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Abstract: The present paper deals with a duality study associated with a new class of multiobjective
optimization problems that include the interval-valued components of the ratio vector. More precisely,
by using the new notion of (ρ, ψ, d)-quasiinvexity associated with an interval-valued multiple-integral
functional, we formulate and prove weak, strong, and converse duality results for the considered
class of variational control problems.
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1. Introduction

Due to the effectiveness of duality theory in mathematical programming, it has been
extended to more general classes of functions. In this sense, we mention the classical
works of Hanson [1], Mond and Hanson [2], Mond and Smart [3], Aggarwal et al. [4], and
Mukherjee and Rao [5]. The multiobjective optimization problems with mixed constraints
have been investigated by many researchers, and we would be dishonest by specifying
only some of them: Zhian and Qingkai [6], Treanţă and Udrişte [7], Zalmai [8], Hachimi
and Aghezzaf [9], and Treanţă [10–12]. For various contributions and approaches to
multiobjective variational control problems, the reader is directed to Chen [13], Kim and
Kim [14], Gulati et al. [15], Nahak and Nanda [16], Antczak and Arana-Jiménez [17],
Antczak [18], Khazafi et al. [19], Zhang et al. [20], and Treanţă and Arana-Jiménez [21].

As is well known, the concept of quasiinvexity is a generalization of the notion of
quasiconvexity. It (and some modified versions of it) played a fundamental role in formu-
lating and demonstrating sufficient efficiency conditions for certain classes of variational
problems (see, for instance, Mititelu [22], Mititelu and Treanţă [23], and Treanţă and Mi-
titelu [24]). In this paper, by considering the new notion of (ρ, ψ, d)-quasiinvexity associated
with an interval-valued multiple-integral functional, we establish Mond–Weir weak, strong,
and converse duality results for a new class of multiobjective optimization problems with
interval-valued components of the ratio vector. The duality model considered in this paper
includes a partition associated with a set of indices used for the inequality type constraints.
This element is new in multidimensional multiobjective interval-valued optimization prob-
lems. In addition, another novel element of this work is represented by the necessary
LU-efficiency conditions derived by using a recent research paper of the author (see Tre-
anţă [25]). More precisely, compared with previous research works (see [7,10–12,21,24,25]),
the present paper deals with the duality study associated with a new class of multiobjective
optimization problems including interval-valued components of the ratio vector. These
three highlighted elements, considered together at the same time, are totally new in the
related literature. In addition, to illustrate the effectiveness of the results derived in the
paper, an example is provided.

The paper is organized as follows: Section 2 includes the notations, preliminary mathe-
matical tools, and formulation of the problem that we are going to study; Section 3 contains
the main results of this paper: Mond–Weir weak, strong, and converse duality results are
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formulated and proved for the new class of multiobjective optimization problems. Finally,
Section 4 concludes the paper.

2. Preliminaries and Problem Formulation

In the following, we consider the compact domain Ω in the Euclidean real space
Rm, and denote by t = (tα), α = 1, m, u = (uj), j ∈ 1, k, and a = (ai), i = 1, n,
the points in Ω, Rk and Rn, respectively. Now, we define the following continuously
differentiable functions:

X =
(
X i

α

)
: Ω×Rn ×Rk → Rnm, i = 1, n, α = 1, m

Y =
(
Y1, . . . ,Yq

)
=
(
Yβ

)
: Ω×Rn ×Rk → Rq, β = 1, q

and we accept that the following Lagrange densities

Xα =
(
X i

α

)
: P → Rn, i = 1, n, α = 1, m

satisfy the closeness conditions (complete integrability conditions)

DζX i
α = DαX i

ζ , α, ζ = 1, m, α 6= ζ, i = 1, n,

where Dζ is the total derivative operator. We denote by A the space of all piecewise
smooth state functions a : Ω→ Rn, and by U the space of all piecewise continuous control
functions u : Ω → Rk, endowed with the induced norm. By dt := dt1dt2 · · · dtm, we
denote the volume element on Rm ⊃ Ω. In addition, in this paper, for any two p-tuples
l =

(
l1, . . . , lp

)
, c =

(
c1, . . . , cp

)
in Rp, we use the following partial ordering:

l = c⇔ lr = cr, l ≤ c⇔ lr ≤ cr,

l < c⇔ lr < cr, l � c⇔ l ≤ c, l 6= c, r = 1, p.

