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Abstract: In this research, we study the convex minimization problem in the form of the sum of two
proper, lower-semicontinuous, and convex functions. We introduce a new projected forward-backward
algorithm using linesearch and inertial techniques. We then establish a weak convergence theorem
under mild conditions. It is known that image processing such as inpainting problems can be modeled
as the constrained minimization problem of the sum of convex functions. In this connection, we aim to
apply the suggested method for solving image inpainting. We also give some comparisons to other
methods in the literature. It is shown that the proposed algorithm outperforms others in terms of
iterations. Finally, we give an analysis on parameters that are assumed in our hypothesis.

Keywords: convex minimization; image inpainting; inertial techniques; weak convergence

1. Introduction

Let H be a real Hilbert space. The unconstrained minimization problem of the sum of
two convex functions is modeled as the following form:

min
u∈H

f (u) + g(u), (1)

where f and g : H → R∪ {+∞} are proper, lower semi-continuous, and convex functions.
If f is differentiable on H, we know that problem (1) can be described by the fixed point
equation, that is,

u = proxαg(u− α∇ f (u)), (2)

where α > 0 and proxg is the proximal operator of g, i.e., proxg = (Id + ∂g)−1 where Id
is the identity operator in H and ∂g is the subdifferential of g. Therefore, the forward-
backward algorithm was defined in the following manner:

uk+1 = proxαk g︸ ︷︷ ︸
backward step

(Id− αk∇ f )︸ ︷︷ ︸
forward step

(uk), k ≥ 0 (3)

where αk > 0. Some works that relate to the forward-backward method for convex optimiza-
tion problems can be investigated in [1–6]. This method covers the gradient method [7–9]
and the proximal algorithm [10–12]. Combettes and Wajs [13] introduced the following
relaxed forward-backward method.

Cruz and Nghia [14] suggested the forward-backward method using linesearch ap-
proach, which does not need the Lipschitz constant in implementation.

It was shown that (uk) converges weakly to a minimizer of f + g.
Now, inspired by Cruz and Nghia [14], we suggest a new projected forward-backward

algorithm for solving the constrained convex minimization problem, which is modeled
as follows:
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min
u∈Ω

f (u) + g(u), (4)

where Ω is a nonempty closed convex subset of H, f and g are convex functions on H that
f is differentiable on H. We denote by S∗ the solution set of (4).

By the way, to obtain a nice convergence rate, Polyak [15] introduced the heavy ball
method for solving smooth convex minimization problem. In case g = 0, Nesterov [16]
modified the heavy ball method as follows.

In this work, motivated by Algorithm 1 [13], Algorithm 2 [14], Algorithm 3 [16]
and Algorithm 4 [17], we are interested to design a new projected forward-backward
algorithm for solving the constrained convex minimization problem (4) and establishing
the convergence theorem. We also apply our method to solve image inpainting and provide
some comparisons and numerical results. Finally, we show the effects of each parameters
in the proposed algorithm.

Algorithm 1 Ref. [13] Let ε ∈ (0, min{1, 1
α}) and u0 ∈ RN . For k ≥ 1, define

vk = uk − αk∇ f (uk),
uk+1 = uk + λk(proxαk gvk − uk),

(5)

where αk ∈ [ε, 2
α − ε], λk ∈ [ε, 1] and α is the Lipschitz constant of the gradient of f .

Algorithm 2 Let σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
2 ). Let u0 ∈ domg. For k ≥ 1, define

uk+1 = proxαk g(u
k − αk∇ f (uk)),

where αk = σθmk and mk is the smallest nonnegative integer satisfying

αk‖∇ f (uk+1)−∇ f (uk)‖ ≤ δ‖uk+1 − uk‖.

Algorithm 3 Let u0, u1 ∈ RN and θk ∈ [0, 1). For k ≥ 1, define

vk = uk + θk(uk − uk−1),

uk+1 = vk − αk∇ f (vk),

where αk > 0. The term θk(uk − uk−1) is called inertial term.

