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Abstract: In this paper, by using the new concept of (o, i, w)-quasiinvexity associated with interval-
valued path-independent curvilinear integral functionals, we establish some duality results for a
new class of multiobjective variational control problems with interval-valued components. More
concretely, we formulate and prove weak, strong, and converse duality theorems under (o, i, w)-
quasiinvexity hypotheses for the considered class of optimization problems.
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1. Introduction

Duality theory represents an important part in the study of mathematical program-
ming problems. Due to its effectiveness, it has been extended and generalized to new classes
of optimization problems. Here, we mention the classical research papers of Hanson [1],
Mond and Hanson [2], Mond and Smart [3], Aggarwal et al. [4]. Further, the multiobjective
optimization problems with mixed constraints have been studied by many researchers,
with remarkable results. In this regard, Mishra and Mukherjee [5] considered a multi-
objective control problem and established Mond—Weir duality results under V-invexity
assumptions and their generalizations. Ahmad and Sharma [6] obtained sufficient con-
ditions of optimality and formulated Wolfe and Mond-Weir duals for a class of multi-
objective variational control problems. Further, Antczak [7] established Mond-Weir and
Wolfe type duals for multiobjective variational control problems under (®, p)-invexity.
Recently, Mititelu and Treantd [8] formulated and proved efficiency conditions in vector
control problems governed by multiple integrals. Following this work, Treanta [9] inves-
tigated the necessary and sufficient efficiency conditions in uncertain variational control
problems. For more and various contributions and approaches to multiobjective varia-
tional control problems, the reader is directed to Zhian and Qingkai [10], Mititelu [11],
Treantd and Udriste [12], Zalmai [13], Hachimi and Aghezzaf [14], Treantd [15,16], Treantd
and Mititelu [17], Chen [18], Kim and Kim [19], Gulati et al. [20], Nahak and Nanda [21],
Arana-Jiménez et al. [22], Khazafi et al. [23], Zhang et al. [24], Treantd and Arana-Jiménez [25].

The present paper, motivated by the aforementioned research works and practical
reasons, establishes weak, strong, and converse Mond-Weir duality results for a new
class of multiobjective optimization problems with interval-valued components governed
by path-independent curvilinear integral functionals. The main novelty elements of this
work are represented by the necessary LU-efficiency conditions derived using some recent
research papers of the author; the notion of (g, i, w)-quasiinvexity associated with interval-
valued path-independent curvilinear integral functionals; and the presence of a partition
associated with a set of indices used for the inequality-type constraints.

In the following, we organize the paper as follows: in Section 2, we present nota-
tions, preliminary mathematical tools, and the problem formulation we are going to study;
in Section 3, we establish the main results of this paper—namely, weak, strong, and con-
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verse Mond—-Weir dualities are formulated and proved for the new class of multiobjective
optimization problems; finally, in Section 4, we conclude the paper.

2. Preliminaries

Throughout this paper, we consider () as a compact domain in the Euclidean real
space R™ and denote by t = (t*), « = T,m, u = (/), j € 1,k,and a = (a'), i = 1,1,
the points in ), R*, and R", respectively. Further, consider that (2 D v is a piecewise
smooth curve joining the different points t; = (H,...,#I"), t, = (t},...,t5') in Q. Now, we
define the following continuously differentiable functions

Xz(Xi):Qx]R”ka%]R”m, i=Tn a=1m,

V=,....Y) =Vs) : OxR' xR - RI, p=T,q,

and we accept that the following Lagrange densities

Xo= (X)) PR, i=Tn a=Tm,

satisfy the closeness conditions (complete integrability conditions)

D,7X,,ﬁ = D“XJ;' an=T,m a#n i=1n,

where Dy, is the total derivative operator. Denote by A the space of all piecewise smooth
state functions a : Q3 — R", and by U the space of all piecewise continuous control functions
u : Q — RF, endowed with the induced norm. Additionally, in this paper, for any two
p-tuples | = (ll, cery lp), c= (cl,. e cp) in R?, we use the following partial ordering

l=cel=c¢ I<cel <,

I<celh<c, 12cel<cl#c r=1p.