Consider that K is the set of all closed and bounded real intervals. We denote by
I = [iL, iU ] a closed and bounded real interval, where iL and iU indicate the lower and upper
bounds of I, respectively. Throughout this paper, the interval operations are performed
as follows:

(1) I = J =⇒ iL = jL and iU = jU ;
(2) if iL = iU = i then I = [i, i] = i;
(3) I + J = [iL + jL, iU + jU ];
(4) −I = −[iL, iU ] = [−iU ,−iL];
(5) I − J = [iL − jU , iU − jL];
(6) k + I = [k + iL, k + iU ], k ∈ R;
(7) kA = [kaL, kaU ], k ∈ R, k ≥ 0;
(8) kA = [kaU , kaL], k ∈ R, k < 0;
(9) I/J = [iL/jL, iU/jU ], jL, JU > 0.

Definition 1. Let I, J ∈ K be two closed and bounded real intervals. We write I ≤ J if and only if
iL ≤ jL and iU ≤ jU .

Definition 2. Let I, J ∈ K be two closed and bounded real intervals. We write I < J if and only if
iL < jL and iU < jU .

Definition 3. A function f : Ω×Rn ×Rk → K, defined by

f (t, a(t), u(t)) = [ f L(t, a(t), u(t)), f U(t, a(t), u(t))], t ∈ Ω,
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where f L(t, a(t), u(t)) and f U(t, a(t), u(t)) are real-valued functions and satisfy the condition
f L(t, a(t), u(t)) ≤ f U(t, a(t), u(t)), t ∈ Ω, is said to be an interval-valued function.

In the following (in accordance with Mititelu and Treanţă [23], Treanţă [25]), in order
to formulate and prove the main results included in this paper, we introduce the concept
of (ρ, ψ, d)-quasiinvexity associated with an interval-valued multiple-integral functional.
Consider an interval-valued continuously differentiable function

h : Ω×Rn ×Rnm ×Rk → K,

h = h(t, a(t), aα(t), u(t)) = [hL(t, a(t), aα(t), u(t)), hU(t, a(t), aα(t), u(t))],

where aα(t) :=
∂a
∂tα

(t), and for a ∈ A and u ∈ U , we introduce the following interval-
valued multiple-integral functional:

H : A×U → K, H(a, u) =
∫

Ω
h(t, a(t), aα(t), u(t))dt

=

[∫
Ω

hL(t, a(t), aα(t), u(t))dt,
∫

Ω
hU(t, a(t), aα(t), u(t))dt

]
.

In addition, let ρ be a real number, ψ : A×U ×A× U → [0, ∞) a positive functional,
and d

(
(a, u), (a0, u0)

)
a real-valued function on (A×U )2.

Definition 4. (i) If there exist

ζ : Ω×Rn ×Rk ×Rn ×Rk → Rn,

ζ = ζ
(

t, a(t), u(t), a0(t), u0(t)
)
=
(

ζi

(
t, a(t), u(t), a0(t), u0(t)

))
, i = 1, . . . , n,

of the C1-class with ζ
(

t, a0(t), u0(t), a0(t), u0(t)
)
= 0, ∀t ∈ Ω, ζ|∂Ω = 0, and

κ : Ω×Rn ×Rk ×Rn ×Rk → Rk,

κ = κ
(

t, a(t), u(t), a0(t), u0(t)
)
=
(

κj

(
t, a(t), u(t), a0(t), u0(t)

))
, j = 1, . . . , k,

of the C0-class with κ
(

t, a0(t), u0(t), a0(t), u0(t)
)
= 0, ∀t ∈ Ω, κ|∂Ω = 0, such that for every

(a, u) ∈ A× U :
H(a, u) ≤ H

(
a0, u0

)
⇒ ψ

(
a, u, a0, u0

) ∫
Ω

[
hL

a

(
t, a0(t), a0

α(t), u0(t)
)

, hU
a

(
t, a0(t), a0

α(t), u0(t)
)]

ζdt

+ψ
(

a, u, a0, u0
) ∫

Ω

[
hL

aα

(
t, a0(t), a0

α(t), u0(t)
)

, hU
aα

(
t, a0(t), a0

α(t), u0(t)
)]

Dαζdt

+ψ
(

a, u, a0, u0
) ∫

Ω

[
hL

u

(
t, a0(t), a0

α(t), u0(t)
)

, hU
u

(
t, a0(t), a0

α(t), u0(t)
)]

κdt

+ρψ
(

a, u, a0, u0
)

d2
(
(a, u), (a0, u0)

)
≤ [0, 0]

or, equivalently,

ψ
(

a, u, a0, u0
) ∫

Ω

[
hL

a

(
t, a0(t), a0

α(t), u0(t)
)

, hU
a

(
t, a0(t), a0

α(t), u0(t)
)]

ζdt

+ψ
(

a, u, a0, u0
) ∫

Ω

[
hL

aα

(
t, a0(t), a0

α(t), u0(t)
)

, hU
aα

(
t, a0(t), a0

α(t), u0(t)
)]

