>1 B1(x1) + ε1 + δ1 − ẏr]. (6)

Then, we choose the virtual control law v1 as

v1 = −k1s1 − Θ̂>1 B1(x1)− γ̂1 tanh
(

s1

σ1

)
+ ẏr (7)

where k1 > 0 and σ1 > 0 denote design constants, Θ̂1 is the estimate of Θ1, and γ̂1 is the
estimate of the unknown parameter γ̄1 to be determined later.

Using (7), (6) becomes

V̇1 = −k1s2
1 − s1Θ̃>1 B1(x1)− s1γ̂1 tanh

(
s1

σ1

)
+ s1(s2 + β̃1,1 + ε1 + δ1) (8)

where Θ̃1 = Θ̂1 −Θ1 is an estimation error vector.
Step i (i = 2, . . . , n− 1): Consider the Lyapunov function Vi = (1/2)s2

i . Using (3)–(5),
the time derivative of Vi is represented by

V̇i = si(si+1 + β̃i,1 + vi + Θ>i Bi(x̄i) + εi + δi − βi−1,2). (9)

The virtual control law vi is designed as

vi = −kisi − Θ̂>i Bi(x̄i)− γ̂i tanh
(

si
σi

)
+ βi−1,2 (10)

where ki > 0 and σi > 0 denote design constants, Θ̂i is the estimate of Θi, and γ̂i is the
estimate of γ̄i to be constructed later.

Using (10), (9) is obtained as

V̇i = −kis2
i − siΘ̃>i Bi(x̄i)− γ̂i tanh

(
si
σi

)
+ si(si+1 + β̃i,1 + εi + δi) (11)

where Θ̃i = Θ̂i −Θi is an estimation error vector.
Step n: A Lyapunov function is defined as Vn = (1/2)s2

n. Using (3)–(5), the time
derivative of Vn is represented by

V̇n = sn(u(t− d) + Θ>n Bn(x̄n) + εn + δn − βn−1,2 − ku(cosh2 ρ)−1ρ̇). (12)

The input delay compensator is designed as

ρ̇ =
cosh2 ρ

ku
(−p tanh ρ + u(t− d)− u(t)) (13)

where p > 0 is a design constant.
Substituting (13) into (12) and defining an un-quantized control signal vn, we have

V̇n = sn(u(t)− vn) + sn(vn + Θ>n Bn(x̄n) + εn + δn − βn−1,2 + p tanh ρ). (14)

Then, vn is selected as

vn = −knsn − Θ̂>n Bn(x̄n)− γ̂n tanh
(

sn

σn

)
+ βn−1,2 (15)
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where kn > 0 and σn > 0 denote design constants, Θ̂n is the estimate of Θn, and γ̂n is the
estimate of γ̄n to be constructed later.

Applying (15) into (14) yields

V̇n = −kns2
n − Θ̃>n Bn(x̄n)− γ̂n tanh

(
sn

σn

)
+ sn(u(t)− vn) + sn(εn + δn + p tanh ρ) (16)

where Θ̃n = Θ̂n −Θn is an estimation error vector.
For the design of the adaptive state-quantized control law u, we define error surfaces

sq,j, j = 1, . . . , n, using quantized states Q(xj) as

sq,1 = Q(x1)− yr
sq,i = Q(xi)− βq,i−1,1, i = 2, . . . , n− 1
sq,n = Q(xn)− βq,n−1,1 − ku tanh ρ

(17)

where βq,i−1,1 and βq,n−1,1 are the command filtered signals of state-quantized virtual
controllers vq,i−1 and vq,n−1, respectively, and ρ is obtained using the input delay com-
pensator (13). The state-quantized virtual controllers vq,m and actual controller u are
designed as

vq,m = −kmsq,m − Θ̂>m Bm(Q(x̄m))− γ̂m tanh
(

sq,m

σm

)
+ βq,m−1,2 (18)

u = −knsq,n − Θ̂>n Bn(Q(x̄n))− γ̂n tanh
(

sq,n

σn

)
+ βq,n−1,2 (19)

where m = 1, . . . , n − 1, Q(x̄j) = [Q(x1), . . . , Q(xj)]
>, j = 1, . . . , n, βq,0,2 = ẏr, and the

adaptive laws for Θ̂j and γ̂j are constructed as

˙̂Θj = λΘ,j[sq,jBj(Q(x̄j))− σΘ,j|sq,j|Θ̂j] (20)

˙̂γj = λγ,j

[
sq,j tanh

( sq,j

σj

)
− σγ,j|sq,j|γ̂j

]
(21)

with j = 1, . . . , n, tuning matrices λΘ,j > 0, tuning gains λγ,j > 0, and positive constants
σΘ,j and σγ,j for σ−modification. Here, based on (5), the command filters for βq,m,1 and
βq,m,2 are designed as

β̇q,m,1 = βq,m,2
β̇q,m,2 = −2am,1am,2βq,m,2 − a2

m,2(βq,m,1 − vq,m)
(22)

where m = 1, . . . , n− 1, βq,m,1(0) = vq,m(0), and βq,m,2(0) = 0.