In 2003, Moudafi and Oliny [17] suggested the inertial forward-backward splitting
as follows:

Algorithm 4 Let u0, u1 ∈ RN and αk ∈ [0, 2
L − ε]. For k ≥ 1, define

vk = uk + θk(uk − uk−1),

uk+1 = proxαk g(v
k − αk∇ f (uk)),

where θk ∈ [0, 1). Many works explored that algorithms involving inertial term have a nice rate of
convergence [3,18–20]. The complexity of some variants of the forward-backward algorithms can be found in the
work of Cruz and Nghia [14].

This paper is organized as follows: In Section 2, we recall some preliminaries and
mathemetical tools. In Section 3, we prove the weak convergence theorem of the proposed
method. In Section 4, we provide numerical experiments in image inpainting to valid the
convergence theorem and, finally, in Section 5, we give conclusions of this paper.
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2. Preliminaries

Let us review some important definitions and lemmas for proving the convergence
theorem. Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let
h : H → R̄ be a proper, lower semicontinuous (l.s.c.), and convex function. The domain of h
is defined by domh := {u ∈ H|h(u) < +∞}. For any u ∈ H, we know that the orthogonal
projection of u onto a nonempty, closed and convex subset C of H is defined by

PCu := argmin
v∈C

‖u− v‖2. (6)

Lemma 1 ([21]). Let C be a nonempty, closed and convex subset of a real Hilbert space H. Then,
for any u ∈ H, we have

(i) 〈u− PCu, a− PCu〉 ≤ 0 for all a ∈ C;
(ii) ‖PCu− PCv‖2 ≤ 〈PCu− PCv, u− y〉 for all u, v ∈ H;
(iii) ‖PCu− a‖2 ≤ ‖u− a‖2 − ‖PCu− u‖2 for all a ∈ C.

The directional derivative of h at u in the direction d is

h′(u; d) := lim
t→0+

h(u + td)− h(u)
t

.

Definition 1. The subdifferential of h at u is defined by

∂h(u) = {a ∈ H : 〈a, v− u〉 ≤ h(v)− h(u), y ∈ H}.

It is known that ∂h is maximal monotone and if h is differentiable, then ∂h is the gradi-
ent of h denoted by ∇h. Moreover, ∇h is monotone, that is, 〈∇h(u)−∇h(v), u− v〉 ≥ 0
for all u, v ∈ H. From (4), we also know that

u∗ ∈ argmin( f + g)⇔ u∗ = proxcg(Id− c∇ f )(u∗),

where c > 0 and proxg = (Id + ∂g)−1.
From [14], we know that

a− proxαg(a)

α
∈ ∂g(proxαg(a)) for all a ∈ H, α > 0. (7)

Lemma 2 ([22]). ∂h, Gph(∂h) = {(u, a) ∈ H × H : a ∈ ∂h(u)} is demiclosed, i.e., if the
sequence (uk, ak) ⊂ Gph(∂h) satisfies that (uk) converges weakly to u and (ak) converges strongly
to a, then (u, a) ∈ Gph(∂h).

Lemma 3. Let (ak), (bk) and (rk) be real positive sequences such that

ak+1 ≤ (1 + rk)ak + bk, k ∈ N.

If
∞

∑
k=1

rk < +∞ and
∞

∑
k=1

bk < +∞, then lim
k→+∞

ak exists.

Lemma 4 ([23]). Let (ak) and (θk) be real positive sequences such that

ak+1 ≤ (1− θk)ak + θkak−1, k ∈ N.

Then, ak+1 ≤ K ·
k

∏
j=1

(1 + 2θj), where K = max{a1, a2}. Moreover, if
∞

∑
k=1

θk < +∞, then

(ak) is bounded.
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Definition 2. Let S be a nonempty subset of H. A sequence (uk) in H is said to be quasi-
Fejér convergent to S if and only if for all u ∈ S there exists a positive sequence (εk) such that

∞

∑
k=0

εk < +∞ and ‖uk+1 − u‖2 ≤ ‖uk − u‖2 + εk for all k ∈ N. When (εk) is a null sequence, we

say that (uk) is Fejér convergent to S.