Dαζdt
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+ψ
(

a, u, a0, u0
) ∫

Ω

[
hL

u

(
t, a0(t), a0

α(t), u0(t)
)

, hU
u

(
t, a0(t), a0

α(t), u0(t)
)]

κdt

+ρψ
(

a, u, a0, u0
)

d2
(
(a, u), (a0, u0)

)
> [0, 0]⇒ H(a, u) > H

(
a0, u0

)
,

then H is said to be (ρ, ψ, d)-quasiinvex at
(

a0, u0
)
∈ A× U with respect to ζ and κ;

(ii) If there exist
ζ : Ω×Rn ×Rk ×Rn ×Rk → Rn,

ζ = ζ
(

t, a(t), u(t), a0(t), u0(t)
)
=
(

ζi

(
t, a(t), u(t), a0(t), u0(t)

))
, i = 1, . . . , n,

of the C1-class with ζ
(

t, a0(t), u0(t), a0(t), u0(t)
)
= 0, ∀t ∈ Ω, ζ|∂Ω = 0, and

κ : Ω×Rn ×Rk ×Rn ×Rk → Rk,

κ = κ
(

t, a(t), u(t), a0(t), u0(t)
)
=
(

κj

(
t, a(t), u(t), a0(t), u0(t)

))
, j = 1, . . . , k,

of the C0-class with κ
(

t, a0(t), u0(t), a0(t), u0(t)
)
= 0, ∀t ∈ Ω, κ|∂Ω = 0, such that for every

(a, u) 6= (a0, u0) ∈ A× U :
H(a, u) ≤ H

(
a0, u0

)
⇒ ψ

(
a, u, a0, u0

) ∫
Ω

[
hL

a

(
t, a0(t), a0

α(t), u0(t)
)

, hU
a

(
t, a0(t), a0

α(t), u0(t)
)]

ζdt

+ψ
(

a, u, a0, u0
) ∫

Ω

[
hL

aα

(
t, a0(t), a0

α(t), u0(t)
)

, hU
aα

(
t, a0(t), a0

α(t), u0(t)
)]

Dαζdt

+ψ
(

a, u, a0, u0
) ∫

Ω

[
hL

u

(
t, a0(t), a0

α(t), u0(t)
)

, hU
u

(
t, a0(t), a0

α(t), u0(t)
)]

κdt

+ρψ
(

a, u, a0, u0
)

d2
(
(a, u), (a0, u0)

)
< [0, 0]

or, equivalently,

ψ
(

a, u, a0, u0
) ∫

Ω

[
hL

a

(
t, a0(t), a0

α(t), u0(t)
)

, hU
a

(
t, a0(t), a0

α(t), u0(t)
)]

ζdt

+ψ
(

a, u, a0, u0
) ∫

Ω

[
hL

aα

(
t, a0(t), a0

α(t), u0(t)
)

, hU
aα

(
t, a0(t), a0

α(t), u0(t)
)]

Dαζdt

+ψ
(

a, u, a0, u0
) ∫

Ω

[
hL

u

(
t, a0(t), a0

α(t), u0(t)
)

, hU
u

(
t, a0(t), a0

α(t), u0(t)
)]

κdt

+ρψ
(

a, u, a0, u0
)

d2
(
(a, u), (a0, u0)

)
≥ [0, 0]⇒ H(a, u) > H

(
a0, u0

)
,

then H is said to be strictly (ρ, ψ, d)-quasiinvex at
(

a0, u0
)
∈ A× U with respect to ζ and κ.

Consider the vector continuously differentiable function

h : Ω×Rn ×Rnm ×Rk → Kp,

h =
(

hr(t, a(t), aα(t), u(t))
)

=
(
[hL

1 (t, a(t), aα(t), u(t)), hU
1 (t, a(t), aα(t), u(t))],

· · · , [hL
p(t, a(t), aα(t), u(t)), hU

p (t, a(t), aα(t), u(t))]
)

.
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Definition 5. The vector multiple-integral functional

H : A×U → Kp, H(a, u) =
∫

Ω
h(t, a(t), aα(t), u(t))dt

=
(
[
∫

Ω
hL

1 (t, a(t), aα(t), u(t))dt,
∫

Ω
hU

1 (t, a(t), aα(t), u(t))dt],

· · · , [
∫

Ω
hL

p(t, a(t), aα(t), u(t))dt,
∫

Ω
hU

p (t, a(t), aα(t), u(t))dt]
)

is said to be (ρ, ψ, d)-quasiinvex (strictly (ρ, ψ, d)-quasiinvex) at
(

a0, u0
)
∈ A× U with respect

to ζ and κ if each interval-valued component of the vector is (ρ, ψ, d)-quasiinvex (strictly (ρ, ψ, d)-
quasiinvex) at

(
a0, u0

)
∈ A× U with respect to ζ and κ.