Remark 2. The proposed adaptive state-quantized control scheme consists of the virtual and actual
controllers (18) and (19) with the delay compensator (13), adaptive laws (20) and (21), and command
filter (22) using the quantized states Q(xj), j = 1, . . . , n. Compared with the existing control works
for nonlinear lower-triangular systems with input delay [11–19], the state quantization problem
is firstly considered in this paper. Thus, the stability analysis strategy of the closed-loop systems
with the proposed adaptive state-quantized control scheme in the presence of input delay should be
newly presented.

For the stability analysis, we present the following lemmas.

Lemma 2. If Θ̂j and γ̂j are tuned via the adaptive laws (20) and (21), respectively, then: (i)
Θ̃j(t) ∈ ΠΘ,j, ∀t ≥ 0, is ensured when Θ̃j(0) ∈ ΠΘ,j; and (ii) γ̃j(t) ∈ Πγ,j, ∀t ≥ 0, is
ensured when γ̃j(0) ∈ Πγ,j where j = 1, . . . , n, ΠΘ,j = {Θ̃j|‖Θ̃j‖ ≤ ψΘ,j} with a constant ψΘ,j,
γ̃j = γ̂j − γ̄j, and Πγ,j = {γ̃j||γ̃j| ≤ ψγ,j} with a constant ψγ,j.



Mathematics 2021, 9, 763 6 of 14

Proof. (i) A Lyapunov function VΘ,j = (1/2)Θ̃>j λ−1
Θ,jΘ̃j is considered. Then, differentiating

VΘ,j with respect to time and using Θ̂j = Θj + Θ̃j, we have

V̇Θ,j = Θ̃>j (sq,jBj(Q(x̄j))− σΘ,j|sq,j|(Θj + Θ̃j)). (23)

Using ‖Θj‖ ≤ Θ̄j and Lemma 1, we obtain

V̇Θ,j ≤ ‖Θ̃j‖|sq,j|(B̄j + σΘ,jΘ̄j − σΘ,j‖Θ̃j‖). (24)

Then, it is ensured that V̇Θ,j ≤ 0 when ‖Θ̃j‖ ≥ ψΘ,j with ψΘ,j = (B̄j + σΘ,jΘ̄j)/σΘ,j. Thus,
when Θ̃j(0) ∈ ΠΘ,j, Θ̃j(t) ∈ ΠΘ,j, ∀t ≥ 0, is ensured.

(ii) By defining a Lyapunov function Vγ,j = (1/(2λγ,j))γ̃
2
j and using γ̂j = γ̄j + γ̃j and

the property | tanh(·)| ≤ 1, the time derivative of Vγ,j is

V̇γ,j ≤ |γ̃j||sq,j|(1 + σγ,jγ̄j − σγ,j|γ̃j|). (25)

By defining ψγ,j , (1 + σγ,iγ̄j)/σγ,j, we know that V̇γ,j ≤ 0 when |γ̃j| ≥ ψγ,j. Thus,
γ̃j(t) ∈ Πγ,j is ensured for all t ≥ 0 provided that γ̃j(0) ∈ Πγ,j.

Lemma 3. Let us define the errors between the un-quantized signals and quantized signals in the
closed-loop system as ζs,j = sj − sq,j, ζv,i = vi − vq,i, ζu = vn − u, ζβ,i,1 = βi,1 − βq,i,1, and
ζβ,i,2 = βi,2 − βq,i,2 where j = 1, . . . , n and i = 1, . . . , n− 1. Then, these errors are bounded as
|ζs,j| ≤ χs,j, |ζv,i| ≤ χv,i, |ζu| ≤ χu and ‖ζβ,i‖ ≤ χβ,i where ζβ,i = [ζβ,i,1, ζβ,i,2]

>, and χs,j, χv,i,
and χβ,i are constants.

Proof. We prove the boundedness of the quantization errors step by step.
(i) From |x1−Q(x1)| ≤ ω and ζs,1 = s1− sq,1 = x1−Q(x1), we have |ζs,1| ≤ χs,1 , ω.

Then, using (7) and (18), ζv,1 becomes

ζv,1 = −k1ζs,1 − Θ̂>1 (B1(x1)− B1(Q(x1)))− γ̂1

[
tanh

(
s1

σ1

)
− tanh

(
sq,1

σ1

)]
. (26)

From Lemma 1 and | tanh(·)| ≤ 1, we have |B1(x1)− B1(Q(x1))| ≤ 2B̄1 and | tanh(s1/σ1)−
tanh(sq,1/σ1)| ≤ 2. Then, using Lemma 2, it is ensured that ‖Θ̂1‖ ≤ ψΘ,1 + Θ̄1 and
|γ̂1| ≤ ψγ,1 + γ̄1. Thus, ζv,1 is bounded as |ζv,1| ≤ χv,1 with χv,1 = k1χs,1 + 2B̄1(ψΘ,1 +
Θ̄1) + 2(ψγ,1 + γ̄1).