Lemma 5 ([21,24]). If (uk) is quasi-Fejér convergent to S, then we have:

(i) (uk) is bounded.
(ii) If all weak accumulation points of (uk) is in S, then (uk) weakly converges to a point in S.

3. Results

In this section, we suggest a new projected forward-backward algorithm and establish
the weak convergence. The following conditions are assumed:

(A1) f , g : H → R∪ {+∞} are proper, l.s.c, convex functions on H that f is differentiable
on H.

(A2)∇ f is uniformly continuous on bounded subsets of H and is bounded on any bounded
subset of H.

Next, we will prove weak convergence theorem of the proposed algorithm.

Theorem 1. Let (uk) be defined by Algorithm 5. Suppose
∞

∑
k=1

θk < +∞. Then, (uk) weakly

converges to a point in S∗.

Algorithm 5 Let Ω be a nonempty closed convex subset of H. Given σ > 0,
φ ∈ (0, 1), δ ∈ (0, 1

2 ) and θk ≥ 0. Let u0, u1 ∈ H and define

wk = uk + θk(uk − uk−1) (8)

and

vk = proxαk g(w
k − αk∇ f (wk)) (9)

where αk = σφmk and mk is the smallest nonnegative integer such that

αk‖∇ f (vk)−∇ f (wk)‖ ≤ δ‖vk − wk‖. (10)

Set uk+1 by

uk+1 = PΩ(vk), k ≥ 0. (11)

Proof. Let u∗ be a solution in S∗. Thus, we obtain

‖uk+1 − u∗‖2 = ‖PΩ(vk)− u∗‖2

≤ ‖vk − u∗‖2 − ‖PΩ(vk)− vk‖2.
(12)

By the definition of proximal operator and vk, we have

wk − vk

αk
−∇ f (wk) =

wk − proxαk g(w
k − αk∇ f (wk))

αk
−∇ f (wk) ∈ ∂g(vk).

By the convexity of g, we get

g(u)− g(vk) ≥ 〈w
k − vk

αk
−∇ f (wk), u− vk〉, ∀u ∈ H. (13)
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The convexity of f gives

f (u)− f (y) ≥ 〈∇ f (y), u− y〉, ∀u ∈ H, y ∈ H. (14)

Using (13) and (14) with any u ∈ H and y = wk, we obtain

g(u)− g(vk) + f (u)− f (wk) ≥ 〈w
k − vk

αk
−∇ f (wk), u− vk〉+ 〈∇ f (wk), u− wk〉

=
1
αk
〈wk − vk, u− vk〉+ 〈∇ f (wk), vk − wk〉

=
1
αk
〈wk − vk, u− vk〉+ 〈∇ f (vk), vk − wk〉

+〈∇ f (wk)−∇ f (vk), vk − wk〉

≥ 1
αk
〈wk − vk, u− vk〉+ 〈∇ f (vk), vk − wk〉

−‖∇ f (wk)−∇ f (vk)‖‖vk − wk‖

≥ 1
αk
〈wk − vk, u− vk〉+ 〈∇ f (vk), vk − wk〉

− δ

αk
‖wk − vk‖2.

This yields

〈wk − vk, vk − u〉 ≥ αk[ f (wk)− f (u) + g(vk)− g(u) + 〈∇ f (vk), vk − wk〉]− δ‖wk − vk‖2.

Since 2〈wk − vk, vk − u〉 = ‖wk − u‖2 − ‖wk − vk‖2 − ‖vk − u‖2, it follows that

‖wk − u‖2 − ‖vk − u‖2 ≥ 2αk[ f (wk)− f (u) + g(vk)− g(u) + 〈∇ f (vk), vk − wk〉]
+(1− 2δ)‖wk − vk‖2.

