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Abstract: When facing certain problems in science, engineering or technology, it is not enough to
find a solution, but it is essential to seek and find the best possible solution through optimization.
In many cases the exact optimization procedures are not applicable due to the great computational
complexity of the problems. As an alternative to exact optimization, there are approximate optimiza-
tion algorithms, whose purpose is to reduce computational complexity by pruning some areas of the
problem search space. To achieve this, researchers have been inspired by nature, because animals
and plants tend to optimize many of their life processes. The purpose of this research is to design a
novel bioinspired algorithm for numeric optimization: the Mexican Axolotl Optimization algorithm.
The effectiveness of our proposal was compared against nine optimization algorithms (artificial bee
colony, cuckoo search, dragonfly algorithm, differential evolution, firefly algorithm, fitness depen-
dent optimizer, whale optimization algorithm, monarch butterfly optimization, and slime mould
algorithm) when applied over four sets of benchmark functions (unimodal, multimodal, composite
and competition functions). The statistical analysis shows the ability of Mexican Axolotl Optimiza-
tion algorithm of obtained very good optimization results in all experiments, except for composite
functions, where the Mexican Axolotl Optimization algorithm exhibits an average performance.

Keywords: bioinspired algorithms; computational intelligence; numeric optimization

1. Introduction

Sometimes when researchers are faced with certain problems in science, engineering,
or technology, it is not enough to find a solution, but it is essential to find the best possible
solution, or in other words, to optimize. Optimization refers to the process by which
one tries to find the best possible solution for a given problem, usually in a limited time.
Colloquially it has been used imprecisely as a meaning of “doing better”. Multivariate
function optimization (minimization or maximization) is the process of searching for
variables x1, x2, x3, . . . , xn that either minimize or maximize some function f (x1, x2, x3, . . . ,
xn) [1].

Most optimization problems are described by mathematical functions with some
specific characteristics, which make them impossible to solve by traditional analytical ways.
To deal with such functions, several exact procedures have been proposed. However, in
some cases, the computational complexity of the exact procedures makes them inapplicable
to certain function optimization problems, as in the well-known case of the Traveling
Salesman Problem [2].

As an alternative to exact optimization, approximate optimization algorithms aim at
reducing the computational complexity of the search by pruning some areas of the search
space of the problem. To do so, researchers have often found inspiration in nature, due
to animals and plants showing interesting behaviors for solving complex problems. For
example, ants are able to find a minimum-length path from their nest to the available food
sources [3].

Mathematics 2021, 9, 781. https://doi.org/10.3390/math9070781 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9889-3924
https://orcid.org/0000-0001-8017-6986
https://doi.org/10.3390/math9070781
https://doi.org/10.3390/math9070781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9070781
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/7/781?type=check_update&version=3


Mathematics 2021, 9, 781 2 of 20

Perhaps the first bioinspired algorithms for numerical optimization are Genetic Al-
gorithms, developed by John Holland in the 1970s [4]. Since then, several optimization
algorithms based on evolution had been proposed, such as Genetic Programming [5]
and Differential Evolution [6]. In this context, numerous bioinspired algorithms have
been proposed [7], with several applications in industry [8], business [9], medicine [10],
education [11], and other fields.

The purpose of this research is to obtain inspiration from nature, and to design a
novel bioinspired algorithm for numeric optimization. We believe that nature is filled with
incredible flora and fauna, showing amazing behaviors that can be useful for the design of
intelligent algorithms, leading to solving problems the of industry, business, and others by
the optimization of mathematical functions describing the related phenomena.

The main contribution of this paper is introducing a novel bioinspired algorithm for
numerical optimization: the Mexican Axolotl Optimization (MAO) algorithm. MAO is
compared against several existing bioinspired algorithms over four sets of benchmark
functions, comprising unimodal, multimodal, composite and competition functions. The
statistical analysis shows the ability of MAO to obtain good optimization results, being
significantly better than other state-of-the-art bioinspired optimization algorithms.

The paper is structured as follows: Section 2 reviews some of the developments made
in bioinspired optimization, Section 3 details the proposed MAO algorithm, and Section 4
shows the numerical experiments made. The paper ends with the Conclusions, References
and Appendices.

2. Related Works on Bioinspired Optimization

Numerous bioinspired algorithms had been proposed for numerical optimization. In
this section we briefly explain the functioning of some of the most important ones.

Differential Evolution (DE) [6] is perhaps one of the most used evolution-based
bioinspired optimization algorithm to date, with numerous applications [12]. DE creates a
population of solutions, and then evolves such a population by two operators: mutation
and recombination. The initial population of solutions is chosen at random and must cover
the entire parameter space. The mutation operator within the DE is a process by which,
from an existing population of solutions, new individuals are produced for subsequent
generations. To do so, for each individual, three different solutions are selected, and a
mutated solution is obtained by adding the weighted difference between two population
solutions to a third solution. The weighing is performed by using a constant F. Usually,
F ∈ [0.1, 1.0].

Once the mutation process has been carried out, a recombination operation is con-
ducted, which has the primary objective of increasing the diversity of the individuals of
the next generation. In this operation, the components of the solution are recombined in
order to generate an intermediate individual. This recombination operation recombines
the elements of both the target individual and the mutated individual, following a crossing
constant CR ∈ [0, 1], which will determine if the component to be preserved will come
from the mutated individual or the target individual [12].

