
mathematics

Article

An Application of p-Fibonacci Error-Correcting Codes
to Cryptography

Emanuele Bellini 1, Chiara Marcolla 1 and Nadir Murru 2,*

����������
�������

Citation: Bellini, E.; Marcolla, C.;

Murru, N. An Application of

p-Fibonacci Error-Correcting Codes

to Cryptography. Mathematics 2021, 9,

789. https://doi.org/10.3390/

math9070789

Academic Editors: Gabriel-Eduard

Vilcu and Patrick Solé

Received: 31 January 2021

Accepted: 26 March 2021

Published: 6 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Cryptography Research Centre, Technology Innovation Institute, P.O. Box 9639, Masdar City, Abu Dhabi,
United Arab Emirates; emanuele.bellini@tii.ae (E.B.); chiara.marcolla@tii.ae (C.M.)

2 Department of Mathematics, University of Trento, Povo, 38123 Trento, Italy
* Correspondence: nadir.murru@unitn.it

Abstract: In addition to their usefulness in proving one’s identity electronically, identification proto-
cols based on zero-knowledge proofs allow designing secure cryptographic signature schemes by
means of the Fiat–Shamir transform or other similar constructs. This approach has been followed by
many cryptographers during the NIST (National Institute of Standards and Technology) standardiza-
tion process for quantum-resistant signature schemes. NIST candidates include solutions in different
settings, such as lattices and multivariate and multiparty computation. While error-correcting codes
may also be used, they do not provide very practical parameters, with a few exceptions. In this
manuscript, we explored the possibility of using the error-correcting codes proposed by Stakhov
in 2006 to design an identification protocol based on zero-knowledge proofs. We showed that this
type of code offers a valid alternative in the error-correcting code setting to build such protocols and,
consequently, quantum-resistant signature schemes.

Keywords: code-based cryptography; signature scheme; identification protocol; Fiat–Shamir trans-
form; Fibonacci codes; proof of knowledge signature

1. Introduction

In many situations, it is necessary to electronically prove one’s identity. Typical
scenarios include local access to a computer account, remote login to a server over a
network, ATM withdrawals, communication permissions through a port, and many others.

The identification protocols (which assure one party of the identity of a second party
and also that the second party is participating in the execution of the protocol) allow one
entity (the prover) to “prove” its identity to another entity (the verifier) by exchanging
some data. Some types of identification protocols avoid the use of digital signatures, public
key encryption, block ciphers, sequence numbers, and timestamps, but use asymmetric
techniques and are based on interactive proof systems and zero-knowledge proofs. Such
protocols allow the prover to be identified by demonstrating knowledge of a secret asso-
ciated with the prover, without revealing the secret itself to the verifier. This is usually
done in three steps, with the prover submitting a commitment, the verifier replying with a
challenge, and the prover sending a response to the challenge. An interactive identification
scheme involving a commitment-challenge-response sequence can often be converted into
a non-interactive signature scheme, by replacing the random challenge of the verifier by
the output of a one-way hash applied to the concatenation of the commitment and the
message to be signed (the hash essentially plays the role of verifier). This technique has
been used to design several quantum-resistant signature schemes based on error-correcting
codes [1,2], lattices [3,4], multivariate systems [5], or multiparty computation [6], some of
which are recent proposals in the NIST standardization process for quantum secure public
key cryptosystems [7].

The topic of this work is identification protocols based on zero-knowledge proofs
in the error-correcting code setting. Many proposals of this type have appeared in the
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literature, but very few can be applied in practice, due to the large size of the parameters of
these schemes.

In Section 2, we present an overview of the main identification protocols, and corre-
sponding signature schemes, based on error-correcting codes. In Section 3, we provide a
quick review of the theory of p-Fibonacci error-correcting codes, also including some minor
original results, and recall the main notions needed to define a zero-knowledge identifi-
cation protocol. In Section 4, we describe an identification protocol based on p-Fibonacci
codes and prove its security in the random oracle model. In Section 5, we compare our
solution with similar schemes, and in Section 6, we finally draw the conclusions. In
Appendix A, we provide a concrete example of our solution.

2. Related Works

In this section, we provide an overview of the literature regarding identification proto-
cols and corresponding signature schemes, based on error-correcting codes (identification
protocols based on other mathematical problems (e.g., [8]) or on symmetric primitives
(e.g., [9]) might also exist).

The signature size of a proof of knowledge signature scheme is proportional to the
communication cost of the identification protocol. Proof of knowledge signature schemes
based on error-correcting codes usually provide very small keys, but large signatures. This
comes from the fact that the identification protocol has a non-null cheating probability, i.e.,
the probability that someone not authorized is still able to authenticate to the verifier. Thus,
the protocol must be repeated a certain number of times to reduce this probability close
enough to zero.