Since f is convex, we have f (wk)− f (vk) ≥ 〈∇ f (vk), wk − vk〉. This implies that

‖wk − u‖2 − ‖vk − u‖2 ≥ 2αk[ f (wk)− f (u) + g(vk)− g(u)− f (wk) + f (vk)]

+(1− 2δ)‖wk − vk‖2.

Setting u = u∗, we obtain

‖vk − u∗‖2 ≤ ‖wk − u∗‖2 − 2αk[( f + g)(vk)− ( f + g)(u∗)]− (1− 2δ)‖wk − vk‖2

≤ ‖wk − u∗‖2.
(15)

From (12) and (15), we see that

‖uk+1 − u∗‖2 ≤ ‖wk − u∗‖2 − ‖PΩ(vk)− vk‖2

≤ ‖wk − u∗‖2. (16)

Hence,

‖uk+1 − u∗‖ ≤ ‖wk − u∗‖
≤ ‖uk − u∗‖+ θk‖uk − uk−1‖
≤ ‖uk − u∗‖+ θk(‖uk − u∗‖+ ‖uk−1 − u∗‖).

This shows that ‖uk+1 − u∗‖ ≤ (1 + θk)‖uk − u∗‖ + θk‖uk−1 − u∗‖. By Lemma 4,
we have

‖uk+1 − u∗‖ ≤ K ·
k

∏
j=1

(1 + 2θj)
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where K = max{‖u1 − u∗‖, ‖u2 − u∗‖}. Since
∞

∑
k=1

θk < +∞, (uk) is bounded. Thus,

∞

∑
k=1

θk‖uk − uk−1‖ < +∞. By Lemma 3, therefore lim
k→∞
‖uk − u∗‖ exists.

Next, we consider

‖wk − u∗‖2 = ‖uk + θk(uk − uk−1)− u∗‖2

= ‖uk − u∗‖2 + 2θk〈uk − u∗, uk − uk−1〉+ θ2
k‖u

k − uk−1‖2 (17)

≤ ‖uk − u∗‖2 + 2θk‖uk − u∗‖‖uk − uk−1‖+ θ2
k‖u

k − uk−1‖2.

By (15)–(17), we see that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 + 2θk‖uk − u∗‖‖uk − uk−1‖+ θ2
k‖u

k − uk−1‖2

−2αk[( f + g)(vk)− ( f + g)(u∗)]− (1− 2δ)‖wk − vk‖2

−‖PΩ(vk)− vk‖2.

This gives

‖PΩ(vk)− vk‖2 + (1− 2δ)‖wk − vk‖2 ≤ (‖uk − u∗‖2 − ‖uk+1 − u∗‖2)

+2θk‖uk − u∗‖‖uk − uk−1‖
+θ2

k‖u
k − uk−1‖2.

Since
∞

∑
k=1

θk‖uk− uk−1‖ < +∞ and lim
k→∞
‖uk− u∗‖ exists, it follows that ‖vk−wk‖ → 0

and ‖uk+1 − vk‖ → 0. It is easily seen that ‖wk − uk‖ → 0 and hence ‖uk+1 − uk‖ → 0. On
the other hand, we see that

‖uk − u∗‖2 − ‖uk+1 − u∗‖2 ≥ 2αk[( f + g)(vk)− ( f + g)(u∗)] + (1− 2δ)‖wk − vk‖2

+‖PΩ(vk)− u∗‖2

≥ (1− 2δ)‖wk − vk‖2 + ‖PΩ(vk)− u∗‖2

≥ 0.