The selection operation is the last that is carried out to determine the new individuals
that will be part of the next generation within the evolution process. In this operation it
is decided whether an intermediate individual will be part of the next generation, or not.
To determine this, the intermediate individual is compared to the target individual. If the
intermediate individual generated during this process has a better objective function value
than the target individual of the current generation, then the new individual of the next
generation will be equal to the intermediate individual and the target individual will be
replaced, otherwise the individual goal is preserved for the next generation [6].

In nature, animals search for food randomly or almost randomly. Generally, an
animal’s feeding path is effectively a random walk because the next move is based on both
the current location/state and the probability of transition to the next location [13]. Most of
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the existing bioinspired optimization algorithms are based on the behavior of animals [14].
In the following, we review some of them.

The Cuckoo Search (CS) algorithm was inspired by the obligate breeding parasitism
of some species of cuckoos by laying their eggs in the nests of host birds [15,16]. Some
cuckoos have evolved in such a way that female parasitic cuckoos can mimic the colors
and patterns of the eggs of a few chosen host species. This reduces the probability that the
eggs will be abandoned and, therefore, increases their productivity.

Most of the host birds came into direct conflict with the intruding cuckoos. In this
case, if the host birds discover that the eggs are not theirs, they will throw them away
or simply abandon their nests and build new ones elsewhere. Parasitic cuckoos often
choose a nest where the host bird simply lays its own eggs. In general, cuckoo eggs hatch
slightly earlier than the host’s eggs. Once the first cuckoo chick hatches, its first instinctive
action is to dislodge the eggs from the host by blindly propelling the eggs out of the nest.
Additionally, studies show that a cuckoo chick can mimic the call of the host chicks to access
more feeding opportunities. The CS models such playback behavior and can therefore be
applied to various optimization problems. Yang and Deb found that CS performance can
be improved by using Levy Flights rather than a simple random walk [15,16].

The Firefly algorithm (FA), which was first developed by Yang [17,18] was based
on the blink patterns and behavior of fireflies. In essence, FA uses the following three
idealized rules:

1. Fireflies are unisexual, so a firefly will be attracted to other fireflies regardless of
their gender.

2. The attractiveness is proportional to the brightness and both diminish as your distance
increases. Therefore, for two flashing fireflies, the less bright will move to the brighter.
If there is no one brighter than a particular firefly, it will move randomly.

3. The brightness of a firefly is determined by the landscape of the objective feature.

The movement of a firefly i is attracted to another firefly j, which is more attrac-
tive (brighter).

FA uses two embedded cycles to update the position of the individuals in the swarms,
and has obtained very good results in optimization problems [19].

The Dragonfly algorithm (DA) is an optimization procedure based on the behavior of
dragonflies [20]. It starts the optimization process by creating a set of random solutions
for a given optimization problem. In fact, the position and pitch vectors of dragonflies are
initialized by random values defined within the lower and upper limits of the variables. At
each iteration, the position and step of each dragonfly is updated. To update the position,
the neighborhood of each dragonfly is chosen by calculating the Euclidean distance between
all the dragonflies and selecting N of them.

The position update process continues iteratively until the completion criterion is met.
DA algorithm considers several aspects such as separation, alignment, cohesion, attraction,
distraction, and random walk, which makes it suitable for optimization, and obtained good
results [21]. In addition, DA models concepts of static and dynamic swarms.

The Fitness Dependent Optimizer (FDO) [22] bases its operation on the reproduction
process of swarms of bees. Each scout bee searching for new hives is considered to converge
towards the optimum. The algorithm begins by randomly initializing a population of
artificial explorers in the search space. The solutions are hives discovered for the first
time and are represented by the positions of the scout bees. The best solutions found
replace the ones that were previously the best. FDO was found to perform better than other
optimization algorithms [22], such as PSO [23] and Genetic Algorithms [4].

Another recently introduced algorithm is the Monarch Butterfly Optimization (MBO) [24].
This method models the migration of the monarch butterflies, endemic to North America.
Such insects travel from Mexico to Canada on a yearly basis. In addition, last year saw
the introduction of the Slime Mould Algorithm (SMA), based on the oscillation mode of
slime mould in nature. This propagative organism seeks for food, and has an oscillatory
behavior [25].
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Despite the numerous proposals in the field of bioinspired algorithms [26,27], there is
plenty of room for new proposals, due to the fact that nature is rich, and every day we can
find inspiration in fauna and flora to obtain better solutions for optimization problems. In
the next section, we introduce a novel algorithm based on a one-of-a-kind creature native
to Mexico: the axolotl.

3. Mexican Axolotl Variable Optimization

This section briefly explains the life of the axolotl, a very interesting creature native to
Mexico, as well as the proposed bioinspired optimization procedure.

3.1. The Axolotl in Nature

The Mexican Axolotl (Ambystoma mexicanum) is endemic to the Valley of Mexico. Its
habitat is lakes or shallow water channels with a lot of aquatic vegetation. It is a completely
aquatic species. Its diet is very varied and in free life it includes small fish, fry, and prairie
fish. In captivity, they are commonly fed tubifex worms, earthworms, worms, and small
pieces of raw turkey, chicken, or beef [28].