The first of such schemes is due to Stern. In 1993, he proposed to use the Fiat–Shamir
transform for turning a zero-knowledge identification protocol into a signature scheme.
Stern’s protocol has a cheating probability of 2/3. Many researchers followed Stern’s
approach, trying to improve either the key size or the signature of the scheme, by proposing
variations of the underlying identification protocol. In 1997, Veron [2] presented the dual
of the three-pass Stern proposal, still with cheating probability 2/3. Veron used a generator
matrix G of the code, instead of the parity-check matrix as a public parameter, and used a
pair (x, e) as a secret key and a codeword y = xG + e as a public key. This allows sending
less data on average during the response step, implying slightly shorter signatures. More
than ten years later, in 2010 [10], the authors presented a five-pass identification protocol
with a cheating probability of 1/2, using codes over the binary extension field, rather than
the binary field, as done by Stern and Veron. Passing from a cheating probability of 2/3
to 1/2 decreased significantly the number of times the identification protocol had to be
run, and thus the corresponding signature size. In [11], it was shown how to extend the
Fiat–Shamir transform to an n-pass protocol (with n odd). In 2011, Gaborit, Schrek, and
Zémor [12] obtained a further significant reduction of both key and signature sizes by
presenting the rank metric version of the Stern identification protocol. Switching from the
Hamming to rank metric is a common strategy to reduce the parameters size of a code-
based cryptosystem, since rank metric decoding has quadratic exponential complexity,
while Hamming metric decoding is linear exponential. Again in 2011, Aguilar, Gaborit,
and Schrek (AGS) [13], used double circulant codes in the Hamming metric. In this
way, they reduced the key size of the Veron scheme; moreover, they presented a five-
pass version of it, with the cheating probability approximately equal to 1/2. They also
introduced a compression technique that reduced the signature size. Recently, a rank
metric version of Veron and CVE (Cayrel-Véron-El Yousfi) was provided, though lacking
a security proof [14]. Finally, in [15], the rank metric version of the AGS scheme was
presented, currently holding the best signature plus public key size among all signature
schemes based on error-correcting codes. A similar construction [16] was also used to build
zero-knowledge proofs.
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Proof of knowledge signature schemes are also quite common in other post-quantum
settings, such as in lattice-based [3,4], multivariate-based [5], or multiparty computation-
based [6] signatures.

Our Contribution

In this work, we present the analogue of the three-pass Veron identification protocol [2]
using a new type of code, introduced by Stakhov in 2006 [17], which have a simpler set of
parameters with respect to the rank metric, but a similar decoding complexity (quadratic
in the exponent), thus allowing reaching similar sizes as in the rank metric, but with more
simplicity in the selection of the parameters.

In 2006, Stakhov [17] introduced a new technique, based on the so-called Fibonacci
p-numbers or p-sequence, further analyzed in [18], to obtain error-correcting codes. A
few generalizations of his theory were explored in [17] (Fibonacci (p, m)-sequence) [19]
(Fibonacci polynomial sequence), and [20] (Fibonacci Mp-sequence), but apart from that,
the theory behind these codes has not received much attention, probably due to the fact
that their error model is very unlikely to be applicable in real life for error correction. The
aim of this paper is to show that this type of code deserves to be investigated more deeply,
as it could be very useful in cryptographic applications.

3. Preliminaries

In this section, we first introduce the p-Fibonacci error-correcting codes, and then,
we provide the fundamental ideas and definitions regarding zero-knowledge identifica-
tion protocols.

3.1. p-Fibonacci Error Correcting Codes

WithMr(R), we indicate the set of all square matrices of size r× r with entries in the
ring R. We also indicate with N<2r the set of integers that are representable with r bits and
with Q<2r the set of rational numbers representable with two integers of r bits each.

The Fibonacci p-numbers, or Fibonacci p-sequence, are defined as the numerical
sequence ap,n given by the recursive relation ap,n = ap,n−1 + ap,n−p−1, with initial values
ap,1 = . . . = ap,p+1 = 1.

For a given integer p ≥ 1, the p-Fibonacci matrix Qp is a (p + 1)× (p + 1) matrix of
the following form:

Qp =



1 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0


.

Some of the properties of the Qp matrix are stated in what follows (see [18]).

Proposition 1. For any positive integer p and n = 0,±1,±2, . . . :

• The n-th power of Qp is given by:

Qn
p =


ap,n+1 ap,n . . . ap,n−p+2 ap,n−p+1

ap,n−p+1 ap,n−p . . . ap,n−2p+2 ap,n−2p+1
...

...
. . .

...
...

ap,n−1 ap,n−2 . . . ap,n−p ap,n−p−1
ap,n ap,n−1 . . . ap,n−p+1 ap,n−p

,

where ap,n is the Fibonacci p-number.
• Qn

p ·Qm
p = Qm

p ·Qn
p = Qn+m

p ,

• Qn
p = Qn−1

p + Qn−p−1
p ,
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• det(Qp) = (−1)p, and det(Qn
p) = (−1)pn.

Notice that since det(Qn
p) 6= 0, then the matrix Qn

p is invertible.
Fibonacci Qp matrices allow defining a method to encode and decode a message

M and also detecting and correcting errors that might occur in the transmission of the
encoding of M.

The message M must be represented as a (p + 1)× (p + 1) matrix over N<2r \ {0}, i.e.,
whose entries are r bit strings representing a positive integer. For this reason, we consider
M such that its bit size |M|, which can also be seen as the dimension of the code, is a
multiple of (p + 1)2. Then, the encoding of M is performed with the matrix multiplication
C = M ·Qn

p for a certain positive integer n, while the decoding of C, if no error occurred,
is done simply by M = C · (Qn

p)
−1. Since det(C) = det(M ·Qn

p) = (±1)pn det(M), if this
relation does not hold, we can deduce that some errors occurred in the transmission of C,
and the received matrix is R = M · Qn

p ⊕ E, for some (p + 1)× (p + 1) matrix E. Notice
that the errors occur by modifying some bits of the transmitted matrix; thus, we have to
use the addition ⊕ in the binary field F2, i.e., the XOR operation, when adding the error,
rather than the standard addition over the integers. The procedure to correct such errors
exploits the fact that the entries cij of C satisfy a relation of the type:

ap,n

ap,n−k
≶

ci,j

ci,j+k
≶

ap,n+1

ap,n−k+1

with i, j = 1, . . . , p + 1, k = 1, . . . , p, 2 ≤ j + k ≤ p + 1, and n > p + 1 (see [18] or [21]). In
particular, the decoding method described by Stakhov allows correcting up to (p + 1)2 − 1
incorrect entries of C, which we refer to as integer errors. As we will show later in this
section, the initial analysis of Stakhov did not take into account information theoretic results,
as, for example, the Singleton bound. After computing the redundancy of p-Fibonacci
codes and applying the Singleton bound [22], we also provide a bound on the maximum
number of bit errors that the p-Fibonacci code can correct. Among all possible integer error
types, detecting and correcting (p + 1)2 − 1 erroneous entries require the highest amount
of work. In [19], the authors proved that in this worst case, the error correction can be
performed in O2(p+1)2

operations. In particular, 2(p+1)2 − 2 sub-determinants of R must
be computed.