It follows that (uk) is Fejér convergent to S∗. Thus, we have

0 ≤ 2αk[( f + g)(vk)− ( f + g)(u∗)]

≤ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2

= (‖uk − u∗‖ − ‖uk+1 − u∗‖)(‖uk − u∗‖+ ‖uk+1 − u∗‖)
≤ 2M(‖uk − u∗‖ − ‖uk+1 − u∗‖)
≤ 2M‖uk+1 − uk‖,

where M = sup{‖uk − u∗‖|k ∈ N} < +∞. Since (uk) is bounded, the set of weak
accumulation points is nonempty. Take any weak accumulation point ū of (uk). Thus,
there is a subsequence (ukn) of (uk) weakly converging to ū. Moreover, {wkn} also weakly
converges to ū. Since (ukn) is bounded and ‖wkn − vkn‖ → 0, from (A2), we obtain

lim
n→∞

‖∇ f (wkn)−∇ f (vkn)‖ = 0.

Since vkn = proxαkn g(w
kn − αkn∇ f (wkn)), it follows from (7) that

wkn − αkn∇ f (wkn)− vkn

αkn

∈ ∂g(vkn), (18)

which yields
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wkn − vkn

αkn

+∇ f (wkn)−∇ f (vkn) ∈ ∇ f (vkn) + ∂g(vkn) ∈ ∂( f + g)(vkn). (19)

By passing n→ ∞ in (19), we get from (18) and Lemma 2 that 0 ∈ ∂( f + g)(ū). Thus,
ū ∈ S∗. By Lemma 5 (ii), we conclude that (uk) weakly converges to a point in S∗.

4. Numerical Experiments

In this section, we aim to apply our result for solving an image inpainting problem
which is of the following mathematical model:

min
u∈RM×N

1
2
‖A(u− u0)‖2

F + µ‖u‖∗ (20)

where u0 ∈ RM×N(M < N), A is a linear map that selects a subset of the entries of an
M × N matrix by setting each unknown entry in the matrix to 0, u is matrix of known
entries A(u0), and µ > 0 is regularization parameter.

In particular, we investigate the image inpainting problem [25,26]:

min
u∈RM×N

1
2
‖PΩ(u)− PΩ(u0))‖2

F + µ‖u‖∗ (21)

where ‖ · ‖F is the Frobenius matrix norm, and ‖ · ‖∗ is the nuclear matrix norm. Here, we
define PΩ as follows:

PΩ(u) =

{
uij, (i, j) ∈ Ω,
0, otherwise.

(22)

The optimization problem (21) relates to (4). In fact, let f (u) = 1
2‖PΩ(u)− PΩ(u0)‖2

F
and g(u) = µ‖u‖∗. Then, ∇ f (u) = PΩ(u)− PΩ(u0) is 1-Lipschitz continuous. Moreover,
proxg is obtained by the singular value decomposition (SVD) [27].

From Algorithm 5, we obtain the Algorithm 6 for image inpainting.

Algorithm 6 Forward-backward algorithm for image inpainting.

Step 1: Input u0, u1, σ, φ and δ.
Step 2: Compute

wk = uk + θk(uk − uk−1)

Step 3: (Linesearch rule) Set αk = σ

Ak = αk‖∇ f (proxαk g(u
k − αk∇ f (uk)))−∇ f (wk)‖F

Bk = δ‖proxαk g(u
k − αk∇ f (uk))− wk‖F.

While Ak > Bk
αk = σφk

End while.
Step 4: Compute

vk = proxαk g(w
k − αk∇ f (wk))

and
uk+1 = PΩ(vk), k ≥ 0.

Set k = k + 1 go to Step 2.

To measure the quality of images, we consider the signal-to-noise ratio (SNR) and the
structural similarity index (SSIM) [28], which are given by

SNR = 20 log
‖u‖F

‖u− ur‖F
(23)
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and

SSIM =
(2auaur + c1)(2σuur + c2)

(a2
u + a2

ur + c1)(σ2
u + σ2

ur + c2)
(24)

where u is the original image, ur is the restored image, au and aur are the mean values of
the original image u and restored image ur, respectively, σ2

u and σ2
ur are the variances, σ2

uur

is the covariance of two images, c1 = (0.01L)2 and c2 = (0.03L)2, and L is the dynamic
range of pixel values. SSIM ranges from 0 to 1, and 1 means perfect recovery. Next, we
analyze its convergence including its effects of the parameters δ, φ and σ that proposed in
Algorithm 5. We now present the corresponding numerical results (number of iterations
denoted by Iter and CPU denoted by the time of CPU).