Let K be the set of all closed and bounded real intervals. Denote by I = [it,iY] a closed
and bounded real interval, where i* and i indicate the lower and upper bounds of I,
respectively. Throughout this paper, the interval operations are performed as follows:

(1)I:]:>z'L:jL and Y = jY;
(2) if it =i =i then I = [i,i] =i
(3)1+]—[ + i+ Y

(4) — :—[IL,ZU]—[—I —i'];
(8) I—J=[i" i —jL]}
(6)k+1= [k+z k+iY], ke R;
(7) kA = [ka® ,ka I KER k>0,
(7') kA = [ka Jkat], ke R, k < 0;
(8) 1/7 = lit/jt 4774, 11,74 > o.

Definition 1 (Treanta [9]). Let I,] € K. We write I < [ if and only if i < jL and it < j4.
Further, we write I < ] ifand only if i® < jL and i < jY.

Definition 2 (Treanta [9]). A function f : QO x R" x R¥ — K, defined by

f(ta(t),u(t)) = [fH(ta(t),ut), f1(tat),u(t)], teQ,

where fL(t,a(t),u(t)) and fU(t,a(t), u(t)) are real-valued functions and satisfy the condition
FEta(t),u(t)) < fU(ta(t),u(t)); t € Qis said to be an interval-valued function.
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For « = 1, m, we consider the following vector continuously differentiable functions
with interval-valued components (closed 1-forms)

fﬂé:<fo}/---rf£):(fDC)ZQX]RnXRk_)KP/ r=1,p

ga=(gh o 8h) = (80) : OX R xRE 5 K7, r=Tp,

which, for r = 1, p, generate the interval-valued path-independent curvilinear integral
functionals (see Einstein summation):

"G AxU =K,
F’(a,u):/wf;(t,a(t pae = | /f ))dit, /f u(t))de]
G’ (a,u) :Ag(ﬁ(t,a( e = | /g ))di*, /g u(t)de].

Further, in accordance with Treantd and Mititelu [17,26], following Treantd [9], in order
to formulate and prove the main results included in this paper, we introduce the concept of
(0, ¢, w)-quasiinvexity associated with an interval-valued path-independent curvilinear in-
tegral functional. For « = 1, m, we consider an interval-valued continuously differentiable
function:

By : QO x R" x R x RF 5 K,
ha = ha(t,a(t),ac(t),u(t)) = [hg(ta(t), ag(t),u(t)), b (t,a(t), ag(t),u(t))],

ﬁ (t) and fora € Aand u € U, we introduce the following interval-valued
path-independent curvilinear integral functional:

where a (t) :=

H:AxU =K, Hau)= /h (t,a(t), ac(t), u(t))d"

Uhta Jac(),u dt"‘/huta)ag() w(t))de |

Furthermore, let ¢ be a real number, ¢ : A XU x A XU — [0,00) be a positive
functional, and w ((a, u), (a uo)) be a real-valued function on (A x U)?.

Definition 3.
(i) If there exist
v:Q xR x RF x R" x RF — R",

V= v(t,a(t),u(t),ao(t),uo(t)) = (vi(t,a(t),u(t),ao(t),uo(t))), i=1,...n
of Cl-class with v(t, ao(t),uo(t),ao(t),uo(t)) —0,VteQ, v(t) = v(ty) =0, and
7:Q x R" x RF x R" x R — RF,
T= T(t,a(t),u(t),ao(t),uo(t)> = (Tj(t,a(t),u(t),ao(t),uo(t)>), i=1,...k

of CO-class with T(t, ao(t),uo(t),ao(t),uo(t)) =0, Vt € Q, t(t1) = T(t2) = 0, such that for
every (a,u) € AxU,
H(a,u) < H(ao, uo)

= (a1, ) / [(5)a (£,a°(5),a2(8), u () ), (ni)a (1,0 (1), a2(8), w0 (1)) |vat®
Y
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+¢(a,u,a°,u0)/y[(h§)ag (t,ao(t),ag(t),uo(t)),(hk[)ag (t,ao(t),ag(t),uo(t)ﬂngdt”‘
—i—tp(a,u,ao,uo)/y[(hk)u(t,ao(t),ag(t),uo(t)),(hg)u(t,ao(t),ag(t),uo(t)ﬂTdt“