The vector forms of the command filters (5) and (22) are written as

β̇1 = Γ1β1 + ∆1v1, β̇q,1 = Γ1βq,1 + ∆1vq,1 (27)

where β1 = [β1,1, β1,2]
>, βq,1 = [βq,1,1, βq,1,2]

>, Γ1 =

[
0 1
−a2

1,2 −2a1,1a1,2

]
, and ∆1 =

[0, a2
1,2]
>. Thus, we have

ζ̇β,1 = Γ1ζβ,1 + ∆1ζv,1. (28)

The solution of (28) is represented by

ζβ,1(t) = eΓ1tζβ,1(0) +
∫ t

0
eΓ1(t−τ)∆1ζv,1(τ)dτ. (29)

Using |ζv,1| ≤ χv,1, the invertible property of A1, and the inequality ‖eΓ1t‖ ≤ ι1,1e−ι1,2t with
constants ι1,1 > 0 and ι1,2 > 0 [30], ζβ,1 is bounded as
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‖ζβ,1(t)‖ ≤ ι1,1‖ζβ,1(0)‖+ χv,1‖∆1‖‖Γ−1
1 (I − eΓ1t)‖

≤ χβ,1 (30)

where χβ,1 = ι1,1‖ζβ,1(0)‖+ χv,1‖∆1‖‖Γ−1
1 ‖(1 + ι1,1)‖.

(ii) Using (4) and (17), we have ζs,i = xi − Q(xi) + ζβ,i−1,1 where i = 2, . . . , n − 1.
From |xi −Q(xi)| ≤ ω and |ζβ,i−1,1| ≤ χβ,i−1, ζs,i is bounded as |ζs,i| ≤ χs,i , ω + χβ,i−1.
Then, ζv,i is given by

ζv,i = −kiζs,i − Θ̂>i (Bi(x̄i)− Bi(Q(x̄i)))− γ̂i

[
tanh

(
si
σi

)
− tanh

( sq,i

σi

)]
+ ζβ,i−1,2. (31)

From the procedure similar to the previous step and |ζβ,i−1,2| ≤ χβ,i−1, ζv,i is bounded as
|ζv,i| ≤ χv,i with χv,i = kiχs,i + 2B̄i(ψΘ,i + Θ̄i) + 2(ψγ,i + γ̄i) + χβ,i−1.

By applying the procedures (29)–(30) to ζ̇β,i = Γiζβ,i + ∆iζv,i, and using the inequality
‖eΓit‖ ≤ ιi,1e−ιi,2t with constants ιi,1 > 0 and ιi,2 > 0, we have ‖ζβ,i(t)‖ ≤ χβ,i where

i = 2, . . . , n− 1, χβ,i = ιi,1‖ζβ,i(0)‖+ χv,i‖∆i‖‖Γ−1
i ‖(1 + ιi,1)‖, Γi =

[
0 1
−a2

i,2 −2ai,1ai,2

]
,

and ∆i = [0, a2
i,2]
>.

(iii) Using (4) and (17) gives ζs,n = xn −Q(xn) + ζβ,n−1,1. Then, it holds that |ζs,n| ≤
χs,n , ω + χβ,n−1. ζu is obtained as

ζu = −knζs,n − Θ̂>n (Bn(x̄n)− Bn(Q(x̄n)))− γ̂n

[
tanh

(
sn

σn

)
− tanh

(
sq,n

σn

)]
+ ζβ,n−1,2. (32)

From the procedure similar to the previous step and |ζβ,n−1,2| ≤ χβ,n−1, ζu is bounded as
|ζu| ≤ χu with χu = knχs,n + 2B̄n(ψΘ,n + Θ̄n) + 2(ψγ,n + γ̄n) + χβ,n−1.

Let us define the total Lyapunov function V as V = ∑n
j=1 Vj + ∑n−1

m=1 β̃>mFm β̃m where
β̃m = [β̃m,1, βm,2]

> and Fm > 0 denotes a symmetric matrix.

Theorem 1. Consider the system (1) with input delay controlled by the adaptive state-quantized
control scheme (18)–(22) with the input delay compensator (13). For any initial conditions satisfying
V(0) ≤ µ with a constant µ > 0, the control error s1 is guaranteed to converge to a set that can be
adjusted by design parameters while all the closed-loop signals remain bounded.

Proof. The dynamics of β̃m is represented by

˙̃βm = Γm β̃m + cΦm (33)

where m = 1, . . . , n− 1, c = [1, 0]>, and

Φ1(Z1) = k1 ṡ1 +
˙̂Θ>1 B1 + Θ̂>1 Ḃ1 + ˙̂γ1 tanh

(
s1
σ1

)
+ γ̂1sech2

(
s1
σ1

)
ṡ1
σ1
− ÿr

Φi(Zi) = ki ṡi +
˙̂Θ>i Bi + Θ̂>i Ḃi + ˙̂γi tanh

(
si
σi

)
+ γ̂isech2

(
si
σi

)
ṡi
σi
− β̇i−1,2, i = 2, . . . , n− 1

with Z1 = [s1, s2, β1,1, Θ̂1, γ̂1, yr, ẏr, ÿr, δ1]
> and Zi = [s1, . . . , si+1, β1,1, . . . , βi,1, β1,2, . . . ,

βi−1,2, Θ̂1, . . . , Θ̂i, γ̂1, . . . , γ̂i, yr, ẏr, ÿr, δ1, . . . , δi]
>.