Consider the following vector continuously differentiable functions:

f =
(

f1, . . . , fp
)
= ( fr) : Ω×Rn ×Rk → Kp, r = 1, p

g =
(

g1, . . . , gp
)
= (gr) : Ω×Rn ×Rk → Kp, r = 1, p.

Now, we are in a position to formulate the following new class of multiobjective
fractional variational control problems with interval-valued components, which are called
a Primal Problem (in short, PP):

(PP) min
(a,u)

K(a, u) =


∫

Ω
f1(t, a(t), u(t))dt∫

Ω
g1(t, a(t), u(t))dt

, . . . ,

∫
Ω

fp(t, a(t), u(t))dt∫
Ω

gp(t, a(t), u(t))dt




subject to

∂ai

∂tα
(t) = X i

α(t, a(t), u(t)), i = 1, n, α = 1, m, t ∈ Ω (1)

Y(t, a(t), u(t)) ≤ 0, t ∈ Ω (2)

a(t)|∂Ω = ϕ(t) = given, (3)

where, for r = 1, p, we have denoted∫
Ω

fr(t, a(t), u(t))dt∫
Ω

gr(t, a(t), u(t))dt
:=


∫

Ω
f L
r (t, a(t), u(t))dt∫

Ω
gL

r (t, a(t), u(t))dt
,

∫
Ω

f U
r (t, a(t), u(t))dt∫

Ω
gU

r (t, a(t), u(t))dt

,

or, equivalently,
Fr(a, u)
Gr(a, u)

:=
[FL

r (a, u), FU
r (a, u)]

[GL
r (a, u), GU

r (a, u)]

and it is assumed that Gr(a, u) > [0, 0], ∀(a, u) ∈ A× U .

The set of all feasible solutions in (PP) is defined by

D := {(a, u)|a ∈ A, u ∈ U satisfying (1), (2), (3)}.

Definition 6. A feasible solution (a0, u0) ∈ D in (PP) is called an LU-efficient solution if there
is no other (a, u) ∈ D such that K(a, u) � K(a0, u0).

Taking Treanţă [25] and Mititelu and Treanţă [23] into account, under constraint quali-
fication assumptions, if (a0, u0) ∈ D is an LU-efficient solution of the variational control
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problem (PP), then there exist θ = (θr
ι ), µ(t) and λ(t), with µ(t) = (µβ(t)), λ(t) = (λα

i (t))
piecewise smooth functions satisfying the following conditions (see Einstein summation):

θr
ι

[
Gι

r(a0, u0)
∂ f ι

r
∂ai

(
t, a0(t), u0(t)

)
− Fι

r(a0, u0)
∂gι

r
∂ai

(
t, a0(t), u0(t)

)]

+λα
i (t)

∂X i
α

∂ai

(
t, a0(t), u0(t)

)
+ µβ(t)

∂Yβ

∂ai

(
t, a0(t), u0(t)

)
+

∂λα
i

∂tα
(t) = 0, i = 1, n, ι = L, U (4)

θr
ι

[
Gι

r(a0, u0)
∂ f ι

r
∂uj

(
t, a0(t), u0(t)

)
− Fι

r(a0, u0)
∂gι

r
∂uj

(
t, a0(t), u0(t)

)]

+λα
i (t)

∂X i
α

∂uj

(
t, a0(t), u0(t)

)
+ µβ(t)

∂Yβ

∂uj

(
t, a0(t), u0(t)

)
= 0, j = 1, k, ι = L, U (5)

µβ(t)Yβ

(
t, a0(t), u0(t)

)
= 0 (no summation), (θ, µ(t)) � 0, (6)

for all t ∈ Ω, except at discontinuities.

Definition 7. The feasible solution (a0, u0) ∈ D is a normal LU-efficient solution for (PP) if the
necessary LU-efficiency conditions formulated in (4)− (6) hold for θ � 0 and etθι = 1, et =
(1, . . . , 1) ∈ Rp, ι = L, U.