+oy (a, u,d’, u0> w? ((a, u), (ao, u0)> < 10,0],

ot, equivalently,

1p(a,u,ao,u0> /7 [(hf;)u(t,ao(t),ag(t),uo(t)),(h}{)u(t,ao(t), ]vdt”‘

HORRO)
(o a i) [ [0, (100 aR0,00)), (0o, (1,°(8), a0 10(1)) | Dot
9 (aa® ) [ [0 (100, a0,00), ) (1:0°(0),a0), (1)) |t
+g¢(a, u,al, uo)wz((a,u), (@, uo)) > [0,0] = H(a,u) > H(ao, uO),
then, H is said to be (0, , w)-quasiinvex at (ao, uo) € A x U with respect to v and T.

(ii) If there exist
v: QO xR" x RF x R" x RF — R",

V= v(t,a(t),u(t),ao(t),uo(t)> = (1/1- (t,a(t),u(t),ao(t),uo(t))), i=1,...n,
v

7: O x R" x RF x R" x RF — RF,
7= T(t,a(t),u(t),ao(t),uo(t)> - (rj (t,a(t),u(t),ao(t),uo(t)>), i=1,...k

of CO-class with T(i‘, ao(t),uo(t),ao(t),uo(t)) =0, Vt € Q, t(t1) = t(t2) = 0, such that for
every (a,u) # (a°u®) € Ax U,

H(a,u) < H(ao, uo)
= (o, u) [ [00)a (100), a0 0(0), (o (1,0°(0), a2, 10 (1)) it
(o a ) [ [0 (100,00, 10(0)), (), (1,00, aB00), ) | Dt
9 (awa ) [ 00 (a0, a0, 0 (1) R0, (1)t

+oy (u, u,a, u0> w? ((a, u), (a®, u0)> < [0,0],

or, equivalently,
w(a,u,ao,uo) / [(hg;)a(t,ao(t),ag(t),uo(t)),(h,,Lf)a(t,ao(t),ag(t),uo(t))]vdt“
v
+¢(a,u,a°,u0)/7[(h§)ag (t,ao(t),ag(t),uo(t)),(hk[)ag (t,ao(t),ag(t),uo(t)ﬂngdt”‘
+p(a,,0%,u0) /, [y (1,0(0),a2(8), 1)), () (1,0 (8), a2(0), w0 (1)) |

+Ql[J(11, u,ao,u0>w2((a,u), (ao, uo)) > [0,0] = H(a,u) > H(ao,u0>,
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then, H is said to be strictly (o, v, w)-quasiinvex at (ao, uo) € A x U with respect to v and T.

Next, for « = 1, m, we consider the vector continuously differentiable function with
interval-valued components

By : QxR x R™ x RF — K?,
o = ha(t, (), a(5), u()) = (Wi (t,a(8), ag(8), u(b)) )
= (Bt a(t), ag(8), u(t)), WM (1 a(t), ag (1), ()],
(TRt a (), a(8), u(t)), WY (1 a(t), a (1), u(1))]).

Definition 4. The vector path-independent curvilinear integral functional with interval-valued
components

H:AxU =K', H /h,xta B, ac(t), u(t))d
= (1 mi (o) ac(t),u(eare / (1 ae) ag (6) u(6)dr"],
/h”L (t,a(t), ac(), u(t))de, /hputa()ag() u(t))dr) )

is said to be (0, ¢, w)-quasiinvex (strictly (o, Y, w)-quasiinvex) at (ao, uo) € A x U with respect
to v and T, if each interval-valued component of the vector is (o, ¥, w)-quasiinvex (strictly (o, ¥, w)-
quasiinvex) at (ao, uo) € A x U with respect tov and T.