First, we investigate the effect δ. Set parameters as follows:

θk =

{ tk−1
tk+1

if 1 ≤ k < N,
1
2k otherwise,

(25)

where tk is a sequence defined by t1 = 1 and tk+1 =
1+
√

1+4t2
k

2 .
From Table 1, we observe that SNR and SSIM of Algorithm 5 have been getting larger

when the parameter δ approaches 0.5. Moreover, the CPU of Algorithm 5 is decreasing
when δ tends to 0.5.

Table 1. The convergence results of Algorithm 5 for each δ.

Set: σ = 1 and φ = 0.4

δ
N = 227, M = 340 N = 480, M = 360

Iter = 60 Iter = 90

SNR SSIM CPU SNR SSIM CPU

0.5 22.8626 0.9476 2.2656 26.3994 0.9210 11.5229
0.1 21.8228 0.9437 4.0916 26.3982 0.9209 21.7439
0.05 14.7249 0.9165 5.0465 26.3974 0.9181 27.2411
0.01 9.9919 0.8886 6.7001 19.2859 0.8939 37.8360

0.001 −0.7012 0.3889 8.0271 5.9239 0.6228 47.7375

Figures 1–4 show the SNR and the reconstructed images for each caseof dimensions.
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Figure 1. Graph of the number of iterations and SNR for the parameter δ. (a) Number of iterations and SNR with N = 227,
M = 340; (b) number of iterations and SNR with N = 480, M = 360.
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Figure 2. Graph of number of iterations and SNR for the parameter φ. (a) Number of iterations and SNR with N = 227,
M = 340; (b) number of iterations and SNR with N = 480, M = 360.

(a) (b) (c) (d)

Figure 3. The painted image and restored images with the real image N = 227, M = 340. (a) The
painted image; (b) restored images in Table 1 for δ = 0.5 (SNR = 22.8626, SSIM = 0.9476); (c) restored
images in Table 2 for φ = 0.5 (SNR = 23.0594, SSIM = 0.9479); (d) restored images in Table 3 for σ = 5
(SNR = 22.9865, SSIM = 0.9477).

(a) (b) (c) (d)

Figure 4. The painted image and restored images with the real image N = 480, M = 360. (a) The
painted image; (b) restored images in Table 1 for δ = 0.5 (SNR = 26.3994, SSIM = 0.9210); (c) restored
images in Table 2 for φ = 0.5 (SNR = 26.4002, SSIM = 0.9210); (d) restored images in Table 3 for
σ = 0.5 (SNR = 26.4084, SSIM = 0.9210).

Next, we discuss the effect of φ. The numerical experiments are given in Table 2.
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Table 2. The convergence results of Algorithm 5 for each φ.

Given: δ = 0.4 and σ = 1

φ

N = 227, M = 340 N = 480, M = 360

Iter = 60 Iter = 90

SNR SSIM CPU SNR SSIM CPU

0.5 23.0594 0.9479 3.0865 26.4002 0.9210 17.0693
0.1 21.2594 0.9428 2.2104 26.3604 0.9205 11.4325
0.05 20.2735 0.9391 2.1874 26.5203 0.9207 11.5494
0.01 10.9957 0.8918 2.2586 25.8063 0.9114 11.2883

0.005 9.6387 0.8658 2.2449 22.4065 0.9095 11.3964

From Table 2, we observe that SNR, SSIM, and CPU time of Algorithm 5 have been
getting larger when the parameter φ approaches 0.5.