In the following proposition, we provide an upper bound of the redundancy of
the code.

Proposition 2 (p-Fibonacci code redundancy). Let us consider the message spaceM = {0, 1}k,
with k = (p + 1)2r for some integers p and r, so that we can split a message into (p + 1)2 blocks of
an equal bit size. Fix n, then a codeword of a p-Fibonacci code with generator matrix Qn

p can be
represented with l(p + 1)2 bits , with:

l ≤ r + dlog2(p + 1) + (n− 1) log2 α1e,

where α1 is the root greatest in modulo of xp+1 − xp − 1.

Proof. Let α1 be the root greatest in modulo of xp+1− xp− 1 and α2, . . . , αp+1 the remaining
roots. We set ap,−p+1 = . . . = ap,0 = 0, so that (ap,n)n≥−p+1 is a linear recurrent sequence
with characteristic polynomial xp+1 − xp − 1. By the Binet formula, we have that:

ap,i = A1α
i+p−1
1 + . . . + Ap+1α

i+p−1
p+1 ,
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for any i ≥ 0, where A1, . . . , Ap+1 are real numbers depending on the initial conditions of
the sequence. Since, ap,−p+1 = . . . = ap,0 = 0, and ap,1 = 1, it is straightforward to find
that:

Ak =
1

∏1≤j≤p+1
j 6=k

(αk − αj)
.

Thus,
ap,i ≈ αi−1

1 + . . . αi−1
p+1

and |ap,i| ≤ (p + 1)|αi−1
1 |. Now, having M = (mij) the message, whose entries have bit size

r, we consider C = (cij) the codeword obtained by C = MQn
p. Since (ap,n) is an increasing

sequence, the entry of C with the maximum length is in the first column. Recalling that all
the mij’s have bit size equal to r, the bit size of cij will be at most r + dlog2(p + 1)αn−1

1 e, i.e.,

l ≤ r + dlog2(p + 1) + (n− 1) log2 α1e.

Let us denote with wF(X) the number of non-zero entries of the integer matrix X. We
refer to this value as the Fibonacci weight of the matrix X.

The following definition allows us to formally define the problem of decoding Fi-
bonacci error-correcting codes.

Definition 1 (Fibonacci Decoding (FD) distribution). For positive integers r, l, n, p, wF, ∆
with n > p + 1, l > r, the Fibonacci Decoding FD(r, n, p, wF, ∆) distribution chooses M ∈
Mp+1(N<2r ) and E ∈ Mp+1(N<2l ) with wF(E) = wF, and det(M) = (±1)pn∆ and outputs
(Qn

p, R = M ·Qn
p ⊕ E).

Problem 1 (Search Fibonacci decoding problem). Given the positive integers r, l, n, p, wF, ∆
such that n > p + 1, l > r, (Qn

p, R) ∈ Mp+1(N)×Mp+1(N) from the FD distribution, the
Search Fibonacci Decoding problem SFD(r, n, p, wF, ∆) asks to find (M, E) ∈ Mp+1(N<2r )×
Mp+1(N<2r ) such that:

1. R = M ·Qn
p + E,

2. wF(E) = wF,
3. det(M) = (±1)pn∆.

Remark 1. Note that the SFD problem would be easy if we removed the last determinant condition,
as one could simply fix a random E′ with wF(E′) = wF and then compute M = (R⊕ E′)Q−n

p . In
general, given R and Qn

p, it seems not possible to find two matrices M̃ and Ẽ such that the above three
conditions are all satisfied. Indeed, this could be done only solving (p + 1)2 non-linear diophantine
equations. Moreover, we can observe that the number of possible matrices M̃ is (2r − 1)p+12

and
the number of possible matrices Ẽ is (p + 1)2 · (2l − 1)(p+1)2−1, with l > r. Thus, it is very hard
to find two matrices M̃ and Ẽ by brute force, also for small values of p. Indeed, if we randomly
sample a matrix M̃, there is a unique corresponding matrix Ẽ; thus, the search space for such a
matrix Ẽ is greater than (p + 1)2 · (2l − 1)(p+1)2−1. Moreover, note that not all random matrices
inMp+1(N<2r ) are suitable, since M̃ must satisfy det M̃ = ±∆.

The previous problem can be seen as the analogue of the Syndrome Decoding (SD)
problem in the Hamming metric or the Rank Syndrome Decoding (RSD) problem in the
rank metric. While for the Hamming metric, the SD problem has been proven to be NP-
complete [23], the RSD problem has recently been proven difficult with a probabilistic re-
duction to the Hamming setting in [24]. As we mentioned before, the FD problem is known
to be hard in the case of wF = (p + 1)2 − 1 errors and becomes easier as wF decreases.
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We can apply a random permutation to the vector components, in order to send a
binary vector of a certain Hamming weight to any other vector with the same Hamming
weight. These maps are used to hide the error positions from an attacker, so the number of
all these maps needs to be large enough so that an attacker cannot explore it in polynomial
time. It is possible to define a set of maps with the analogue property in the Fibonacci
code case, i.e., maps sending a matrix E with wF(E) = wF to any other matrix of the same
Fibonacci weight as follows.

Definition 2. Given E ∈ Mp+1(N<2r ) and K1, K2 ∈ Mp+1(Q), we define σK1,K2(E) :=
K1 · E · K2. Moreover, let LE andRE be the set of matrices K1, K2 ∈ Mp+1(Q) such that:

• det σK1,K2(E) = ±det E,
• wF(σK1,K2(E)) = wF(E),
• σK1,K2(E) ∈ Mp+1(N<2r ).