The axolotl has been in the lives of Mexicans since the time of the Aztecs. According
to Aztec mythology, the axolotl (from Nahuatl: atl “water” and xolotl “monster”; water
monster), is related to the god Xólotl, Quetzalcoatl’s brother [29]. It has also appeared in
contemporary literature: in the story Axolotl by Julio Cortázar (in his End of the Game
compendium [30]), and in Frank Herbert’s Dune [31].

In science, the axolotl is known for its extraordinary ability to regenerate amputated
limbs and other organs and tissues of the body. It has been observed, for example, that
if these animals lose a limb, they are able to regenerate it in a matter of weeks, with all
their bones, muscles, and nerves in the appropriate places [32]. Even more fascinating,
the researchers say, is the axolotl’s ability to repair its spinal cord when it is injured and
make it function as if it had not been damaged. It can also repair other tissues—such as
the retinal tissues—and heal wounds without leaving scars. They can also easily accept
transplants from other individuals, including the eyes and parts of the brain, restoring
their full functionality [33].

This amphibian, which is in danger of extinction in its natural habitat, has also
attracted the interest of researchers because of the relative ease with which it can reproduce,
and the absence of age-related diseases among its populations [34]. This interesting animal
has been cultivated in the laboratory since 1864, and it is used to investigate phenomena
such as nuclear reprogramming, the embryology of germ-cell induction, retinal neuron
processing and regeneration [35]. An attractive characteristic of axolotls for research is
the large size and ease of manipulation of the embryos, which allow to see the complete
development of a vertebrate in the egg.

The axolotl measures about 15 cm in total length, with it being rare the specimens that
measure more than 30 cm. The axolotl has the appearance of a giant tadpole with legs and
a tail. It is characterized by having three pairs of gills, which come out from the base of
its head and go backwards, small eyes, smooth skin and legs whose fingers are thin and
pointed, but which do not develop nails.

The color of the axolotl is highly variable: in the wild, most are dark brown with a
black back, a lighter belly, and faint and not very visible dark spots on the flanks and back.
However, they can also present different coloration patterns, especially in captivity: gray,
brown, brownish-green, orange and even white with black eyes, golden albino, white albino
or almost black [28]. Axolotls also have some limited ability to alter their color to provide
better camouflage by changing the relative size and thickness of their melanophores [36].

Axolotls have males and females, and the axolotl reaches sexual maturity at a year
of life. At this age it is easy to recognize the sex of the animals; the males are thinner and
have large glands around the cloaca. The females tend to have shorter and wider heads, as
well as being a bit fatter [28].
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The breeding season depends on the hemisphere where they are found; in the northern
one it is from February to April, and in the southern one it occurs from August to November.
However, clumps can occur in midsummer and in winter. A water temperature of twelve
to sixteen degrees centigrade is the most suitable for breeding [37].

Sexual activity as well as egg laying takes place at night. Fertilization is internal; the
male places spermatophores (tiny whitish cones that contain the sperm at their tip) on the
substrate, or some rock and the female collects them with the cloaca to deposit them in her
spermatheca. The next night the laying begins, which can last until the early hours of the
day. The female deposits the eggs in groups of four to ten on the plants or trunks. These
eggs are provided with a capsule that protects the embryo from infections; without it they
inevitably die. They deposit the eggs in different places to guarantee the survival of at least
some of them in the event of a predator [28].

Spawning can range from fifty to fifteen hundred eggs; said amplitude of laying
depends on the age and sanitary conditions of the female. At 21 h after being fertilized,
it is already a blastula, having a smooth surface. When it is three days old, the embryo
has an elongated shape. The neural folds are outlined, beginning to rise above the head
area. Between three and four days, in the embryo the neural folds at the level of the spinal
area fuse. The optic vesicles are developing. A small swelling delimits the future region
where the gills will be located. A depression appears in the ectoderm, which will become
the primordium of the ear. When 10 days have elapsed, the gills are elongated and already
have four pairs of filaments. The mouth is more clearly marked, and the buds already
protrude from the limbs [28].

On day 12, the hatching process begins, where the larva makes convulsive movements,
thus shedding the layer of gelatin that covered it. The young are considered larvae from
hatching to four months. They only have a head, gills, and a body. The limbs will develop
later [37].

In their first hours of life, the larvae of the axolotl feed on some of the remains of the
yolk, but very soon they will need microalgae, such as spirulina, to feed themselves and
continue to develop. When the axolotl is between for and 12 months old it is considered a
youngster, generally it already measures about five centimeters. From 13 months the stage
begins where it can reproduce, since it is sexually mature [38].

3.2. The Artificial Axolotl

The proposed Mexican Axolotl Optimization (MAO) algorithm inspired by the life of
the axolotl is explained in this section. We were inspired by the birth, breeding, and restora-
tion of the tissues of the axolotls, as well as the way they live in the aquatic environment.
As axolotls are sexed creatures, our population is divided into males and females. We also
consider the ability of axolotls to alter their color, and we consider they alter their body
parts’ color to camouflage themselves and avoid predators.