Next, we discuss the effect σ. The numerical experiments are given in Table 3. From
Table 3, we observe that SNR, SSIM, and the CPU time of Algorithm 5 have been getting
larger if σ increases. The SNR and the reconstructed images are shown in Figures 3–5.

Table 3. The convergence results of Algorithm 5 for each σ.

Set: δ = 0.4 and φ = 0.4

σ
N = 227, M = 340 N = 480, M = 360

Iter = 60 Iter = 90

SNR SSIM CPU SNR SSIM CPU

5 22.9865 0.9477 3.9889 26.3946 0.9209 21.2420
1 22.8626 0.9476 2.2848 26.3994 0.9210 11.1571

0.5 22.8327 0.9474 2.3458 26.4084 0.9210 11.2728
0.05 20.2735 0.9391 1.3531 26.5230 0.9207 6.0226

0.005 9.6387 0.8638 1.3434 22.4065 0.9095 6.2738
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(b)

Figure 5. Graph of the number of iterations and SNR for the parameter σ. (a) Number of iterations and SNR with N = 227,
M = 340; (b) number of iterations and SNR with N = 480, M = 360.

The real images are shown in Figure 6, input image, and the reconstructed images are
shown in Figures 3, 4 and 6, respectively.
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(a) (b)

Figure 6. The original images. (a) The original image of size N = 227, M = 340; (b) the original image
of size of N = 480, M = 360.

Now, we present the performance of Algorithms 5 and its comparison to the projected
version of Algorithm 1 [13] and Algorithm 2 [14]. The initial point u0and u1 are chosen to
be zero and let αk =

1
‖A‖2 and λk = 0.09 in Algorithm 1. Let σ = 0.1, δ = 0.13, φ = 0.5 and

θ be defined by (25) in Algorithms 2 and 5, respectively. The numerical results are shown
in Table 4.

Table 4. Computational results for solving (21).

Image Size Image Size

SNR SSIM SNR SSIM

Algorithm 1 19.8276 0.9378 25.7210 0.9363
Algorithm 2 20.4704 0.9402 26.2362 0.9373
Algorithm 5 22.9158 0.9477 27.6581 0.9400

From Table 4, we see that the experiment results of Algorithm 5 are better than
Algorithms 1 and 2 in terms of SNR and SSIM in all cases.

The figure of the inpainting image for the 260th and 310th iterations are shown in
Figures 7–9, respectively.

(a) (b) (c) (d)

Figure 7. The painted image and restored images. (a) The painted image; (b) restored images in
Algorithm 1 (SNR = 19.8276, SSIM = 0.9278); (c) restored images in Algorithm 2 (SNR = 20.4704,
SSIM = 0.9402); (d) restored images in Algorithm 5 (SNR = 22.9158, SSIM = 0.9477).
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(a) (b) (c) (d)

Figure 8. The painted image and restored images. (a) The painted image; (b) restored images in Algorithm 1 (SNR = 25.7210,
SSIM = 0.9363); (c) restored images in Algorithm 2 (SNR = 26.2362, SSIM = 0.9373); (d) restored images in Algorithm 5
(SNR = 27.6581, SSIM = 0.9400).
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(b)

Figure 9. The SNR value and number of iterations for all cases. (a) Graph of SNR value and number of iterations of Figure 7;
(b) graph of SNR value and number of iterations of Figure 8.

5. Conclusions

In this research, we investigated inertial projected forward-backward algorithm using
linesearches for constrained minimization problems. The weak convergence results were
proved under control conditions. The proposed algorithms do not need to compute the
Lipschitz constant of the gradient of functions. We applied our results to solve image
inpainting. We also presented the effects of all parameters that are assumed in our method.

For our future research, we aim to find a new linesearch technique that does not
require the Lipschitz continuity assumption on the gradient of the function. We note that
the proposed algorithm depends on the computation of the projection which is not an easy
task to find in some cases. It is interesting to construct new algorithms that do not involve
the projection.
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