3. Mond–Weir Duality Associated with (PP)

Consider that {Q1,Q2, · · · ,Qs} is a partition of the setQ = {1, 2, · · · , q}, where s < q.
For (b, w) ∈ A× U , with the same notations as in Section 2, we associate to (PP) the next
multiobjective fractional variational control problem with interval-valued components of
the vector, which is called the Dual Problem (in short, DP):

(DP) max
(b,w)

K(b, w) =


∫

Ω
f1(t, b(t), w(t))dt∫

Ω
g1(t, b(t), w(t))dt

, . . . ,

∫
Ω

fp(t, b(t), w(t))dt∫
Ω

gp(t, b(t), w(t))dt




subject to

θr
ι

[
Gι

r(b, w)
∂ f ι

r
∂bi (t, b(t), w(t))− Fι

r(b, w)
∂gι

r
∂bi (t, b(t), w(t))

]

+λα
i (t)

∂X i
α

∂bi (t, b(t), w(t)) + µβ(t)
∂Yβ

∂bi (t, b(t), w(t)) +
∂λα

i
∂tα

(t) = 0, i = 1, n, ι = L, U (7)

θr
ι

[
Gι

r(b, w)
∂ f ι

r
∂wj (t, b(t), w(t))− Fι

r(b, w)
∂gι

r
∂wj (t, b(t), w(t))

]

+λα
i (t)

∂X i
α

∂wj (t, b(t), w(t)) + µβ(t)
∂Yβ

∂wj (t, b(t), w(t)) = 0, j = 1, k, ι = L, U (8)

λα
i (t)

[
X i

α(t, b(t), w(t))− ∂bi

∂tα
(t)
]
≥ 0 (9)

µQϑ (t)YQϑ
(t, b(t), w(t)) ≥ 0, ϑ = 1, s (10)

θ = (θr
ι ) � 0, µ(t) = (µβ(t)) ≥ 0, b(t)|∂Ω = ϕ(t) = given, ι = L, U. (11)

Remark 1. In the previous dual problem, the expression µQϑ (t)YQϑ
(t, b(t), w(t)) has the follow-

ing meaning:
µQϑ (t)YQϑ

(t, b(t), w(t)) = ∑
β∈Qϑ

µβ(t)Yβ(t, b(t), w(t)).



Mathematics 2021, 9, 894 7 of 12

In this section, we establish that the multiobjective optimization problems with
interval-valued components of the ratio vector, (PP) and (DP), are a Mond–Weir (see [26])
dual pair under (ρ, ψ, d)-quasiinvexity hypotheses. Further, consider that4 is the set of all
feasible solutions associated with (DP).

Now, we formulate and prove the first duality result.

Theorem 1 (Weak Duality). Let (a, u) ∈ D be a feasible solution of the multiobjective variational
control problem with interval-valued components (PP), and let (b, w, θ, λ, µ) ∈ 4 be a feasible
solution of the multiobjective variational control problem with interval-valued components (DP).
In addition, consider that the following conditions are fulfilled:

(a) Each functional

F b,w
r,ι (a, u) =

∫
Ω
[Gι

r(b, w) f ι
r(t, a(t), u(t))− Fι

r(b, w)gι
r(t, a(t), u(t))]dt, r = 1, p, ι = L, U

is (ρ1
r , ψ, d)-quasiinvex at (b, w) with respect to ζ and κ; or, equivalently, each interval-valued

multiple-integral functional

F b,w
r (a, u) = [F b,w

r,L (a, u),F b,w
r,U (a, u)], r = 1, p

is (ρ1
r , ψ, d)-quasiinvex at (b, w) with respect to ζ and κ.

(b) The functionalX (a, u) =
∫

Ω
λα

i (t)
[
X i

α(t, a(t), u(t))− ∂ai

∂tα
(t)
]

dt is (ρ2, ψ, d)-quasiinvex

at (b, w) with respect to ζ and κ.
(c) Each functional

Yϑ(a, u) =
∫

Ω
µQϑ (t)YQϑ

(t, a(t), u(t))dt, ϑ = 1, s

is (ρ3
ϑ, ψ, d)-quasiinvex at (b, w) with respect to ζ and κ.
(d) At least one of the functionals given in a)− c) is strictly (ρ, ψ, d)-quasiinvex at (b, w)

with respect to ζ and κ, where ρ = ρ1
r , ρ2 or ρ3

ϑ.

(e) θr
ι ρ1

r + ρ2 +
s

∑
ϑ=1

ρ3
ϑ ≥ 0 (ρ1

r , ρ2, ρ3
ϑ ∈ R).

Then, the infimum of (PP) is greater than or equal to the supremum of (DP).

Proof. Denote by π(a, u) and δ(b, w, θ, λ, µ) the value of problem (PP) at (a, u) ∈ D and
the value of problem (DP) at (b, w, θ, λ, µ) ∈ 4, respectively. Contrary to the result,
suppose that π(a, u) � δ(b, w, θ, λ, µ). Further, for r = 1, p, ι = L, U and ϑ = 1, s, consider
the following non-empty set:

S =
{
(a, u) ∈ A× U | F b,w

r,ι (a, u) ≤ F b,w
r,ι (b, w), X (a, u) ≤ X (b, w), Yϑ(a, u) ≤ Yϑ(b, w)

}
.