Substituting (8), (11), (16), and (33) into the time derivative of V̇ yields

V̇ ≤ −
n

∑
j=1

k js2
j +

n−1

∑
m=1

β̃>m(FmΓm + Γ>m Fm)β̃m +
n−1

∑
j=1

sj(sj+1 + β̃ j,1) +
n−1

∑
m=1

2β̃>mFmcΦm

+
n

∑
j=1

sjγj −
n

∑
j=1

sjγ̂j tanh
( sj

σj

)
. (34)
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where γi = εi + δi − Θ̃>i Bi, i = 1, . . . , n− 1, and γn = εn + δn − Θ̃>n Bn − ζu + p tanh ρ.
From Lemmas 1–3, Assumption 1, and |ε j| ≤ ε̄ j, there exist constants γ̄j such that

|γj| ≤ γ̄j with j = 1, . . . , n. Thus, we have |sj|γ̄j − sjγ̄j tanh(sj/σj) ≤ 0.2785γ̄jσj. In
addition, due to the Hurwitz matrix Γm, there exists the matrix Wm > 0 such that FmΓm +
Γ>m Fm = −Wm. Then, (34) becomes

V̇ ≤ −
n

∑
j=1

k js2
j −

n−1

∑
m=1

wm β̃>m β̃m +
n−1

∑
j=1

sj(sj+1 + β̃ j,1) +
n−1

∑
m=1

2β̃>mFmcΦm

−
n

∑
j=1

sjγ̃j tanh
( sj

σj

)
+

n

∑
j=1

0.2785γ̄jσj. (35)

where wm denotes a minimum eigenvalue of Wm.
From the boundedness of Θ̂j, γ̂j, and δj, j = 1, . . . , n, there exist functions Φ∗i ,

i = 1, . . . , n− 1, such that

|Φ1(Z1)| ≤ Φ∗1(s1, s2, β1,1, yr, ẏr, ÿr)

|Φm(Zm)| ≤ Φ∗m(s1, . . . , sm+1, β1,1, . . . , βm,1, β1,2, . . . , βm−1,2, yr, ẏr, ÿr) (36)

where m = 2, . . . , n − 1. Consider the compact sets Ωi, i = 1, . . . , n − 1, and Ωyr as
Ωi = {(s1, . . . , si+1, β̃1, . . . , β̃i) : ∑i+1

h=1 s2
h + ∑i

h=1 2β̃>h Fh β̃h ≤ 2µ} and Ωyr = {(yr, ẏr, ÿr) :
y2

r + ẏ2
r + ÿ2

r ≤ µr}, respectively, where µr > 0 is a constant. From (36), it holds that
|Φ∗i | ≤ Φ̄i on Ωi×Ωyr where Φ̄i is a constant. Using the inequalities sjsj+1 ≤ s2

j /2+ s2
j+1/2,

sj β̃ j,1 ≤ s2
j /2+ ‖β̃ j‖2/2, 2β̃>mFmcΦm ≤ (Φ∗m)2‖Fm‖2‖β̃m‖2/ϑ + ϑ, and−sjγ̃j tanh(sj/σj) ≤

s2
j /2+ψ2

γ,j/2 with a constant ϑ > 0, and choosing k1 = 3/2+ k̄1, k j = 2+ k̄ j, kn = 3/2+ k̄n,

wm = 1/2 + Φ̄2
m‖Fm‖2/ϑ + w̄m with constants k̄1 > 0, k̄ j > 0, k̄n > 0, and w̄m > 0, (35)

becomes

V̇ ≤ −
n

∑
j=1

k̄ js2
j −

n−1

∑
m=1

w̄m β̃>m β̃m −
n−1

∑
m=1

(
1− (Φ∗m)2

Φ̄2
m

)
Φ̄2

m‖Fm‖2‖β̃m‖2

ϑ
+ O1 (37)

with O1 = ∑n
j=1(ψ

2
γ,j/2 + 0.2785γ̄jσj) + (n− 1)ϑ. Because of |Φ∗i | ≤ Φ̄i on V = µ, (37)

becomes

V̇ ≤ −O2V + O1 (38)

with O2 = min[2k̄1, . . . , 2k̄n, w̄1/ f1, . . . , w̄n/ fn]. Here, f j, j = 1, . . . , n, denotes the max-
imum eigenvalue of Fj. (38) implies that V̇ < 0 on V = µ provided that O2 > O1/µ.
Therefore, V ≤ µ is an invariant set. It is ensured that all closed-loop signals are semi-
globally uniformly ultimately bounded. Thus, the control input u is bounded. From the
solution of (38), the control error s1 converges to a compact set Ωs1 = {s1||s1| ≤

√
2O1/O2}

that can be reduced by increasing O2. Then, we check the boundedness of the input com-
pensator ρ in (13). Using the boundedness of sj and β̃m and Lemmas 2 and 3, sq,n and
βq,n−1,2 are bounded. Thus, u is bounded. Then, there exists a constant $̄ such that
|u(t− d)− u(t)| ≤ $̄. Owing to (cosh2 ρ)/ku ≥ 0, ρ is bounded.