The previous definition does not provide a methodology to construct the maps LE,RE.
Such a construction turns out to be somehow complex and hard to manipulate in our
scenario. We thus define a subset of this map, with a simpler representation, whose
cardinality is still large enough to properly hide the secret of our protocol. We can observe
that, for all E ∈ Mp+1(N<2r ), the permutation matrices π1, π2 of dimension (p + 1)× (p +
1) belong to LE and RE. Thus, given a matrix E ∈ Mp+1(N<2r ), we have a number of
possible transformations σP1,P2 , which satisfy the three conditions of the above definition,
greater than ((p + 1)!)2.

In the rest of the paper, we denote by St the set of permutations over the integers
{1, . . . , t}, so that, with an abuse of notation, σP1,P2(E) is defined by to permutations
P1, P2 ∈ Sp+1, permuting the rows and the columns of E.

Proposition 3.

1. Given X, Y ∈ Mp+1(N<2r ) such that wF(X) = wF(Y) and det X = ±det Y, it is possible
to find K1 ∈ LY and K2 ∈ RY such that X = σK1,K2(Y).

2. Given X = σK1,K2(Y), there exist H1 ∈ LX and H2 ∈ RX such that σH1,H2(X) = Y.

Proof.

1. It is sufficient to take K1 as the identity matrix and K2 = Y−1 · X or K1 = X ·Y−1 and
K2 as the identity matrix.

2. It is sufficient to take H1 = K−1
1 and H2 = K−1

2 .

3.2. Zero-Knowledge Identification Protocols

For a complete introduction to the subject, we refer to [25], by which the following
section was inspired.

An interactive proof system is a randomized (messages are created by means of,
ideally fair, coin tosses) communication protocol involving two parties: a prover, denoted
by P, and a verifier, denoted by V. The goal of P is to demonstrate (or prove) to V that a
certain assertion, formulated by P, is true. The role of V is to either accept or reject the proof
(The term “proof” here differs from the traditional mathematical notion of a proof and
refers to an interactive game wherein proofs are probabilistic rather than absolute. A proof
in this context needs be correct only with bounded probability, although possibly arbitrarily
close to one.). In general, it is possible to formulate interactive proofs for identification
protocols as proofs of knowledge. In this case, P can demonstrate the knowledge of a
secret s (e.g., a key or a password) by providing correct answers to pre-established queries
about s. Note that proving the knowledge of a secret and proving its existence are two
different problems.

When an interactive proof possesses the properties of completeness and soundness, it
is called a proof of knowledge.
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Informally, the property of completeness can be seen as requiring that the protocol
behaves as intended, under the assumption that the parties are acting honestly.

Definition 3 (Completeness property). An interactive proof (protocol) is complete if, given an
honest prover and an honest verifier, the protocol succeeds with overwhelming probability (i.e., the
verifier accepts the prover’s claim).

Usually, with the term “overwhelming”, it is intended that the protocol failure proba-
bility is not significant in practice (exponentially small with respect to the input size). For
some applications, this term might indicate stricter or more relaxed requirements.

Definition 4 (Soundness property). An interactive proof (protocol) is sound if there exists
an expected polynomial time algorithm A with the following property: if a dishonest prover
(impersonating P) can, with non-negligible probability, successfully execute the protocol with V,
then A can be used to extract from this prover knowledge (essentially equivalent to P’s secret),
which, with overwhelming probability, allows successful subsequent protocol executions.

The property of soundness serves the purpose of guaranteeing that the protocol
is generating an actual proof of knowledge. This is achieved since any impersonation
of P requires the knowledge of P’s secret or of equivalent information (for example, by
extracting it from P in polynomial time by means of A). In other words, soundness assures
that no dishonest prover can convince an honest verifier. On the other hand, by itself,
soundness does not assure that deriving the secret from P is hard.

The conventional strategy to prove the soundness property of a protocol is to hypoth-
esize about the existence of a dishonest prover that can run the protocol with a successful
outcome and then illustrate how such a capability implies being able to derive the actual
secret of P.

While the soundness property is required for an interactive proof of knowledge to be
used in cryptography, the crucial aspect of a zero-knowledge protocol is the zero-knowledge
property.

In the following, we refer to the the collection of messages resulting from the protocol
execution as the transcript.

Definition 5 (Zero-knowledge property). A protocol that is a proof of knowledge has the zero-
knowledge property if it is simulatable in the following sense: there exists an expected polynomial
time algorithm (simulator) that can produce, upon the input of the assertion(s) to be proven, but
without interacting with the real prover, transcripts indistinguishable from those resulting from the
interaction with the real prover.

The zero-knowledge property guarantees that from an execution of the protocol be-
tween a prover and a (even malicious) verifier, there is no leakage of information about the
secret knowledge of the prover, except for the truth of the assertion. The only information
that is allowed to be leaked is that that can be computed in polynomial time from the
public information alone. As a consequence, assisting the communication does not help in
impersonating the prover.

4. Veron Identification Protocol in the Fibonacci Setting

In this section, we describe a variation of the Veron identification protocol [2] using
the p-Fibonacci error-correcting codes defined in Section 3.

4.1. Description of the Protocol

We denote by λ the security level of the scheme, and with H, we indicate a secure
hash function. The key generation algorithm is listed in Figure 1, and we give here a brief
example. The Fibonacci identification protocol is listed in Figure 2.
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KGen(1λ)

1 : Define the public parameters r, n, p,

so that the SFD(r, n, p, (p + 1)2 − 1) problem is hard

2 : M←$Mp+1(N<2r )

3 : E′ ←$Mp+1(N<2l ) s.t. wF(E′) = (p + 1)2 − 1

4 : R← M ·Qn
p ⊕ E′

5 : E = R−M ·Qn
p

6 : sk← (M, E)
7 : pk← (R, det(M))

8 : return sk, pk

Figure 1. Key generation of the Veron identification protocol in the Fibonacci setting.