Now, we are in a position to formulate the following new class of multiobjective
fractional variational control problems with interval-valued components, called the Primal
Problem (in short, PP):

FU(a,u) FYY(a,u) EPL(a,u) FPY(a,u)

(PP) %‘{’C @) = (|60 G0 ) (67T () G%“(»z,u)D}

subject to
%(t) — Xi(a(t,u(t)), i=Tn a=TmtcO (1)
Y(t,a(t),u(t)) <0, teQ (2)
a(ty) = a; = given, a(ty) = ay = given, (3)

where, for r = 1, p, we have denoted

Fr(au) [F"L(a,u), F"Y(a,u)] B [Pr'L(a,u) Fr'u(a,u)}
G"(a,u)  [G'l(a,u),G"U(a,u)]  LG"E(a,u) G"Y(a,u)

BING Nats [ et a(e), u(e)dee
/g ))dt /g u()de |

and it is assumed that G"(a,u) > [0,0], V(a,u) € A x U.
The set of all feasible solutions in (PP) is defined by

D:={(a,u)|lac A ucll satisfying (1), (2), (3)}.
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Definition 5. A feasible solution (a°,u’) € D in (PP) is called an LU-efficient solution if there

) €
is no other (a,u) € D such that K(a,u) < (a 0, u%).

Taking into account Treantd [9], Mititelu and Treanta [8], and Treanta and Mititelu [26],
under constraint qualification assumptions, if (a°, u’) € D is an LU-efficient solution of the
variational control problem (PP), then there exist 0 = (6,,), ¢(t), and ¢(t), with ¢(t) =
(@P(1), P(t) = (¢¥(t)) piecewise smooth functions, satisfying the following conditions
(see Einstein summation)

GH{G”(a uO)aa::'l (t,ao(t),uo(t)>—l-"”(a0 u )aag: (t O(t),uo(t)ﬂ

a 1

OaU)WU»+¢WQ2?Oﬂ%mﬂUD+§§UﬁdLi:Lmt:LU (4)

+oi (1) 5

S (6a(1),10(8)) — FA(, uo)aaﬁ[ (t ao(t),uo(t)ﬂ

+¢f‘(t)%f§ (t,ao(t),uo(t)) +g0/5(t)zyf (t a (1), uo(t)) =0, j=Tki=LU (5
(pﬁ(t)yﬁ (t,ao(t),uo(t)> =0 (nosummation), (6,¢(f)) =0, (6)

for all t € (), except at discontinuities.

Definition 6. The feasible solution (a°,u’) € D is a normal LU-efficient solution for (PP) if
the necessary LU-efficiency conditions formulated in (4)—(6) hold for 8 = 0 and ¢'6, = 1, ¢' =
(1,..,1)eRF, /=L U

3. Mond-Weir Duality
Let {Q1,Qy,---,Qs} be a partition of the set Q = {1,2,---,g}, where s < gq.
S

For (b,w) € A xU and N := ) _ 9, with the same notations as in Section 2, we associate to
=1

(PP) the next multiobjective fractional variational control problem with interval-valued

components of the vector, called the Dual Problem (in short DP):

(DP) max

(bw)

(b ) — iy (b, w(e)de [ fat (2, b(E), w(t))de
elb) = ([fvgwt,b(t),w(t))dt“’ fvgk”u,b(t),w(t))dt“}’

S, R (), w(e)de [ F (8 (), w(t))de
K [fygfi'L(t,b(t),w(t))dt“’ fvgg’u(t,b(t),w(t))dt“},>}

subject to

0ra 6740100 22,001, (0)) — F70,0) B 1,000, 00)

0802 1, b(8) w(8) + () D (1 b(E) w() + (1) =0, i=T = LU (7)
0ra| 6740, 0) 2L 1,600, 0(6) — P 0,0) B 1,600, w(0)|
! 0
080 25 00, 00)) + 9P b (b0, w() =0, j=TE e=LU  (8)

(0|0, b00),w(0) — SE0] 5+ T PO, 000 20, 6=T5  (9)

BEQs
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0=(6,,) =0, ¢(t)=(¢P(t)) >0, b(t;)=a;=given, b(ty)=ay=given, t=L,U. (10)

In this section, we establish that the multiobjective optimization problems with
interval-valued components of the ratio vector, (PP) and (DP), are a Mond-Weir (see [27])
dual pair under (o, i, w)-quasiinvexity hypotheses. Further, assume that A is the set of all
feasible solutions associated with (DP).