Using (a), for (a, u) ∈ S and r = 1, p, ι = L, U, we get

F b,w
r,ι (a, u) ≤ F b,w

r,ι (b, w) =⇒

ψ(a, u, b, w)
∫

Ω
[Gι

r(b, w)( f ι
r)b(t, b(t), w(t))− Fι

r(b, w)(gι
r)b(t, b(t), w(t))]ζdt

+ψ(a, u, b, w)
∫

Ω
[Gι

r(b, w)( f ι
r)w(t, b(t), w(t))− Fι

r(b, w)(gι
r)w(t, b(t), w(t))]κdt

≤ −ρ1
r ψ(a, u, b, w)d2((a, u), (b, w)).
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Multiplying by θ = (θr
ι ) � 0, ι = L, U and making summation over r = 1, p, we find

ψ(a, u, b, w)
∫

Ω
θr

ι [G
ι
r(b, w)( f ι

r)b(t, b(t), w(t))− Fι
r(b, w)(gι

r)b(t, b(t), w(t))]ζdt

+ψ(a, u, b, w)
∫

Ω
θr

ι [G
ι
r(b, w)( f ι

r)w(t, b(t), w(t))− Fι
r(b, w)(gι

r)w(t, b(t), w(t))]κdt

≤ −θr
ι ρ1

r ψ(a, u, b, w)d2((a, u), (b, w)). (12)

For (a, u) ∈ S, the inequality X (a, u) ≤ X (b, w) holds, and, according to b), it
follows that

ψ(a, u, b, w)
∫

Ω

[
λα

i (t)(X i
α)b(t, b(t), w(t))ζ − λα(t)Dαζ + λα

i (t)(X i
α)w(t, b(t), w(t))κ

]
dt

≤ −ρ2ψ(a, u, b, w)d2((a, u), (b, w)). (13)

In addition, for (a, u) ∈ S, the inequality Yϑ(a, u) ≤ Yϑ(b, w), ϑ = 1, s, gives (see c))

ψ(a, u, b, w)
∫

Ω

[
µQϑ (t)(YQϑ

)b(t, b(t), w(t))ζ + µQϑ (t)(YQϑ
)w(t, b(t), w(t))κ

]
dt

≤ −ρ3
ϑψ(a, u, b, w)d2((a, u), (b, w)),

and making summation over ϑ = 1, s in the previous inequality, it results that

ψ(a, u, b, w)
∫

Ω

[
µβ(t)(Yβ)b(t, b(t), w(t))ζ + µβ(t)(Yβ)w(t, b(t), w(t))κ

]
dt

≤ −
s

∑
ϑ=1

ρ3
ϑψ(a, u, b, w)d2((a, u), (b, w)). (14)

Making the sum (12) + (13) + (14), side by side, and taking d) into account, we have

ψ(a, u, b, w)
∫

Ω
θr

ι [G
ι
r(b, w)( f ι

r)b(t, b(t), w(t))− Fι
r(b, w)(gι

r)b(t, b(t), w(t))]ζdt

+ψ(a, u, b, w)
∫

Ω

[
λα

i (t)(X i
α)b(t, b(t), w(t)) + µβ(t)(Yβ)b(t, b(t), w(t))

]
ζdt

+ψ(a, u, b, w)
∫

Ω
θr[Gι

r(b, w)( f ι
r)w(t, b(t), w(t))− Fι

r(b, w)(gι
r)w(t, b(t), w(t))]κdt

+ψ(a, u, b, w)
∫

Ω

[
λα

i (t)(X i
α)w(t, b(t), w(t)) + µβ(t)(Yβ)w(t, b(t), w(t))

]
κdt

−ψ(a, u, b, w)
∫

Ω
[λα(t)Dαζ]dt < −(θr

ι ρ1
r + ρ2 +

s

∑
ϑ=1

ρ3
ϑ)ψ(a, u, b, w)d2((a, u), (b, w)), ι = L, U.