The operation ⊕ used to add E′ to M ·Qn
p in Step 4 of the key generation is a bit-wise

XOR of the corresponding entries of the two matrices. This is done to assure that when
adding (over the integers) the artificially constructed error E to M ·Qn

p, the entries of the
resulting matrix R do not exceed l bits (a Magma implementation of our algorithm is
available on GitHub at https://github.com/peacker/p-Fibonacci_identification_protocol,
accessed on 5 April 2021).

Commitment Compression

In [13], it was shown how it is possible to reduce the size of commitments of a Stern
or Veron-like identification protocol from 3h to 2h, where h is the bit size of the underlying
hash function. Furthermore, they showed how the technique can be applied to δ parallel
rounds to reduce the size of commitments from 3δh to (δ + 1)h. The idea is that, since
the verifier V is always able to recover two commitments given a certain value of b, then
the prover P can send c4 = H(c1, c2, c3) instead of c1, c2, c3 in the first commitment step
and then attach the missing commitment c′ to the response r1, r2. At this point, V only
needs to check if the initially received c4 is equal to the hash of the values that it computed
concatenated to c′ in the proper order. In the case of δ parallel rounds, P computes
c = H(c1,1‖c1,2‖c1,3‖ . . . ‖cδ,1‖cδ,2‖cδ,3) and sends it to V as a commitment. Then, V sends
δ challenges bi, i ∈ {1, . . . , δ} to P, who attaches the proper missing commitment to the
response of the corresponding round. Finally, V checks if c is equal to the hash of the values
that it computed concatenated to the respective c′i in the proper order. Notice that when
bi = 1, the verifier also needs to check the Fibonacci weight of r2. This compression can be
applied to obtain a more compact, though slightly less efficient, signature.

https://github.com/peacker/p-Fibonacci_identification_protocol
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Prover Verifier
sk, pk = (M, E), (R, det(M))← KGen pk

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commitment step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U ←$Mp+1(N<2r )

P1, P2 ←$ Sp+1

c1 ← H(P1, P2)

c2 ← H(σP1,P2 ((U + M) ·Qn
p))

d1 = σP1,P2 (U ·Q
n
p + R)

d2 = −σP1,P2 (U ·Q
n
p)

c3 ← H(d1, d2)
c1, c2, c3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b b ←$ {0, 1, 2}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Response step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

if b = 0

r1 ← (P1, P2)

r2 ← U + M r1, r2 if c1 = H(r1,1, r1,2)∧

c2 = H(σr1,1,r1,2 (r2 ·Qn
p))

return true

if b = 1

r0 ← σP1,P2 (U ·Q
n
p)

r1 ← σP1,P2 ((U + M) ·Qn
p)

r2 ← σP1,P2 (E) r0, r1, r2 if c2 = H(r1)∧

c3 = H(r1 + r2,−r0)∧
det(M) = ±det(r1 + r0)∧

wF(r2) = (p + 1)2 − 1

return true

if b = 2

r1 ← (P1, P2)

r2 ← U r1, r2 if c1 = H(r1,1, r1,2)∧

t1 = σr1,1,r1,2 (r2 ·Qn
p + R)

t2 = −σr1,1,r1,2 (r2 ·Qn
p)

c3 = H(t1, t2)

return true

Figure 2. Veron identification protocol in the Fibonacci setting.

4.2. Zero-Knowledge Properties

In this section, we prove the security of the scheme using standard zero-knowledge
proof arguments, meaning that we prove the completeness, soundness, and the zero-
knowledge property of the scheme.

The security of the scheme is based on the difficulty of solving the Fibonacci decoding
problem, and the security proof exploits the properties of the functions γ and σ.

4.2.1. Completeness

Given the output (sk, pk) of the KGen function, we can easily see that for all possible
sk = (M, E), then V always accepts after interacting with P on common input pk. Indeed,
the honest prover, knowing sk, is able to construct the commitments c1, c2, c3. Moreover,
since the verifications match with the given commitments, V is always able to identify P.
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4.2.2. Soundness

Theorem 1. If a prover P′ correctly answers all three challenges, then either he/she can find a
collision for the hash function or he/she accesses the secret key.

Proof. Let us define σi = σP1,i ,P2,i , P1,i, P2,i ∈ Sp+1, for some index i. Suppose that, given the
three commitments c1, c2, c3, the prover P′ is able to answer in the three cases b = 0, 1, 2.
This means P′ knows:

• σ0, Z0 such that c1 = H(σ0) and c2 = H(σ0(Z0 ·Qn
p));

• V1, W1, X1 such that c2 = H(V1), c3 = H(V1 +W1, X1), det(M) = ±det(V1 + X1), and
wF(W1) = (p + 1)2 − 1;

• σ2, Z2 such that c1 = H(σ2) and c3 = H(σ2(Z2 ·Qn
p + R),−σ2(Z2 ·Qn

p)).

Thus, either P′ has found a collision for the hash function or the preimages of c1, c2, c3
are equal, meaning that:

• From c1 preimages: σ0 = σ2,
• From c2 preimages: V1 = σ0(Z0 ·Qn

p),
• From c3 preimages: V1 + W1 = σ2(Z2 ·Qn

p + R), and X1 = −σ2(Z2 ·Qn
p).

Combining the previous equations, we obtain that: σ0(Z0 ·Qn
p) + W1 = σ2(Z2 ·Qn

p +
R). Thanks to the linearity and invertibility of σ0, we can isolate R = (Z0 − Z2) · Qn

p +

σ−1
0 (W1).

Note that det(Z0 − Z2) = ±det(σ0((Z0 − Z2) · Qn
p)) = ±det(σ0(Z0 · Qn

p)− σ0(Z2 ·
Qn

p)) = ±det(V1 + X1) = ±det(M).
Since we also have that wF(σ

−1
0 (W1)) = wF(W1) = (p + 1)2 − 1, this means that the

secret key associated with the public key pk = R is (Z0 − Z2, σ−1
0 (W1)). Thus, P′ is able to

construct the unique secret solution of the Fibonacci decoding problem.