Remark 3. From the proof of Theorem 1, the control design parameters are selected to reduce the
compact set Ωs1 . Thus, the guidelines are presented as follows:

(i) Decreasing the quantization level ω helps to decrease O1. This leads to reduce Ωs1 .
(ii) Selecting fixed small constants σΘ,j and σγ,j and increasing λΘ,j, λγ,j, and k j, j = 1, . . . , n

help to increase O2, which subsequently reduces Ωs1 .
(iii) The eigenvalues of Wm can be adjusted by the parameters am,1 and am,2 of the command

filters i = 1, . . . , n, Thus, increasing wm helps to decrease Ωs1 .
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Remark 4. This paper provides a theoretical basis for the adaptive state-quantized control design
of uncertain lower-triangular systems with input delay. Based on the proposed control approach,
the following topics can be recommended as future works.

(i) Nonlinear stochastic systems in lower-triangular forms have been studied in the adaptive
neural control field (see [31–33] and references therein). Based on these works, an adaptive state-
quantized neural tracking control problem of nonlinear stochastic systems can be considered as
a future topic. To apply the proposed approach to nonlinear stochastic systems, the analysis
methodologies of the quantization errors of virtual and actual control laws should be newly developed
based on some technical lemmas dealing with nonlinear stochastic systems. Then, such a future topic
can be extended to adaptive state-quantized control problems of uncertain pure feedback stochastic
nonlinear systems with state constraints and nonlinear stochastic switched lower triangular systems
with input saturation.

(ii) The nonlinear systems concerned in this paper are in the lower-triangular form. To
apply the proposed state-quantized control approach to non-lower triangular nonlinear systems,
the well known technical lemma [34] on the radial basis function of the neural network (i.e.,
‖Bj(x̄n)‖ ≤ ‖Bj(x̄j)‖) can be used in the proposed control design steps. Based on this lemma, the
state-quantized control problem of non-lower triangular structure with unknown input saturation
can be investigated as a future topic.

4. Simulation
4.1. Example 1

To show the effectiveness of the proposed adaptive state-quantized control system
in the presence of input delay, we consider a practical nonlinear model of a hydraulic
servo system with input delay and compare our controller with the existing quantized
feedback controller [24] designed without considering input delay. The nonlinear model of
a hydraulic servo system is represented by [35]:

cmφ̈(t) + cdφ̇(t) + csφ(t) = DF(t) + v(t)
vc
4be

Ḣp(t) + L f Hp(t) + Rφ̇(t) = SI(t− d) (39)

where φ and PL denote the displacement of the inertia load and the pressure difference of
the hydraulic actuator, respectively; the driving force DF is defined as DF = RHp with the
ram area R; v is the friction inside the cylinder; cm, cd, and cs indicate the load mass, the
damping constant, and the spring constant, respectively; vc, be, and L f are the effective bulk
modulus of oil, the volume of the cylinder, and the total internal leakage factor, respectively;
SI denotes the supply input flow; and d is the input delay.

Using the form of (1), the state-space model of (39) is given by

ẋ1(t) = x2(t)
ẋ2(t) = x3(t) + g2(x̄2(t)) + δ2(t)
ẋ3(t) = u(t− d) + g3(x̄3(t))

(40)

where x1 = φ, x2 = φ̇, x3 = RHp/cm, u = 4RbeSI/(cmvc), g2 = −(cd/cm)x2 − (cs/cm)x1,
δ2 = (1/cm)v, and g3 = −4(be/vc)L f x3 − 4(R2be/(cmvc))x2. The system parameters
are taken from [35]. The friction disturbance is set to δ2(t) = 0.1 cos(0.5t). To solve the
differential equation (40) for this simulation, we use the fourth-order Runge–Kutta method
with the step size 0.005 within 50 s. The initial conditions are set to x̄3(0) = [0.2, 0, 0]>. The
desired signal yr is defined as yr = 0.1 cos(0.6t + π/3). The quantization level and the
input delay are set to ω = 0.001 and d = 0.08, respectively. The adaptive state-quantized
control scheme for the system (40) is given by the virtual and actual controller (18) and (19)
with the delay compensator (13), adaptive laws (20) and (21), and command filter (22). The
control parameters are selected as k1 = k2 = k3 = 10, λΘ,j = 20, λγ,j = 5, σΘ,j = σγ,j = 0.01,
p = 20, ku = 50, a1,1 = 10, a2,1 = 70, am,2 = 0.707, and σj = 0.5 where j = 2, 3 and m = 1, 2.