The previous inequality implies ψ(a, u, b, w) > 0 and, as a consequence, we can rewrite
it as ∫

Ω
θr

ι [G
ι
r(b, w)( f ι

r)b(t, b(t), w(t))− Fι
r(b, w)(gι

r)b(t, b(t), w(t))]ζdt

+
∫

Ω

[
λα

i (t)(X i
α)b(t, b(t), w(t)) + µβ(t)(Yβ)b(t, b(t), w(t))

]
ζdt

+
∫

Ω
θr

ι [G
ι
r(b, w)( f ι

r)w(t, b(t), w(t))− Fι
r(b, w)(gι

r)w(t, b(t), w(t))]κdt

+
∫

Ω

[
λα

i (t)(X i
α)w(t, b(t), w(t)) + µβ(t)(Yβ)w(t, b(t), w(t))

]
κdt

−
∫

Ω
[λα(t)Dαζ]dt < −(θr

ι ρ1
r + ρ2 +

s

∑
ϑ=1

ρ3
ϑ)d

2((a, u), (b, w)), ι = L, U.
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Now, considering the constraints (7), (8) of (DP), we obtain

−
∫

Ω
ζDαλα(t)dt−

∫
Ω
[λα(t)Dαζ]dt + 0 < −(θr

ι ρ1
r + ρ2 +

s

∑
ϑ=1

ρ3
ϑ))d

2((a, u), (b, w)), ι = L, U.

By direct computation, we get

Dα[ζλα(t)] = λα(t)Dαζ + ζDαλα(t)∫
Ω

ζDαλα(t)dt =
∫

Ω
Dα[ζλα(t)]dt−

∫
Ω
[λα(t)Dαζ]dt

and, applying the condition ζ|∂Ω = 0 and the flow-divergence formula, we obtain∫
Ω

Dα[ζλα(t)]dt =
∫

∂Ω
[ζλα(t)]~ndσ = 0,

where~n = (nα), α = 1, m, is the normal unit vector to the hypersurface ∂Ω. It results that∫
Ω

ζDαλα(t)dt = −
∫

Ω
[λα(t)Dαζ]dt

and further,
−
∫

Ω
ζDαλα(t)dt−

∫
Ω
[λα(t)Dαζ]dt = 0.

Consequently,

0 < −(θr
ι ρ1

r + ρ2 +
s

∑
ϑ=1

ρ3
ϑ)d

2((a, u), (b, w)), ι = L, U

and applying the hypothesis e) and d2((a, u), (b, w)) ≥ 0, we get a contradiction. Therefore,
the infimum of (PP) is greater than or equal to the supremum of (DP).

The next result establishes a strong duality between the two considered multiobjective
optimization problems with interval-valued components.

Theorem 2 (Strong Duality). Under the same (ρ, ψ, d)-quasiinvexity hypotheses formulated in
Theorem 1, if (a0, u0) ∈ D is a normal LU-efficient solution of the Primal Problem (PP), then there
exist θ0, µ0(t) and λ0(t) such that (a0, u0, θ0, λ0, µ0) ∈ 4 is an LU-efficient solution of the Dual
Problem (DP), and the corresponding objective values are equal.

Proof. Considering that (a0, u0) ∈ D is a normal LU-efficient solution in (PP), the neces-
sary LU-efficiency conditions formulated in (4)–(6) involve that there exist θ0, µ0(t), and
λ0(t) such that (a0, u0, θ0, λ0, µ0) is feasible solution for (DP). Since

∂a0i

∂tα
(t) = X i

α

(
t, a0(t), u0(t)

)
, i = 1, n, α = 1, m, t ∈ Ω

and (by (6))

µβ(t)Yβ

(
t, a0(t), u0(t)

)
= 0, (summation over β), t ∈ Ω,

the dual objective has the same value as the primal objective; by Theorem 1, (a0, u0, θ0, λ0,
µ0) ∈ 4 is an LU-efficient solution of (DP).

The following theorem formulates a converse duality result associated with the con-
sidered multiobjective optimization problems with interval-valued components.
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Theorem 3 (Converse Duality). Consider that (a0, u0, θ0, λ0, µ0) ∈ 4 is an LU-efficient solu-
tion of (DP). In addition, assume that the following conditions are fulfilled:

(a) (a, u) ∈ D is a normal LU-efficient solution of (PP).
(b) The hypotheses of Theorem 1 are satisfied for (a0, u0, θ0, λ0, µ0).
Then, (a, u) = (a0, u0) and the corresponding objective values are equal.

Proof. Contrary to the result, let us suppose that (a0, u0) is not a normal LU-efficient
solution of (PP), that is, (a, u) 6= (a0, u0). As (a, u) ∈ D is a normal LU-efficient solution of
(PP), according to Treanţă [25] and Mititelu and Treanţă [23], there exist θ, µ(t) and λ(t),
satisfying (4)–(6) and Definition 7. It follows that

λ
α
i (t)

[
X i

α(t, a(t), u(t))− ∂ai

∂tα
(t)

]
≥ 0,

µQϑ (t)YQϑ
(t, a(t), u(t)) ≥ 0, ϑ = 1, s

and, therefore, (a, u, θ, λ, µ) ∈ 4. Moreover, we have π(a, u) = δ(a, u, θ, λ, µ). In accor-
dance with Theorem 1, we have π(a, u) � δ(a0, u0, θ0, λ0, µ0), equivalently, δ(a, u, θ, λ, µ) �
δ(a0, u0, θ0, λ0, µ0). This contradicts the maximal LU-efficiency of (a0, u0, θ0, λ0, µ0). Hence,
(a, u) = (a0, u0) and the corresponding objective values are equal.