Since P′ is never able to answer the three cases, as a corollary, we have that the
probability of cheating must be less than or equal to 2/3. We now prove that it is exactly
2/3. To properly guess any two challenges among three, a cheater must proceed as follows:

• if b = 0 or 1:

– pick randomly the values
P1, P2←$ Sp+1, Y, Z←$Mp+1(N<2r ) such that det(M) = ±det(Y + Z), F←$

Mp+1(N<2l ),
such that wF(F) = (p + 1)2 − 1.

– Compute c1 = H(P1, P2), c2 = H(σP1,P2(Z · Qn
p)), c3 = H(σP1,P2(Z · Qn

p + F),−
σP1,P2(Z ·Qn

p)).
– If b = 0, reveal P1, P2, Z.

If b = 1, reveal σP1,P2(Y ·Qn
p), σP1,P2(Z ·Qn

p), σP1,P2(F).

Verification follows.
• if b = 0 or 2:

– pick randomly the values
P1, P2←$ Sp+1, U←$Mp+1(N<2r ), Z←$Mp+1(N<2r ).

– Compute c1 = H(P1, P2), c2 = H(σP1,P2(Z ·Qn
p)), c3 = H(σP1,P2(U ·Qn

p + R)).
– If b = 0, reveal P1, P2, Z.

If b = 2, reveal P1, P2, U.

Verification follows.
• if b = 1 or 2:

– pick randomly the values
P1, P2←$ Sp+1, U←$Mp+1(N<2r ) such that det(M) = ±det(U),
F←$Mp+1(N<2l ), such that wF(F) = (p + 1)2 − 1

– Compute c1 = H(P1, P2), c2 = H(σP1,P2(U ·Qn
p + R− F)), c3 = H(σP1,P2(U ·Qn

p +
R),−σP1,P2(U ·Qn

p)).
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– If b = 1, reveal σP1,P2(U ·Qn
p − F), σP1,P2(U ·Qn

p + R− F), σP1,P2(F).
If b = 2, reveal P1, P2, U.

Verification follows.

We thus proved that the probability of cheating is exactly 2/3.

4.2.3. Zero-Knowledge

To prove zero-knowledge, a simulator Sim of the scheme must be constructed. Let V
be a verifier. It is possible to construct Sim in such a way that it can answer any of the three
challenges, as follows:

1. Sim chooses randomly P1, P2←$ Sp+1, V, V′←$Mp+1(N<2r ) such that det(V + V′) =
det(M), and F←$Mp+1(N<2l ) such that wF(F) = (p + 1)2 − 1.
Sim also chooses j ∈ {0, 1, 2} corresponding to the challenge it is trying to guess.

• If j = 0, Sim sends c1, c2, c3 such that:
c1 = H(P1, P2), c2 = H(σP1,P2(V + V′) ·Qn

p), c3 = H(V).
• If j = 1, Sim sends c1, c2, c3 such that:

c1 = H(V), c2 = H(σP1,P2((V + V′) · Qn
p)), c3 = H(σP1,P2(V · Qn

p + V′ · Qn
p +

F),−σP1,P2(V ·Qn
p)).

• If j = 2, Sim sends c1, c2, c3 such that:
c1 = H(P1, P2), c2 = H(V), c3 = H(σP1,P2(V ·Qn

p + R)).

2. V chooses b ∈ {0, 1, 2}.
3. If b = 0, Sim sends P1, P2, V + V′.

If b = 1, Sim sends σP1,P2(V
′ ·Qn

p), σP1,P2((V + V′) ·Qn
p), σP1,P2(F).

If b = 2, Sim sends P1, P2, V.
4. If b = j, the execution provides a valid transcript (V verifies correctly), and Sim saves

the execution. Otherwise, Sim restarts the execution.

Sim succeeds if it is able to store l transcripts of the execution with b = j. This can
be achieved by running the execution 3l times, since the probability of b = j is 1/3. The
simulated transcript is indistinguishable from the real one, since in the commitment step,
only hash values are sent, while in the response step, the following distributions are sent:

• b = 0: the simulated transcript contains P1, P2, V +V′, while the real one P1, P2, U + M;
• b = 1: the simulated transcript contains σP1,P2(V ·Qn

p), σP1,P2((V + V′) ·Qn
p), σP1,P2(F),

while the real one σP1,P2(U ·Qn
p), σP1,P2((U + M) ·Qn

p), σP1,P2(E);
• b = 2: the simulated transcript contains P1, P2, V, while the real one P1, P2, U.

The values V, V′, P1, P2 are sampled following the uniform distribution, and so do
U + M and U in, respectively, steps b = 0 and b = 2. In step b = 1, σP1,P2((V + V′) · Qn

p)
follows again the uniform distribution the same way as σP1,P2((U + M) ·Qn

p), while, because
of the property of P1, P2, σP1,P2(E) and σP1,P2(F) are taken uniformly from the set of all
matrices of weight (p + 1)2 − 1.

To conclude, anyone using Sim can simulate an execution of the scheme without
knowledge of the secret key.

This concludes the proof that the scheme is zero-knowledge.

5. Comparisons

The aim of this section it to provide a fair comparison with other three-pass iden-
tification protocols based on error-correcting codes. For this comparison, we take into
consideration the Veron identification protocol for security level λ = 128, 96, 80 and its
instantiations using a generic linear code and double circulant codes, both in the Hamming
and rank metric. We omit the Stern protocol in the comparison as the results would be
very similar.