Let us assume that we have a numeric optimization problem, defined by a function O
whose arguments are vectors of dimension D, such that each dimension di is bounded by
[mini, maxi]. We also have a set of solutions (axolotls) of size np, conforming the population
P =

{
S1, . . . , Snp

}
, and each solution (axolotl) Sj ∈ P, 1 ≤ j ≤ np, is represented as a vector

of form Sj =
[
sj1, . . . , sjD

]
, with mini ≤ sji ≤ maxi, such that O

(
Sj
)
∈ R. In the following,

we assume that we want to find the minimum value of the function O.
The proposed MAO algorithm operates in four iterative stages, defined by the TIRA

acronym: Transition from larvae to adult state, Injury and restoration, Reproduction
and Assortment.

First, the initial population of axolotls is initialized randomly. Then, each individual
is assigned as male or female, due to axolotls developing according to their sex, and two
subpopulations are obtained. Then, the Transition from larvae to adult begins. Male
individuals will transition in water, from larvae to adult, by adjusting their body parts’
color towards the male who is best adapted to the environment (Figure 1).
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adult state phase in the Mexican Axolotl Optimization (MAO) algorithm.

We assume that best adapted individuals have better camouflage, and the other
individuals will change their color accordingly. However, the ability of the axolotls to
change color is limited, and we do not want every individual to be able to fully adapt
towards the best, which is why we introduce an inverse probability of transition. According
to such probability, an axolotl will be selected to camouflage towards the best.

Let mbest be the best adapted male (the one with best value of the objective function
O), and λ be a transition parameter in [0, 1] for the male axolotl mj, which will change its
body parts’ color as in Equation (1).

mji ← mji +
(
mbest,i −mji

)
∗ λ (1)

Similarly, female axolotls change their bodies from larvae to adults towards the female
with best adaptation, using Equation (2), where fbest is the best female and fj is the current
female axolotl.

f ji ← f ji +
(

fbest,i − f ji
)
∗ λ (2)

However, and according to the inverse probability of transition, dummy individuals
unable to camouflage themselves towards the best, and having their own colors are selected.
To do so, if a random number r ∈ [0, 1] is lower than the inverse probability of transition,
the corresponding individual is selected. For a minimization problem, for a male axolotl
mj, with optimization value omj the inverse probability of transition is computed as in
Equation (3); for female axolotl fj, with optimization value o f j we use Equation (4). The
worst individuals will have greater chances of random transition.

pmj =
omj

∑ omj
(3)
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p f j =
o f j

∑ o f j
(4)

Those individuals will transition their i-th body parts randomly (considering each
body part as a function dimension), as in Equations (5) and (6), where ri ∈ [0, 1] is a random
number chosen for each i-th body part. The individuals with random transition will be
selected according to the value of the optimization function.

mji ← mini + (maxi −mini) ∗ ri (5)

f ji ← mini + (maxi −mini) ∗ ri (6)

In moving across the water, axolotls can suffer accidents and be hurt. This process is
considered in the Injury and restoration phase. For each axolotl Si in the population (either
male or female), if a probability of damage (dp) is fulfilled, the axolotls will lose some part or
parts of its body. In the process, using the regeneration probability (rp) per bit, the axolotl
will lose the j-th body part (bit), and will replace it as pji

′ ← mini + (maxi −mini) ∗ ri ,
where 0 ≤ ri ≤ 1 is randomly chosen for each body part.

The pseudocode of the Injury and Restoration phase of the Mexican Axolotl optimiza-
tion algorithm is provided in Figure 2. Then, the Reproduction of the population begins.
The pseudocode of the Reproduction and Assorting phase is given in Figure 3. For each
female axolotl in the population, a male is selected from which offspring will be obtained.
To do so, we use tournament selection.
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After that, the male places spermatophores and the female collects them with the
cloaca to deposit them in her spermatheca. The eggs are formed using the genetic informa-
tion of both parents uniformly (Figure 4). For simplicity, we assume that each pair of male
and female axolotls has two eggs. The female deposits the eggs and waits until hatching.
Once hatching, the Assortment process starts. The newly created individuals (larval state)
will compete with their parents to be in the population. If the young are better according to
the objective function, the young will replace them.
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After the Assortment procedure, the TIRA process (Phase 1. Transition from larvae to
adult state; Phase 2. Injury and restoration and Phase 3. Reproduction and Assortment)
repeats, until the stopping condition of the algorithm is fulfilled. Figure 5 shows the
pseudocode of the proposed MAO algorithm, considering a minimization problem.

The proposed Mexican Axolotl Optimization algorithm incorporates in the optimiza-
tion process several aspects of the life of the axolotl, such as its aquatic development, its
ability to transform its body from larvae to adult state, its sexed reproduction, and its
capability of regenerating organs and body parts.

Our proposal differentiates from other evolutionary and swarm intelligence algo-
rithms in the following:

1. We divide the individuals into males and females.
2. We consider the females more important, due to the fact that for each female we find

the best male according to tournament selection, to obtain the offspring.
3. We have an elitist replacement procedure to include new individuals in the population.

In such a procedure, the best individual is considered to be a female, and the second-
best to be a male. That is, our procedure has the possibility of converting a male into
a female, if the male is best.