Now, in accordance with Treantd and Mititelu [17], we formulate and prove a first
duality result.

Theorem 1 (Weak Duality). Let (a,u) € D be a feasible solution of the multiobjective variational
control problem with interval-valued components (PP) and (b,w,0,¢,¢) € A be a feasible
solution of the multiobjective variational control problem with interval-valued components (DP).
Further, assume that the following conditions are fulfilled:

(a) Each functional

frl’,'f"(a,u) = A[G”(b,w) ta(t),u(t)) — FH(b,w)git (ta(t),u(t)))dt®, r=1,p, 1 =L, U

is (0", 4, w)-quasiinvex at (b, w) with respect to v and T, or, equivalently, each interval-valued
path-independent curvilinear integral functional

F(a,u) = [Fi(a,u), Fr¥(a,u)], r=T1p

is (0", v, w)-quasiinvex at (b, w) with respect to v and .
(b) For ® =1, s, each functional

Zoaw)= [ {q);-*(t) (a0 - G20 5+ T qoﬂa)y,g(t,a(t),u(t))}dt“

BEQs

is (0%2, ¢, w)-quasiinvex at (b, w) with respect to v and T.
(c) At least one of the functionals given in (a), (b) is strictly (o, ¢, w)-quasiinvex at (b, w)
with respect to v and T, where ¢ = " or 0%2.
S
(d) 0,0 + Y 0" >0 (0", 0"?€R), 1=LU.

9=1
Then, the infimum of (PP) is greater than or equal to the supremum of (DP).

Proof. Denote by 77(a,u) and §(b, w, 6, ¢, ) the value of problem (PP) at (a,u) € D and
the value of problem (DP) at (b,w,0,¢,¢) € A, respectively. Contrary to the result,
suppose that 7t(a, 1) < 5(b,w, 0, ¢, ¢). Further, for r = 1,p, t=L,Uand ¢ = 1,s, consider
the following nonempty set:

S = {(a,u) € AxU| FoP(a,u) < FLO(b,w), Zo(a,u) < zﬂ(b,w)}.

Using (a) for (a,u) € Sandr =1,p, : = L, U, we get

fﬁf"(a,u) < Ff’,;w(b, w) =

lP(a,u,bIW)/W[G"’(bIW)( 2 )o(t,b(8),w(t)) — F7(b,w) (g ) (£, (), w(t))]vdt*

+1P(ﬂ,u,bIW)/W[G”(bIW)(fi")w(t,b(t)IW(t)) — F(b, w0) (8 )w(t, b(t), w(t))] Tdt®

< —¢""p(a,u,b,w)a?((a,u), (b, w)).
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Multiplying by 0 = (0,,,) = 0, : = L, U, and making summation over r = 1, p, we find

¥(a,u,b,w) /y 0r,[G" (b, w) (fa)u (£, b(t), w(t)) — F (b, w) (85" o (£, b(t), w(t))]vat"

+¢(ﬂ/H,bIW)/7Gm[Gr"(b,W)(fof")w(frb(f),W(t)) — F (b, w) (8 ) (t, b(E), w(t))|Tdt"

< —er,gr'lt/)(a,u, b,w)wz((a,u), (b, w)). (11)

For (a,u) € S, the inequality Zy(a,u) < Zy(b,w) holds and, according to (b) and
making summation over ¢ = 1, s, it follows that

pla,,b,0) [ [0 (XDuE b0, () — 67 ()Dav + 450 (Xh)uo (8, (1) (1) ] i

sy

Hp(ab,0) [ PO (6 b, 0O + 98 () Vp)a(t (), w(E)7]ar

S

<-) 0%2y(a,u,b,w)w?((a,u), (b,w)). (12)
8=1

Making the sum (11) + (12) side by side and taking into account (c), we have

Eb(ﬂ/u,bIW)/79r,z[Gr”(brw)( & o (£, b(8),w(t)) — F(b,w) (g ) (£, b(t), w(t))]vdt*