To choose the parameters of our instantiation of the Veron protocol with Fibonacci
codes for security level λ = 128, we need to choose an integer p such that log2(2

(p+1)2
) =

(p + 1)2 ≥ 128 (this condition implies that the Fibonacci decoding problem is exponentially
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hard) and such that the space S2
p+1 of the permutations P1, P2 ∈ Sp+1 is too large for an

adversary to be explored, i.e., |S2
p+1| = ((p + 1)!)2 ≥ 2128. The smallest such p is 20, for

which log2(2
(p+1)2

) = 441 and log2(((p + 1)!)2) ≈ 130.94 . Since n > p + 1, we can choose
n = 22. The smallest meaningful r is two (recall that each entry of the message M has to
be positive).

The secret key of the protocol is composed by M ∈ Mp+1(N<2r ) and E ∈ Mp+1(N<2l ),
thus requiring r(p + 1)2 + l(p + 1)2 bits.

The public key is the matrix R ∈ Mp+1(N<2l ), where each entry of the matrix has
at most l bits, as shown in Proposition 2, thus requiring l(p + 1)2 bits. It is easy to verify
computationally that for (p, n) = (20, 2), then l = 10. The communication cost of each
round of all the variations of the protocol is the same for the commitment and challenge
step, i.e., it includes three hashes of length h for the commitment step and two bits for
the challenge step, for a total of 3h + 2 bits. The response step cost is given by P1, P2
plus a matrix inMp+1(N<2r ) with probability 2/3 (when b = 0, 2) and three matrices in
Mp+1(Q<2l ) (where l is the bit size of a single entry of the encoded matrix) with probability
1/3 (when b = 1). The function σ is determined by two permutations of p + 1 elements,
which can be represented with (p + 1) log2(p + 1) bits. Then, the total communication cost
sums to 3h+ 2 + 2(p + 1) log2(p + 1) + r(p + 1)2 when b = 0, 2 and to 3h+ 2 + 3l(p + 1)2

when b = 1.
In Table 1, we summarize the comparison with the parameters of the Veron protocol

using Fibonacci codes against Generic Linear (GL) codes and Double Circulant (DC) codes
both in the Hamming and rank metric. The first set of parameters that we proposed for
the Fibonacci code offers a security of ∼131 bit, while the parameters for Hamming and
rank metric offer a security of at most 128. To provide a more complete comparison, we
also analyzed a set of parameters for the security levels of 96 and 80 bits. For the decoding
complexity A, we used the formula provided in [26] for the Hamming metric and in [27]
for the rank metric. It is worth noting that in the case of the rank metric, many different
algebraic and combinatorial attacks exists (e.g., [27–30] ), depending on the relation among
the parameters of the code, which are four (double circulant case) or five (generic linear
code case). For this reason, the selection of parameters in the rank metric setting, which is
the one providing better sizes, is somehow more involved. As a result of the comparison,
we noticed that p-Fibonacci error-correcting codes allow reaching secret and public key
sizes that are larger than the corresponding Hamming and rank metric analogues, unless
one takes into account the public generator matrix of the code, which is orders of magnitude
smaller in the Fibonacci case. The average communication cost is somehow in between
the one of the Hamming and the one of rank metric, where a clear advantage is due to the
compact communication used for the cases b = 0, 2.

To choose the number of rounds δ, we proceed as follows. The impersonation proba-
bility of one single round is P = 2/3. To reach a security level λ with an impersonation
probability of P, that is to compute the number of rounds δ, we need to set δ = logP(1/2λ).
This results in δ = 137 for λ = 128.
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Table 1. Comparison of parameters, keys, and communication bit sizes in various instantiations of the Veron identification
protocol. GL, Generic Linear; DC, Double Circulant.

Hamming Rank

Code Fibonacci GL [2] DC [13] GL [14] DC [15]

Best known attack
A

min(2(p+1)2
[19],

((p + 1)!)2)
20.097n [26]

min((n− k)3m3qr (k+1)m
n −m,

r3k3qr
⌈
(r+1)(k+1)−(n+1)

r

⌉
)

[27]

Code parameters (r, p, n) (q, n, k, w) (q, n, w) (q, m, n, k, r) (q, m, n, r)

Public param.size log2 r + log2 p +
log2 n k(n− k) + logr n + log2 r mk(n− k) + log2 r mn + log2 r

|sk| r(p + 1)2 + l(p +
1)2 k + n k + n m(k + n) m(k + n)

|pk| l(p + 1)2 n n mn mn
Rsp.step cost

b = 0, 2
2(p + 1) log2(p +

1) + r(p + 1)2 n log n + k n log n + k m2 + n2 + mk m2 + n2 + mk

Response step cost
b = 1 3l(p + 1)2 2n 2n 2mn 2mn

Concrete parameters for λ ∼ 128

λ = log2(A) 130 128 128 124 124

Code parameters ( 2, 20, 22) ( 2, 1320, 660, 140) ( 2, 1320, 140) ( 2, 31, 26, 13, 8) ( 2, 31, 26, 8)
Public param. size 10 435,601 1321 5242 809

|sk| 5292 1980 1980 1209 1209
|pk| 4410 1320 1320 806 806

Rsp. step cost
b = 0, 2 1066 14,343 14,343 2040 2040

Rsp. step cost
b = 1. 13,230 2640 2640 1612 1612

Concrete parameters for λ ∼ 96

λ = log2(A) 96 96 96 95 95

Code parameters ( 2, 16, 18) ( 2, 990, 495, 110) ( 2, 990, 110) ( 2, 29, 22, 11, 7) ( 2, 29, 22, 7)
Public param. size 10 245,026 991 3511 640

|sk| 3468 1485 1485 957 957
|pk| 2890 990 990 638 638

Rsp. step cost
b = 0, 2 717 10,346 10,346 1644 1644

Rsp. step cost
b = 1. 8670 1980 1980 1276 1276

Concrete parameters for λ ∼ 80

λ = log2(A) 80 80 80 78 78

Code parameters ( 2, 14, 16) ( 2, 826, 413, 90) ( 2, 826, 90) ( 2, 23, 22, 11, 6) ( 2, 23, 22, 6)
Public param. size 9 170,570 827 2785 508