In the following, we address the experiments made to evaluate MOA for numeri-
cal optimization.
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4. Results and Discussion

In this section we tested the proposed MAO algorithm, by using several test functions
available in the literature. Section 4.1 explains the considered optimization functions,
Section 4.2 analyzes the optimization results obtained by MAO and other existing opti-
mization algorithms, Section 4.3 discusses the results and covers the statistical analysis
carried out, Section 4.4 discusses the convergence of the Mexican Axolotl Optimization.
Finally, Section 4.5 details the main differences of MAO with respect to existing algorithms.

4.1. Optimization Functions

The performance of the MAO needs to be tested. For this, four sets of functions are
used, where the first three sets are: unimodal, multimodal, and composite test functions.
These sets of functions are included in [20,22], all of them have 10 dimensions. Finally,
the fourth set is composed by the functions of the CEC06 2019 “The 100-Digit Challenge”
competition [39]. Using several sets of functions allows us to analyze certain aspects of the
optimization algorithms.
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Unimodal benchmark functions (Table 1) have a single minimum solution and are used
to determine the capabilities of exploring the search space, and the algorithm’s convergence.

Table 1. Definition of unimodal test functions.

Function Range Shift Position Min 1

TF1(x) =
n
∑

i=1
x2

i
[−100, 100] [−30, −30, . . . , −30] 0

TF2(x) =
n
∑

i=1
xi

∣∣∣∣ n
∏
i=1
|xi| [−10, 10] [−3, −3, . . . , −3] 0

TF3(x) =
n
∑

i=1

(
i

∑
j−1

xj
2

)
[−100, 100] [−30, −30, . . . , −30] 0

TF4(x) = max{|x|, 1 ≤ i ≤ n} [−100, 100] [−30, −30, . . . , −30] 0

TF5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
1
)2

+ (xi − 1)2
]

[−30, 30] [−15, −15, . . . , −15] 0

TF6(x) =
n
∑

i=1
([xi + 0.5])2 [−100, 100] [−750, . . . , −750] 0

TF7(x) =
n
∑

i=1
ix4

i + random [0, 1] [−1.28, 1.28] [−0.25, . . . , −0.25] 0

1 Minimum value of the function.

On the other hand, multimodal benchmark functions (Table 2) have several optimal
solutions. Such functions are used to analyze the ability of the optimization algorithm to
avoid local-optimum solutions, and to find one of the global best solutions.

Table 2. Definition of multimodal test functions.

Function Range Shift Position Min 1

TF8(x) =
n
∑

i=1
−x2 sin

(√
|xi |
)

[−500, 500] [−300, . . . , −300] −418.9829

TF9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] [−5.12, 5.12] [−2, −2, . . . , −2] 0

TF10(x) = −20 exp

(
−0.2

√
n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e [−32, 32] − 0

TF11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600] [−400, . . . , −400] 0

TF12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4), where yi = 1 + x+1

4 , and u(xi , a, k, m) = k(xi − a)mxi > a
0− a < xi < a

k(−xi − a)mxi < −a


[−50, 50] [−30, −30, . . . ,−30] 0

TF13(x) =

0.1
{

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

n
∑

i=1
u(xi , 5, 100, 4)

[−50, 50] [−100, . . . , −100] 0

1 Minimum value of the function.

Additionally, the composite benchmark functions (Table 3) are complex functions used
to simulated real-world complexity. Such functions are often shifted, rotated, and biased
versions of other test functions. Usually, they also have singular shapes.
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Table 3. Definition of composite test functions.

Function Range Min 1

TF14(CF1)
f1, f2, f3 . . . f10 = Sphere function; δ1, δ2, δ3 . . . δ10 = [1, 1, 1 . . . 1];

λ1, λ2, λ3 . . . λ10 =
[

5
100 , 5

100 , 5
100 , . . . 5

100

] [−5, 5] 0

TF15(CF2)
f1, f2, f3 . . . f10 = Griewank′s function; δ1, δ2, δ3 . . . δ10 = [1, 1, 1 . . . 1];

λ1, λ2, λ3 . . . λ10 =
[

5
100 , 5

100 , 5
100 , . . . 5

100

] [−5, 5] 0

TF16(CF3)
f1, f2, f3 . . . f10 = Griewank′s function; δ1, δ2, δ3 . . . δ10 = [1, 1, 1 . . . 1];

λ1, λ2, λ3 . . . λ10 = [1, 1, 1 . . . 1]
[−5, 5] 0

TF17(CF4)
f1, f2 = Ackley′s function; f3, f4 = Ackley′s function; f5, f6 = Ackley′s function;

f7, f8 = Ackley′s function; f9, f10 = Ackley′s function; δ1, δ2, δ3 . . . δ10 = [1, 1, 1 . . . 1];

λ1, λ2, λ3 . . . λ10 =
[

5
32 , 5

32 , 1, 1, 5
0.5 , 5

0.5 , 5
0.5 , 5

0.5 , 5
0.5 , 5

0.5

] [−5, 5] 0

TF18(CF5)
f1, f2 = Rastrigins function; f3, f4 = Weierstrasss function; f5, f6 = Griewank′s function;

f7, f8 = Ackley′s function; f9, f10 = Sphere function; δ1, δ2, δ3 . . . δ10 =

[1, 1, 1 . . . 1]; λ1, λ2, λ3 . . . λ10 =
[

1
5 , 1

5 , 5
0.5 , 5

0.5 , 5
100 , 5

100 , 5
32 , 5

32 , 5
100 , 5

100

] [−5, 5] 0

TF19(CF6)
f1, f2 = Rastrigins function; f3, f4 = Weierstrasss function; f5, f6 = Griewank′s function;

f7, f8 = Ackley′s function; f9, f10 = Sphere function; δ1, δ2, δ3 . . . δ10 =
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]; λ1, λ2, λ3 . . . λ10 =[