(e b,0) [ [PHO@DE0),w(0) + (O Tp)a(t,b(0) w() |vae
(e b,0) [ 01,067 (0 w) ()t D), (1)) — B0, 0) (& ot b(0), () e
(a1 b,0) [ [pHO@ED(b b0, 0(0) + (O el b(D), w(t) | rar*

—p(a,u,b,w) / [¢% (1) Dyv]dt® < — (8,0 + i 0"y (a,u,b,w)w?((a,u), (b,w)), t = L, U.
r 9=1

_ The previous inequality implies (a,u, b, w) > 0 and, as a consequence, we can rewrite
- | 0ralG7 (0, 0) )0, 6(8) (1)) = P (b, ) (2 (1 bL1), (1) it
+ [ [t Dt b, w) + g OO p)s(t,b(8) w(e) v
+ [ OralG7 (b, 0) f3 a0, 0(8) (1)) = F (0, 0) (821 bL0), (1))t
+ ] [0 @l b(e)w(8) + 9P (1) D)t b(8) w(0) vt

- / (" (£) Dav]dt* < —(0,,0"" + i 0%?)w?((a,u), (b,w)), t=L,U.
7 9=1

Now, considering constraints (7) and (8) of (DP), we obtain
S
- / VD™ ()" — / 6" () D]t < —(0,,0" + Y 0%2))w?((a,u), (b,w)), ¢t = L, U
gt gt 9=1

By direct computation, we get

Du[vg® ()] = ¢" (1) Dav + vDug® (1)
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A D (£)dit* = /7 Da[vg® (1)]dt* — /7 [ (£) Dav]dt®

but, applying the condition v(t1) = v(t) = 0 and the result “A total divergence is equal to a
total derivative.”, we get

/r Da[vg® (1)]dt* = 0.

It results that
- / VD™ (1)dit* — / [6%(£) Dav]dt* = 0.
v v

Consequently,

S
0< =00 + Y 0")w?((a,u), (bw)), 1=LU
=1

and applying the hypothesis (d) and w?((a, u), (b,w)) > 0, we get a contradiction. There-
fore, the infimum of (PP) is greater than or equal to the supremum of (DP). [

The next, according to Treantd and Mititelu [17], establishes a strong duality between
the two considered multiobjective optimization problems with interval-valued components.

Theorem 2 (Strong Duality). Under the same (o, 1, w)-quasiinvexity hypotheses formulated in
Theorem 1, if (a°,u°) € D is a normal LU-efficient solution of the Primal Problem (PP), then
there exist 6°, ¢°(t), and ¢°(t) such that (a°,u°,0°,¢°, ¢°) € A is an LU-efficient solution of
the Dual Problem (DP) and the corresponding objective values are equal.

Proof. Considering that (a°,u") € D is a normal LU-efficient solution in (PP), the neces-
sary LU-efficiency conditions, formulated in (4)~(6), involve that there exist §°, ¢°(t), and
¢°(t) such that (a°,u°,6°,¢°, ¢°) is a feasible solution for (DP). Since

P} 0i )
a%(t) - x;(t,ao(t),uo(t)), i=Tn a=Tm tecQ

and (by (6))
goﬁ(t)y/g (t, ao(t),uo(t)) =0, (summationoverf), teQ,

the dual objective has the same value as the primal objective and, by Theorem 1, (ao, u®, 69,
#°, 9°) € A is an LU-efficient solution of (DP). [

The following theorem formulates a converse duality result associated with the con-
sidered multiobjective optimization problems with interval-valued components.

Theorem 3 (Converse Duality). Let (a°,u°,6°,¢°, ¢°) € A be an LU-efficient solution of (DP).
Further, assume that the following conditions are fulfilled:

(a) (a,u) € D is a normal LU-efficient solution of (PP);

(b) the hypotheses of Theorem 1 are satisfied for (a°,u®,6°,¢°, ¢°).

Then, (a,7) = (a°,u®) and the corresponding objective values are equal.