The quantized-states-based control results and errors are compared in Figure 1. As
shown in Figure 1, while the divergent system output and tracking error are provided via
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the previous controller presented in [24], the convergent system output and tracking error
are provided via the proposed state-quantized controller. Thus, the previous controller
presented in [24] cannot ensure the stability of the closed-loop system in the presence of
input delay. The adaptive tuning parameters for the proposed approach are shown in
Figure 2. In Figure 3, the response of the input compensator and the control input are
displayed. In these figures, we can see that the proposed state-quantized controller has
good tracking performance for input-delayed nonlinear systems with state quantization.
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Figure 1. Comparison of tracking results and errors for Example 1: (a) y and yr of the proposed
control system; (b) y and yr of the control system presented in [24]; (c) s1 of the proposed control
system; and (d) s1 of the control system presented in [24].
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Figure 2. Estimation results of the proposed control system for Example 1 (a) γ̂j, j = 2, 3; and
(b) ‖Θ̂j‖, j = 2, 3.
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Figure 3. Input delay compensator and control input of the proposed control system for Example 1:
(a) ρ; and (b) u.

4.2. Example 2

Consider the following nonlinear systems:

ẋ1(t) = x2(t) + g1(x1(t)) + δ1(t)
ẋ2(t) = x3(t) + g2(x̄2(t)) + δ2(t)
ẋ3(t) = u(t− d) + g3(x̄3(t)) + δ3(t)

(41)

where g1 = 0.5x2
1 cos x1, g2 = e−x2

1 x2 + 0.2 cos(0.5x2), g3 = x1x3 + x2 sin x3, and δ1 = δ2 =
δ3 = 0.1 sin(0.2t). Using the fourth-order Runge–Kutta method with the step size 0.005
within 30 s, the differential equation (41) is solved for this simulation. The initial conditions
are set to x̄3(0) = [0.5, 0, 0]>. The desired signal yr is defined as yr = 0.4 cos(0.7t). The
quantization level and the input delay are set to ω = 0.01 and d = 0.05, respectively. The
design parameters are set to k1 = 1, k2 = 10, k3 = 30, λΘ,j = 10, λγ,j = 5, σΘ,j = 0.01,
σγ,j = 0.1, p = 10, ku = 50, am,1 = 40, am,2 = 0.707, and σj = 0.5 where j = 1, 2, 3.

In Figure 4, the tracking control results and errors of the proposed approach and the
previous controller [24] are compared. While the system output and tracking error of the
previous controller [24] diverge, those of the proposed state-quantized controller converge.
Therefore, the proposed adaptive state-quantized tracking approach can be used in the
presence of input delay. Figure 5 shows the adaptive estimated parameters of the proposed
state-quantized controller. Figure 6 displays the response of the input compensator and
the control input of the proposed state-quantized controller. It is observed that all the
closed-loop signals are bounded and the state-quantized tracking is successfully achieved
in the presence of input delay.
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Figure 4. Cont.
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Figure 4. Comparison of tracking results and errors for Example 2: (a) y and yr of the proposed
control system; (b) y and yr of the control system presented in [24]; (c) s1 of the proposed control
system; and (d) s1 of the control system presented in [24].
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Figure 5. Estimation results of the proposed control system for Example 2: (a) γ̂j, j = 1, 2, 3; and
(b) ‖Θ̂j‖, j = 1, 2, 3.
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Figure 6. Input delay compensator and control input of the proposed control system for Example 2:
(a) ρ; and (b) u.

5. Conclusions

This paper develops the adaptive state-quantized control strategy to compensate for
the input delay of uncertain nonlinear lower-triangular systems with state quantization.
The error surface using the auxiliary time-varying signal for compensating for the input
delay is derived for the control design. A neural-network-based adaptive controller and
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its adaptive laws are constructed via quantized states while designing the input delay
compensator using quantized states. In the proposed control scheme, the quantization
errors and approximation errors are compensated via the adaptive technique and their
boundedness is analyzed by establishing some technical lemmas. All involved signals are
ensured to be bounded. The effectiveness of the proposed approach is demonstrated by the
hydraulic servo dynamics. Compared with the existing quantized feedback control designs
of nonlinear systems, the primary contribution of this paper is to provide the adaptive state-
quantized control strategy in the presence of input delay. This paper provides a theoretical
basis for the adaptive state-quantized control design in the presence of input delay. Thus,
the proposed approach can be extended to various practical systems in the lower-triangular
form such as aircraft wing rock models, jet engines, flight systems, biochemical processes,
and flexible-joint robots reported in [1].

Author Contributions: Conceptualization, formal analysis, methodology, software, supervision,
validation, writing—original draft preparation, and writing—review and editing, S.J.Y. The author
has read and agreed to the published version of the manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Funding: This research was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (NRF-2019R1A2C1004898).

Conflicts of Interest: The author declares no conflict of interest.