0.1 ∗ 1
5 , 0.2 ∗ 1

5 , 0.3 ∗ 5
0.5 , 0.4 ∗ 5

0.5 , 0.5 ∗ 5
100 , 0.6 ∗ 5

100 , 0.7 ∗ 5
32 , 0.8 ∗ 5

32 , 0.9 ∗ 5
100 , 1 ∗ 5

100

] [−5, 5] 0

1 Minimum value of the function.

Last but not least, the functions of the CEC06 competition [39] are well-known complex
functions, usually used in international competitions. Table 4 shows the generalities of
those functions.

Table 4. Definition of CEC06 2019 “The 100-Digit Challenge” test functions.

Function Dimensions Range Min 1

Storn’s Chebyshev polynomial fitting problem 9 [−8192, 8192] 1

Inverse Hilbert matrix problem 16 [−16,384, 16,384] 1

Lennard-Jones minimum energy cluster 18 [−4, 4] 1

Rastrigin’s function 10 [−100, 100] 1

Griewangk’s function 10 [−100, 100] 1

Weierstrasss function 10 [−100, 100] 1

Modified Schewefel’s function 10 [−100, 100] 1

Expanded Schafeer’s F6 function 10 [−100, 100] 1

Happy Cat function 10 [−100, 100] 1

Ackley function 10 [−100, 100] 1
1 Minimum value of the function.

4.2. Optimization Results of the Compared Algorithms

We selected some of the best-performing algorithms for the abovementioned func-
tions, according to the research of [22]. We use the MATLAB [40] source code for the
compared optimization algorithms, which are available at www.mathworks.com (accessed
on 31 March 2021).

www.mathworks.com
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The selected algorithms (in alphabetical order) are: Artificial Bee Colony (ABC) [26],
Cuckoo Search (CS) [15], Differential Evolution (DE) [6], Firefly Algorithm (FA) [17,18],
Fitness Dependent Optimizer (FDO) algorithm [22], Monarch Butterfly Optimization
(MBO) [24], Slime Mould Algorithm (SMA) [25] and Whale Optimization Algorithm
(WOA) [27]. Table 5 shows the results for all compared functions. Each algorithm was
executed 30 times, and the results were averaged.

Table 5. Averaged results of the optimization algorithms over the benchmark functions.

Set Function ABC CS DE FA FDO MBO SMA WOA MAO

Unimodal

F1 5447.7037 9165.9901 8587.4237 2936.3110 2855.3899 2997.0703 13.0903 234.8699 321.0370
F2 2.8086 31.3204 35.0858 14.5341 13.8453 13.6921 0.3195 3.2792 4.1843
F3 7228.5989 9879.7702 10,826.8313 4258.6261 5174.2327 6729.9519 5245.1086 13,758.8168 700.1304
F4 57.9899 54.8784 59.7082 29.7369 25.2446 23.4809 0.3670 41.7093 12.3571
F5 2.68 × 106 1.10 × 107 9.71 × 106 1.23 × 106 3.12 × 106 4.40 × 106 13.1924 3.51 × 104 1.84 × 104

F6 5928.5177 9269.7192 7336.3097 3043.6261 2771.3385 3193.3915 3.0798 246.8890 266.5308
F7 1.2196 2.3582 2.8935 0.6749 1.1486 2.5256 0.1911 0.2530 0.0484

Multimodal

F8 −2407.4569 −1809.7610 −1950.2114 −1531.2946 −1483.9961 −3132.3800 −3293.9270 −2635.7968 −2843.8943
F9 70.2922 91.3020 95.3271 67.2274 55.1742 44.5630 15.3040 56.0142 25.3499

F10 17.9524 18.7192 19.4404 15.1343 10.1403 11.3944 0.5564 7.3438 7.1662
F11 46.1170 83.3698 71.7901 27.2379 24.3820 22.7500 0.4801 2.5929 3.7582
F12 2.36 × 106 1.42 × 107 1.62 × 107 1.22 × 105 1.56 × 106 1.99 × 106 2.5396 5.96 × 103 5.95
F13 7.54 × 106 5.21 × 107 5.64 × 107 2.12 × 106 9.22 × 106 1.17 × 106 1.0523 3.03 × 104 3.28 × 103

Composite

F14 342.3150 354.0967 410.7029 758.6487 968.2830 393.5150 429.0229 395.7099 473.1349
F15 476.2411 463.9622 468.3889 821.8865 1048.0255 478.9110 513.0348 457.5810 507.2991
F16 1072.7264 1052.7694 1056.7774 1491.2869 1393.0906 1087.9062 1062.6645 1114.6494 1147.8570
F17 990.3510 1003.4222 1026.9885 1077.1571 1050.0625 1001.3681 904.2288 999.8535 952.0442
F18 420.8507 424.6245 442.7791 894.0803 1136.6270 420.0096 508.7819 447.0013 524.1615
F19 1003.9296 996.0488 978.5206 974.7888 951.7356 933.2716 874.2914 933.4341 905.2780