Remark 2. If, for r = 1, p and (a, u) ∈ A× U , each interval-valued multiple-integral functional∫
Ω

gr(t, a(t), u(t))dt is equal to [1, 1], then we obtain primal and dual multiobjective non-fractional

variational control problems with interval-valued components and the corresponding Mond–Weir
duality results.

Illustrative example. To illustrate the derived theoretical results, for p = 1 and∫
Ω

g(t, a(t), u(t))dt = [1, 1] (see Section 2), we consider the following two-dimensional

interval-valued variational control problem:

min
(a,u)

∫
Ω0,3

f (t, a(t)u(t))dt =
[∫

Ω0,3

(
u2(t)− 8u(t) + 16

)
dt1dt2,

∫
Ω0,3

u2(t)dt1dt2
]

,

subject to
∂a
∂t1 (t) =

∂a
∂t2 (t) = 3− u(t), t =

(
t1, t2

)
∈ Ω0,3, 81− a2(t) ≤ 0, t =

(
t1, t2

)
∈

Ω0,3, and a(0) = a(0, 0) = 6, a(3) = a(3, 3) = 8, where a : Ω0,3 → R, u : Ω0,3 →
[
−8

3
,

8
3

]
,

and Ωt0,t1 = Ω0,3 is a square fixed by the diagonally opposite points t0 =
(

t1
0, t2

0

)
= (0, 0)

and t1 =
(

t1
1, t2

1

)
= (3, 3) in R2. In addition, we assume in the considered variational

control problem that we are only interested in affine state functions. By direct computation,
it can be proved that the feasible point

a0(t) =
1
3

(
t1 + t2

)
+ 6, u0(t) =

8
3

, t ∈ Ω0,3

is a normal LU-optimal solution in the optimization problem considered above, with
λ =

(
λ1, λ2) = (

1, 5
3
)
, θ = (θL, θU) = (1, 1), and µ = 0. Further, it is easy to check the

(ρ, 1, 0)-quasiinvexity (with ρ ∈ R) of the involved functionals (see Theorem 1) at (a0, u0)
with respect to ζ and κ, defined as follows: ζ, κ : Ω0,3 × (R×R)2 → R, given by

ζ
(

t, a(t), u(t), a0(t), u0(t)
)
=

{
a(t)− a0(t), t ∈ Int(Ω0,3)

0, t ∈ ∂Ω0,3,
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κ
(

t, a(t), u(t), a0(t), u0(t)
)
=

{
u(t)− u0(t), t ∈ Int(Ω0,3)

0, t ∈ ∂Ω0,3.

Consequently (see Theorem 2),
(

1
3

(
t1 + t2

)
+ 6,

8
3

, (1, 1), (1,
5
3
), 0

)
is an LU-optimal

solution for the following dual problem:

max
(b,w)

∫
Ω0,3

f (t, b(t)w(t))dt =
[∫

Ω0,3

(
w2(t)− 8w(t) + 16

)
dt1dt2,

∫
Ω0,3

w2(t)dt1dt2
]

,

subject to

−2µ(t)b(t) +
∂λ1

∂t1 (t) +
∂λ2

∂t2 (t) = 0, t =
(

t1, t2
)
∈ Ω0,3,

2θLw(t)− 8θL + 2θUw(t)− λ1(t)− λ2(t) = 0, t =
(

t1, t2
)
∈ Ω0,3,

λ1(t)
(

3− w(t)− ∂b
∂t1 (t)

)
+ λ2(t)

(
3− w(t)− ∂b

∂t2 (t)
)
≥ 0, t =

(
t1, t2

)
∈ Ω0,3,

µ(t)
(

81− b2(t)
)
≥ 0, t =

(
t1, t2

)
∈ Ω0,3,

θ = (θL, θU) � [0, 0], µ(t) ≥ 0, b(0) = b(0, 0) = 6, b(3) = b(3, 3) = 8,

and the corresponding objective values are equal.

4. Conclusions

In this paper, based on the totally new concept of (ρ, ψ, d)-quasiinvexity associated
with an interval-valued multiple-integral functional, we have formulated and proved
Mond–Weir weak, strong, and converse duality results for a new class of multiobjective
optimization problems with interval-valued components of the ratio vector. Taking into
account the applicability of interval analysis and duality theory in optimization and con-
trol, the present paper represents an important outcome for researchers and engineers in
applied sciences.
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