Proof. Contrary to the result, let us suppose that (a°,u°) is not a normal LU-efficient
solution of (PP), thatis, (@,u) # (a°,u%). As (a,%) € D is a normal LU-efficient solution
of (PP), according to Treanti [9] and Mititelu and Treanta [8], there exist 6, (t) and ¢(t),
satisfying (4)—(6) and Definition 6. It follows

F(0) | Xk a(e), 1) — 02 (0 §+ﬁ% POVp(talt),u(n) 20, 9=Ts
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¢°, ¢°). This contradicts the maximal LU-efficiency of (a%,u°,6°,¢°, ¢°). Hence, (7,7) =

(a°,u%) and the corresponding objective values are equal. [

Remark 1. If, for r = 1,p and (a,u) € A x U, each interval-valued path-independent curvi-
linear integral functional / gn(t,a(t), u(t))dt® is equal to 1, then we obtain primal and dual
i

multiobjective nonfractional variational control problems with interval-valued components and the
corresponding Mond—Weir duality results.

4. Conclusions

In this paper, we have studied a dual pair of multiobjective variational control prob-
lems with interval-valued components. More precisely, based on the new notion of (o, ¥, w)-
quasiinvexity associated with interval-valued path-independent curvilinear integral func-
tionals, we have established weak, strong, and converse duality results for the considered
class of optimization problems. Moreover, by considering the physical meaning of the
curvilinear integrals (mechanical work) and the importance of Interval Analysis in the
applied sciences and engineering, this research work can be seen as a starting point for
further investigations.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author would like to thank anonymous referees for their careful reading
and constructive suggestions that improve substantially the revision of the manuscript.

Conflicts of Interest: The author declares no conflict of interest.

References

1.  Hanson, M.A. On sufficiency of Kuhn-Tucker conditions. . Math. Anal. Appl. 1981, 80, 545-550. [CrossRef]

2. Mond, B.; Hanson, M.A. Duality for control problems. SIAM ]. Control 1968, 6, 114-120. [CrossRef]

3. Mond, B.; Smart, I. Duality and sufficiency in control problems with invexity. . Math. Anal. Appl. 1988, 136, 325-333. [CrossRef]

4. Aggarwal, S.; Bhatia, D.; Neelam, L. Duality in multiple right hand choice linear fractional problems. ]. Inform. Optim. Sci.
1991, 12, 13-24. [CrossRef]

5. Mishra, S.K.; Mukherjee, R.N. Multiobjective control problem with V-invexity. J. Math. Anal. Appl. 1999, 235, 1-12. [CrossRef]

6.  Ahmad, I; Sharma, S. Sufficiency and duality for multiobjective variational control problems with generalized (F, «, p, 6)-V-
convexity. Nonlinear Anal. 2010, 72, 2564-2579. [CrossRef]

7. Antczak, T. Duality for multiobjective variational control problems with (®, p)-invexity. Calcolo 2014, 51, 393—421. [CrossRef]

8. Mititelu, S.; Treantd, S. Efficiency conditions in vector control problems governed by multiple integrals. J. Appl. Math. Comput.
2018, 57, 647-665. [CrossRef]

9.  Treantd, S. Efficiency in uncertain variational control problems. Neural Comput. Appl. 2020. [CrossRef]

10. Liang, Z; Ye, Q. Duality for a class of multiobjective control problems with generalized invexity. J. Math. Anal. Appl. 2001, 256,
446-461.

11. Mititelu, S. Efficiency conditions for multiobjective fractional variational problems. Appl. Sci. 2008, 10, 162-175.

12. Treantd, S.; Udriste, C. On efficiency conditions for multiobjective variational problems involving higher order derivatives.
In Proceedings of the 15th International Conference on Automatic Control, Modelling & Simulation (ACMOS’13), Brasov,
Romania, 1-3 June 2013; pp. 157-164.

13.  Zalmai, G.J. Generalized (F,b, ¢, p, 0)-univex n-set functions and semiparametric duality models in multiobjective fractional
subset programming. Int. ]. Math. Math. Sci. 2005, 6, 949-973. [CrossRef]

14. Hachimi, M.; Aghezzaf, B. Sufficiency and duality in multiobjective variational problems with generalized type I functions.
J. Glob. Optim. 2006, 34, 191-218. [CrossRef]

15. Treantd, S. On a vector optimization problem involving higher order derivatives. UPB. Sci. Bull. Ser. A 2015, 77, 115-128.