References
1. Krstic, M.; Kanellakopoulos, I.; Kokotovic, P.V. Nonlinear and Adaptive Control Design; Wiley: New York, NY, USA, 1995.
2. Swaroop, D.; Hedrick, J.K.; Yip, P.P.; Gerdes, J.C. Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom.

Control 2000, 45, 1893–1899. [CrossRef]
3. Farrell, J.A.; Polycarpou, M.; Sharma, M.; Dong, W. Command filtered backstepping. IEEE Trans. Autom. Control 2009, 54,

1391–1395. [CrossRef]
4. Krstic, M. Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Trans. Autom. Control

2010, 55, 287–303. [CrossRef]
5. Bekiaris-Liberis, N.; Krstic, M. Compensation of time-varying input and state delays for nonlinear systems. J. Dyn. Syst. Meas.

Control 2012, 134, 011009. [CrossRef]
6. Sharma, N.; Bhasin, S.; Wang, Q.; Dixon, W. Predictor-based control for an uncertain Euler-Lagrange system with input delay.

Automatica 2011, 47, 2332–2342. [CrossRef]
7. Kamalapurkar, R.; Fischer, N.; Obuz, S.; Dixon, W. Time-varying input and state delay compensation for uncertain nonlinear

systems. IEEE Trans. Autom. Control 2016, 61, 834–839. [CrossRef]
8. Obuz, S.; Klotz, J.R.; Kamalapurkar, R.; Dixon, W. Unknown time-varying input delay compensation for uncertain nonlinear

systems. Automatica 2017, 76, 222–229. [CrossRef]
9. Deng, W.; Yao, J.; Ma, D. Time-varying input delay compensation for nonlinear systems with additive disturbance: An output

feedback approach. Int. J. Robust Nonlinear Control 2018, 28, 31–52. [CrossRef]
10. Zuo, Z.; Lin, Z.; Ding, Z. Truncated predictor control of Lipschitz nonlinear systemswith time-varying input delay. IEEE Trans.

Autom. Control 2016, 62, 5324–5330. [CrossRef]
11. Khanesar, M.A.; Kaynak, O.; Yin, S.; Gao, H. Adaptive indirect fuzzy sliding mode controller for networked control systems

subject to time-varying network-induced time delay. IEEE Trans. Fuzzy Syst. 2014, 23, 205–214. [CrossRef]
12. Li, H.; Wang, L.; Du, H. BoulkrouneH. Adaptive fuzzy backstepping tracking control for strict-feedback systemswith input delay.

IEEE Trans. Fuzzy Syst. 2017, 25, 642–652. [CrossRef]
13. Wu, C.; Liu, J.; Jing, X.; Li, J.; Wu, L. Adaptive fuzzy control for nonlinear networked control systems. IEEE Trans. Syst. Man

Cybern. 2017, 47, 2420–2430. [CrossRef]
14. Li, D.P.; Liu, Y.J.; Tong, S.; Chen, C.P.; Li, D.J. Neural networks-based adaptive control for nonlinear state constrained systems

with input delay. IEEE Trans. Cybern. 2018, 49, 1249–1258. [CrossRef]
15. Ma, J.L.; Xu, S.; Li, Y.; Chu, Y.; Zhang, Z. Neural networks-based adaptive output feedback control for a class of uncertain

nonlinear systems with input delay and disturbances. J. Frankl. Inst. 2018, 355, 5503–5519. [CrossRef]
16. Niu, B.; Lu, L. Adaptive backstepping-based neural tracking control for MIMO nonlinear switched systems subject to input

delays. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2638–2644. [CrossRef]

http://doi.org/10.1109/TAC.2000.880994
http://dx.doi.org/10.1109/TAC.2009.2015562
http://dx.doi.org/10.1109/TAC.2009.2034923
http://dx.doi.org/10.1115/1.4005278
http://dx.doi.org/10.1016/j.automatica.2011.03.016
http://dx.doi.org/10.1109/TAC.2015.2451472
http://dx.doi.org/10.1016/j.automatica.2016.09.030
http://dx.doi.org/10.1002/rnc.3853
http://dx.doi.org/10.1109/TAC.2016.2635021
http://dx.doi.org/10.1109/TFUZZ.2014.2362549
http://dx.doi.org/10.1109/TFUZZ.2016.2567457
http://dx.doi.org/10.1109/TSMC.2017.2678760
http://dx.doi.org/10.1109/TCYB.2018.2799683
http://dx.doi.org/10.1016/j.jfranklin.2018.05.045
http://dx.doi.org/10.1109/TNNLS.2017.2690465


Mathematics 2021, 9, 763 14 of 14

17. Wang, H.; Liu, S.; Yang, X. Adaptive neural control for non-strict-feedback nonlinear systems with input delay. Inf. Sci. 2020, 514,
605–616. [CrossRef]

18. Ma, J.; Xu, S.; Zhuang, G.; Wei, Y.; Zhang, Z. Adaptive neural network tracking control for uncertain nonlinear systems with
input delay and saturation. Int. J. Robust Nonlinear Control 2020, 30, 2593–2610. [CrossRef]