Competition

CEC01 6.27 × 1011 1.13 × 1012 6.26 × 1011 1.04 × 1012 3.96 × 1011 8.13 × 1011 8.17 × 1011 1.01 × 1012 4.11 × 1010

CEC02 10,208.4315 8666.1661 4254.8599 4408.7645 4833.2511 7174.2428 41.9309 479.6424 424.2248
CEC03 12.7058 12.7047 12.7039 12.7043 12.7037 12.7036 12.7035 12.7026 12.7026
CEC04 8564.8124 16,171.5930 9055.5641 11,536.6751 4962.4534 7862.3602 17,307.1928 5700.3273 4460.3403
CEC05 4.4837 5.4179 3.9627 3.8751 2.8207 3.4589 5.6967 3.1687 2.6745
CEC06 11.8186 13.0760 13.3387 14.3070 13.5259 11.4701 13.0106 13.1277 12.5090
CEC07 1016.2961 1318.4455 1425.1217 1635.1259 1506.3325 1057.3337 1204.1217 1275.5805 1184.9008
CEC08 6.9177 7.2169 7.4573 7.5103 7.0885 6.9756 7.4529 7.1778 6.8954
CEC09 2013.8642 3939.6893 2682.6881 1773.0340 1059.9142 1321.8686 4199.2309 1043.8402 431.0717
CEC10 20.6068 20.7581 20.8089 20.8308 20.8116 20.5595 20.7914 20.7122 20.6511

We established 500 evaluations of the objective function as a termination criterion for
all algorithms. It is important to mention that using just 500 evaluations (the usual number
in competitions [41]) as a termination criterion is a very restrictive one, which gives the
optimization algorithms little time to travel through the search space. The performance
with such a small number estimates the ability of the algorithm to focus on promissory
areas of the search space in just few iterations.

We implemented the proposed Mexican Axolotl Optimization (MAO) algorithm in
MATLAB [40] it the version 9.8 (R2020a), and we executed all the experiments in a desk
computer with Windows Professional operating system, with Intel® Core™ i7-6700 CPU
3.40 GHz processor, 16 GB of RAM, and a Nvidia GeForce GTX 1070 graphics card.

We used the suggested parameters as in the original source code for the litera-
ture algorithms (Table 6). For MAO, we use similar parameters (Table 6). We made the
source code of the proposed MAO available at (https://la.mathworks.com/matlabcentral/
fileexchange/88451-mexican-axolotl-optimization-a-novel-bioinspired-heuristic) (accessed
on 31 March 2021).

As shown in Table 5, the best algorithm for unimodal and multimodal functions was
SMA. However, this algorithm includes a parameter generated randomly, which decreases
linearly from one to zero [25]. This parameter is used to update the solutions if a random
number in [0, 1] is lower than a value p, computed using a hyperbolic tangent. That is, the
SMA algorithm biases its solutions to be close to zero.

The proposed MAO is particularly good with unimodal and multimodal optimiza-
tion functions (best in two functions and second-best in four functions) as well as for
competence functions (best in six of 10). However, for composite functions, it has an
average performance.

https://la.mathworks.com/matlabcentral/fileexchange/88451-mexican-axolotl-optimization-a-novel-bioinspired-heuristic
https://la.mathworks.com/matlabcentral/fileexchange/88451-mexican-axolotl-optimization-a-novel-bioinspired-heuristic
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Table 6. Parameters for the literature algorithms.

Algorithm Parameters 1

ABC Number of food sources: 30; Maximum number of failures which lead to the
elimination: Number of food sources * dimension

CS Number of nests: 30; Discovery rate of alien eggs/solutions: 10−5

DE Population Size: 30; Crossover probability: 0.8; Scaling factor: 0.85

FA Number of Fireflies: 30; Alpha: 0.5; Betamin: 0.2; Gamma: 1.0

FDO Scout bee number: 30; Weight Factor: 0.0

MAO Total population size: 30; damage probability dp = 0.5; regeneration probability
rp = 0.1; tournament size k = 3; differentiation constant λ = 0.5.

MBO Total population size: 30; The percentage of population for MBO: 5/12;
Elitism parameter: 2.0; Max Step size: 1.0; 12 months in a year: 1.2

SMA Number of search agent: 30; z: 0.03

WOA Number of search agents
1 As in the MATLAB code publicly available at www.mathworks.com (accessed on 31 March 2021).

In addition, we consider that our proposal is particularly good for few function
evaluations, because we obtained very good results with just 500 evaluations of the objec-
tive functions.

4.3. Statistical Tests

We used the Friedman test [42], followed by the Holm’s post hoc test [43], to determine
if the differences in performance of MAO with respect to the other optimization algorithms
compared were significant or not. Both tests are recommended in [44]. We used the KEEL
software [45] for computing both tests.

We set as null hypothesis H0 that there were no significant differences between the
compared algorithm, and as H1 that there were significant differences in their performance.
We set a significance level α = 0.05, for a 95% of confidence.

Table 7 shows the ranking obtained by the Friedman test, with MAO being the best-
ranked algorithms. The test obtained a p-value of 0.00, rejecting the null hypothesis. In
Table 8, we show the results for the Holm’s test comparing MAO with respect to literature
algorithms. The Holm procedure rejects those hypotheses that have an unadjusted p-value
lower than or equal to 0.016667.