16. Treantd, S. Multiobjective fractional variational problem on higher-order jet bundles. Commun. Math. Stat. 2016, 4, 323-340.

[CrossRef]


http://doi.org/10.1016/0022-247X(81)90123-2
http://dx.doi.org/10.1137/0306009
http://dx.doi.org/10.1016/0022-247X(88)90135-7
http://dx.doi.org/10.1080/02522667.1991.10699046
http://dx.doi.org/10.1006/jmaa.1998.6110
http://dx.doi.org/10.1016/j.na.2009.11.005
http://dx.doi.org/10.1007/s10092-013-0092-6
http://dx.doi.org/10.1007/s12190-017-1126-z
http://dx.doi.org/10.1007/s00521-020-05353-0
http://dx.doi.org/10.1155/IJMMS.2005.949
http://dx.doi.org/10.1007/s10898-005-1653-2
http://dx.doi.org/10.1007/s40304-016-0087-0

Mathematics 2021, 9, 893 11 of 11

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

Treantd, S.; Mititelu, S. Duality with (p, b)-quasiinvexity for multidimensional vector fractional control problems. ]. Inform.
Optim. Sci. 2019, 40, 1429-1445. [CrossRef]

Chen, X. Duality for a class of multiobjective control problems. J. Math. Anal. Appl. 2002, 267, 377-394.

Kim, D.S.; Kim, A.L. Optimality and duality for nondifferentiable multiobjective variational problems. J. Math. Anal. Appl.
2002, 274, 255-278. [CrossRef]

Gulati, T.R.; Husain, I.; Ahmed, A. Optimality conditions and duality for multiobjective control problems. J. Appl. Anal. 2005, 11,
225-245. [CrossRef]

Nahak, C.; Nanda, S. Sufficient optimality criteria and duality for multiobjective variational control problems with V-invexity.
Nonlinear Anal. 2007, 66, 1513-1525. [CrossRef]

Arana-Jiménez, M.; Ruiz-Garzén, G.; Rufidn-Lizana, A.; Osuna-Gémez, R. A necessary and sufficient condition for duality in
multiobjective variational problems. Eur. J. Oper. Res. 2010, 201, 672—681. [CrossRef]

Khazafi, K.; Rueda, N.; Enflo, P. Sufficiency and duality for multiobjective control problems under generalized (B, p)-type 1
functions. J. Glob. Optim. 2010, 46, 111-132. [CrossRef]

Zhang, J.; Liu, S.; Li, L.; Feng, Q. Sufficiency and duality for multiobjective variational control problems with G-invexity. Comput.
Math. Appl. 2012, 63, 838-850. [CrossRef]

Treantd, S.; Arana-Jiménez, M. KT-pseudoinvex multidimensional control problem. Optim. Control Appl. Meth. 2018, 39, 1291-1300.
[CrossRef]

Treantd, S.; Mititelu, S. Efficiency for variational control problems on Riemann manifolds with geodesic quasiinvex curvilinear
integral functionals. Rev. Real Acad. Cienc. Exactas Fisicas Naturales Ser. A Matemidticas 2020, 114, 113. [CrossRef]

Mond, B.; Weir, T. Generalized concavity and duality. In Generalized Concavity in Optimization and Economics; Schaible, S.,
Ziemba, W.T., Eds.; Academic Press: New York, NY, USA, 1981; pp. 263-279.


http://dx.doi.org/10.1080/02522667.2018.1522798
http://dx.doi.org/10.1016/S0022-247X(02)00298-6
http://dx.doi.org/10.1515/JAA.2005.225
http://dx.doi.org/10.1016/j.na.2006.02.006
http://dx.doi.org/10.1016/j.ejor.2009.03.047
http://dx.doi.org/10.1007/s10898-009-9412-4
http://dx.doi.org/10.1016/j.camwa.2011.11.049
http://dx.doi.org/10.1002/oca.2410
http://dx.doi.org/10.1007/s13398-020-00842-2

	Introduction
	Preliminaries
	Mond–Weir Duality
	Conclusions
	References