19. Wang, T.; Wu, J.; Wang, Y.; Ma, M. Adaptive fuzzy tracking control for a class of strict-feedback nonlinear systems with
time-varying input delay and full state constraints. IEEE Trans. Fuzzy Syst. 2020, 28, 3432–3441. [CrossRef]

20. Fu, M.; Xie, L. The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 2005, 50, 1698–1711.
21. Montestruque, L.A.; Antsaklis, P.J. Static and dynamic quantization in model-based networked control systems. Int. J. Control

2007, 80, 87–101. [CrossRef]
22. Zhou, J.; Wen, C.; Wang, W.; Yang, F. Adaptive backstepping control of nonlinear uncertain systems with quantized states. IEEE

Trans. Autom. Control 2019, 64, 4756–4763. [CrossRef]
23. Choi, Y.H.; Yoo, S.J. Quantized feedback adaptive command filtered backstepping control for a class of uncertain nonlinear

strict-feedback systems. Nonlinear Dyn. 2020, 99, 2907–2918. [CrossRef]
24. Choi, Y.H.; Yoo, S.J. Quantized-feedback-based adaptive event-triggered control of a class of uncertain nonlinear systems.

Mathematics 2020, 8, 1603. [CrossRef]
25. Choi, Y.H.; Yoo, S.J. Neural-networks-based adaptive quantized feedback tracking of uncertain nonlinear strict-feedback systems

with unknown time delays. J. Frankl. Inst. 2020, 357, 10691–10715. [CrossRef]
26. Brockett, R.W.; Liberzon, D. Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Control 2000, 45, 1279–1289.

[CrossRef]
27. Park, J.; Sandberg, I.W. Universal approximation using radial-basis-function networks. Neural Comput. 1991, 3, 246–257.

[CrossRef]
28. Wang, C.; Hill, D.J.; Ge, S.S.; Chen, G.R. An ISS-modular approach for adaptive neural control of pure-feedback systems.

Automatica 2006, 42, 625–635. [CrossRef]
29. Kurdila, A.J.; Narcowich, F.J.; Ward, J.D. Persistency of excitation in identification using radial basis function approximants.

SIAM J. Control Optim. 1995, 33, 625–642. [CrossRef]
30. Hu, G.D.; Liu, M. The weighted logarithmic matrix norm and bounds of the matrix exponential. Linear Algebra Appl. 2000, 390,

145–154. [CrossRef]
31. Liu, Y.; Zhu, Q. Adaptive neural network finite-time tracking control of full state constrained pure feedback stochastic nonlinear

systems. J. Frankl. Inst. 2020, 357, 6738–6759. [CrossRef]
32. Gao, T. Liu, Y.J.; Li, D.; Tong, S.; Li, T. Adaptive neural control using tangent time-varying BLFs for a class of uncertain stochastic

nonlinear systems with full state constraints. IEEE Trans. Cybern. 2021, 51, 1943–1953. [CrossRef] [PubMed]
33. Zhu, Q.; Liu, Y.; Wen, G. Adaptive neural network control for time-varying state constrained nonlinear stochastic systems with

input saturation. Inf. Sci. 2020, 527, 191–209. [CrossRef]
34. Sun, Y.M.; Chen, B.; Liu, C.; Wang, H.H.; Zhou, S.W. Adaptive neural control for a class of stochastic nonlinear systems by

backstepping approach. Inf. Sci. 2016, 369, 748–764. [CrossRef]
35. Na, J.; Li, Y.; Huang, Y.; Gao, G.; Chen, Q. Output feedback control of uncertain hydraulic servo systems. IEEE Trans. Ind. Electron.

2020, 67, 490–500. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2019.09.043
http://dx.doi.org/10.1002/rnc.4887
http://dx.doi.org/10.1109/TFUZZ.2019.2952832
http://dx.doi.org/10.1080/00207170600931663
http://dx.doi.org/10.1109/TAC.2019.2906931
http://dx.doi.org/10.1007/s11071-020-05484-y
http://dx.doi.org/10.3390/math8091603
http://dx.doi.org/10.1016/j.jfranklin.2020.08.046
http://dx.doi.org/10.1109/9.867021
http://dx.doi.org/10.1162/neco.1991.3.2.246
http://dx.doi.org/10.1016/j.automatica.2006.01.004
http://dx.doi.org/10.1137/S0363012992232555
http://dx.doi.org/10.1016/j.laa.2004.04.015
http://dx.doi.org/10.1016/j.jfranklin.2020.04.048
http://dx.doi.org/10.1109/TCYB.2019.2906118
http://www.ncbi.nlm.nih.gov/pubmed/31449036
http://dx.doi.org/10.1016/j.ins.2020.03.055
http://dx.doi.org/10.1016/j.ins.2016.06.010
http://dx.doi.org/10.1109/TIE.2019.2897545

	Introduction
	Problem Formulation
	Adaptive State-Quantized Tracking Control in the Presence of Input Delay
	Simulation
	Example 1
	Example 2

	Conclusions
	References