Table 7. Ranking obtained by the Friedman test.

Algorithm. Ranking

MAO 2.7069

SMA 3.4483

WOA 3.8448

MBO 4.1724

ABC 5.1724

FDO 5.5517

FA 6.4828

CS 6.7931

DE 6.8276

www.mathworks.com
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Table 8. Results of the Holm’s test while comparing MAO and other optimization algorithms.

i Algorithm Z p-Value Holm

8 DE 5.729586 0.000000 0.006250

7 CS 5.68164 0.000000 0.007143

6 FA 5.250123 0.000000 0.008333

5 FDO 3.955572 0.000076 0.010000

4 ABC 3.428163 0.000608 0.012500

3 MBO 2.037719 0.041578 0.016667

2 WOA 1.582229 0.113597 0.025000

1 SMA 1.030846 0.302613 0.050000

The statistical tests reject the null hypothesis for ABC, FDO, FA, CS and DE, resulting in
MAO having significant differences with respect to those optimization algorithms. As MAO
was the best-ranked algorithm, we can conclude that the differences favor our proposal.
For the SMA, WOA and MBO algorithms, the test did not reject the null hypothesis. These
tests support the usefulness of the proposed Mexican Axolotl Optimization algorithm.

4.4. Convergence Analysis

In this section, we analyze the convergence of the proposed MAO, for the benchmark
functions analyzed. We plot the optimization results obtained, with respect to the number
of evaluations of the objective function. In Figure 6, we show the results for the first
function of each test set, i.e., functions F1, F8, F14, and cec01. The theoretical demonstration
of the MAO algorithm’s convergence is left for future work.
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As shown, the proposed MAO algorithm converges quickly towards a minimum
value; it supports the idea that the heuristic procedure focuses on promissory areas of
the search space, which allows MAO to find good solutions to the problem. Figure 6 also
shows the shape of the test functions, verifying the complexity of the corresponding search
space. In Appendix A we give the convergence curves of MAO for the four sets of test
functions (Figures A1–A4).
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For example, we can see that MAO was trapped in a local minimum for function
F14 during several evaluations. However, it was able to escape the local minimum fast
enough. Again, we want to clarify that using 500 evaluations [41] is challenging for
optimization algorithms.

4.5. Main differences of MAO with Respect Other Bioinspired Algorithms

From the conceptual point of view, our method has the advantage of using a popu-
lation separately in two subpopulations (males and females), which evolve separately in
Phase 1 (Transition from larvae to adult state) and Phase 2 (Injury and restoration). This
allows MAO to search several areas of the search space, without the risk of premature
convergence. In Phase 3 (Reproduction and Assortment), we obtain novel individuals,
and we have the advantage of preserving the best ones, by assigning the best individual
to the female subpopulation, and the second-best to the male subpopulation. Due to the
parents can change population (if the parents are better than the offspring and the male
parent is better than the female parent), MAO can introduce novel information into the
subpopulation, which also diminishes the risk of premature convergence towards the
local minimum.

In addition, our proposal IS NOT BIASED to obtain solutions with zero-valued compo-
nents, nor towards any other specific values. This makes MAO suitable for a wide range set
of optimization problems, in which the optimum values of the function are not near zero.

We think that these characteristics make MAO suitable for numerical optimization
with low evaluation numbers, as proven in the experimental comparisons.

5. Conclusions

Our novel bioinspired heuristic is, in fact, a metaheuristic. It is not simply a rule; it
is a “scenario” situated at a metalevel when compared to the optimization problem. The
results obtained in the experiments carried out in this research show that the proposed
MAO is very good with unimodal and multimodal optimization functions (best in five of
seven and four of six, respectively) and has a good performance for competence functions
(best in seven of ten). However, for composite functions, it has an average performance,
being the best in just one out of six functions. Additionally, the Friedman test, followed
by the Holm’s post hoc test, supports the usefulness of the proposed Mexican Axolotl
Optimization algorithm in optimization problems.

It should be noted that in addition to MAO, some of the most representative computa-
tional intelligence algorithms can be used to face the problems included in this paper, like
monarch butterfly optimization (MBO) [24], earthworm optimization algorithm (EWA) [46],
elephant herding optimization (EHO) [47], moth search (MS) algorithm [48], Slime mould
algorithm (SMA) [25], and Harris hawks optimization (HHO) [49].

As future work, we propose to perform comparative studies of MAO against the
performance of some of the newest proposed methods, such as krill herd, earthworm
optimization algorithm (EWA), elephant herding optimization (EHO), moth search (MS)
algorithm, and Harris hawks optimization (HHO). In addition, we want to perform novel
experiments to determine the contribution of each phase of the proposed MAO over the
final result, as well as the adequate parameter values for MAO, to give the scientific com-
munity guidelines for their selection. Finally, as stated before, the theoretical demonstration
of the MAO algorithm’s convergence is left for future work.
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Appendix A

In this section we provide the full convergency curves of the proposed MAO algorithm,
for all the four test sets analyzed. Figures A1–A4 show the convergence for unimodal,
multimodal, composite and competition functions, respectively.
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