|sk| 2475 1239 1239 759 759
|pk| 2025 826 826 506 506

Rsp. step cost
b = 0, 2 567 8416 8416 1266 1266

Rsp. step cost
b = 1. 6075 1652 1652 1012 1012

6. Conclusions and Future Works

We showed that p-Fibonacci error-correcting codes offer a promising solution when
used as the underlying difficult problem in three-pass Stern-like protocols, both in terms of
parameters, keys, and communication size, as well as in ease of selecting such parameters.
On the other hand, the theory behind these codes must be further investigated, in particular
the decoding complexity needs to be studied more thoroughly, in order to be able to give
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a more precise estimation of the parameters. It would also be interesting to understand
if there exists some quantum acceleration that allows simplifying the decoding and if
a signature scheme derived from our proposed identification protocol can be used as a
quantum-resistant signature scheme. Further improvements of the scheme might include
the reduction of the the communication cost, either by reducing the cheating probability
from 2/3 to 1/2 or by finding a way of reducing the response size in the case of the challenge
b = 1. Finally, it would be interesting to compare our protocol with other instantiations
of it using generalizations of the p-Fibonacci sequences, such as those based on Fibonacci
polynomials sequences [19] or Fibonacci Mp-sequences [20].
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Appendix A. Toy Example

To help the reader in the understanding of the protocol, in this section, we present
a toy example of the execution of the zero-knowledge proof, using the following public
parameters: r = 2, p = 3, n = 5, and l = 6. In this case, the security level of the scheme is
λ = 16.

The message M must be represented as a (p + 1)× (p + 1) matrix over N<2r \ {0},
i.e., whose entries are r-bit strings representing a positive integer less than 2r = 4. For this
reason, we consider M such that its bit size |M|, which can also be seen as the dimension
of the code, is r(p + 1)2 = 32, whereas the length of the code is l(p + 1)2 = 96.

The fifth power of the p Fibonacci matrix Qn
p is:

Q5
3 =


3 2 1 1
1 1 1 0
1 1 1 1
2 1 1 1


The private key and public key are generated by the algorithm given in Figure 1.

Specifically, we have that the private key sk is the pair (M, E), i.e.,

sk =

M =


2 3 2 2
2 3 1 1
3 1 1 2
3 2 3 1

, E =


3 4 27 2

10 8 21 50
0 16 42 16

20 19 44 49




and the public key pk is the pair (R, det(M)), i.e.,

pk =

R =


18 15 36 8
22 17 28 54
15 26 49 22
36 31 53 56

, det(M) = 19

.

Note that R ∈ Mp+1(N<2l ), where each entry of the matrix has at most l bits (Propo-
sition 2) with l ≤ r + dlog2(p + 1) + (n− 1) log2 α1e = 6, and the bit size of R is 83 bits.
Moreover, the bit size of sk and pk is 128 and 96 bits, respectively.
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Now, we illustrate the steps of the Veron identification protocol in the Fibonacci setting, as
depicted in Figure 2.

First, the prover has to generate a random matrix U ∈ Mp+1(N<2r ), the two random
permutations P1, P2 ∈ Sp+1:

U =


3 1 1 1
1 1 2 3
3 1 2 3
2 1 1 1

 and (P1, P2) =
(
(2, 1, 4, 3), (3, 4, 1, 2)

)

and computes the three commitments and sends them to the verifier:

c1 = SHA1(P1, P2) =

= 0x98F924C6CA2743A0D625B8BBB72613CFD483C90A437A7C143FE36BBEDFC2D256

c2 = SHA1(σP1,P2((U + M) ·Qn
p)) =

= 0x334A63C0C127098CB9CB76ED5B13D78094D2C9C329CF412972B6F5D8B8FC19C8

c3 = SHA1(σP1,P2(U ·Q
n
p + R),−σP1,P2(U ·Q

n
p)) =

= 0x096387923AA7E40A935958277430096A658F2618987742B73D7A9C0A8D5F1358

Then, the verifier computes the challenge b and sends it to the prover, who then replies
accordingly as follows.

• If b = 0, then the prover sends:

r1 = (P1, P2) =
(
(2, 1, 4, 3), (3, 4, 1, 2)

)
and r2 =


5 4 3 3
3 4 3 4
6 2 3 5
5 3 4 2

.

The verifier returns TRUE, that is identification success, if:

c1 = SHA1(r1,1, r1,2) and c2 = SHA1(σr1,1,r1,2(r2 ·Q
n
p)).

The response step costs 48 bits, because it is given by P1, P2 plus a matrix inM4(N<4).
• If b = 1, then the prover sends:

r0 =


14 10 24 17
15 11 28 20
14 11 26 19
16 14 33 22

, r1 =


21 50 10 8
27 2 3 4
44 49 20 19
42 16 0 16

 and r2 =


7 6 12 8
6 5 13 9
5 4 10 7
9 8 18 12

.

Then, the verifier returns TRUE if:

c2 = SHA1(r1) and c3 = SHA1(r1 + r2,−r0) and

det(M) = ±det(r1 + r0) and wF(r2) = (p + 1)2 − 1

The response step cost is 288 bits, since is given by the three matrices inM4(Q<26).
• If b = 2, then the prover sends:

r1 = (P1, P2) =
(
(2, 1, 4, 3), (3, 4, 1, 2)

)
and r2 =


3 1 1 1
1 1 2 3
3 1 2 3
2 1 1 1

.
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The verifier returns TRUE if:

c1 = H(r1,1, r1,2) and c3 = H(σr1,1,r1,2(r2 ·Q
n
p + R),−σr1,1,r1,2(r2 ·Q

n
p))

The response step cost 48 bits as in the case of b = 0.
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