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Abstract: The direct strong-form collocation method with reproducing kernel approximation is intro-
duced to efficiently and effectively solve the natural convection problem within a parallelogrammic
enclosure. As the convection behavior in the fluid-saturated porous media involves phase coupling,
the resulting system is highly nonlinear in nature. To this end, the local approximation is adopted in
conjunction with Newton–Raphson method. Nevertheless, to unveil the performance of the method
in the nonlinear analysis, only single thermal natural convection is of major concern herein. A unit
square is designated as the model problem to investigate the parameters in the system related to the
convergence; several benchmark problems are used to verify the accuracy of the approximation, in
which the stability of the method is demonstrated by considering various initial conditions, distur-
bance of discretization, inclination, aspect ratio, and reproducing kernel support size. It is shown
that a larger support size can be flexible in approximating highly irregular discretized problems. The
derivation of explicit operators with two-phase variables in solving the nonlinear system using the
direct collocation is carried out in detail.

Keywords: collocation method; reproducing kernel approximation; Newton–Raphson method;
two-phase coupling; nonlinear system; natural convection; porous media

1. Introduction

In the literature, there is a bunch of numerical studies on double-diffusive natural
convection in enclosures filled with fluid-saturated porous media [1]. It was not until
the investigation by Costa that the enclosure of a parallelogram was numerically and
theoretically studied in detail [2]. In the practical application, a parallelogrammic enclosure
is referred to as the diode of heat and mass transfer owing to the fact that its inclined
angle, aspect ratio, and boundary conditions can be designed to meet different purposes
concerning various heat and mass transfer characteristics. Nevertheless, the coupling
feature of three variables, including temperature, stream function, and concentration, in the
problem of double-diffusive natural convection in a parallelogrammic porous enclosure
inevitably leads to a highly nonlinear system of partial differential equations (PDEs).

Among the numerical methods for solving PDEs governed by diffusion-convection
in parallelogrammic enclosures, the mesh-based methods were adopted early, while the
meshfree methods were introduced in recent years. For instance, the finite difference
method was employed in the analysis of double-diffusive convection in a porous enclosure
with a rectangular shape in 2002 [3]. Around the same time, the finite element method was
used to solve the two-dimensional double-diffusive natural convection problem [2]. With
the prosperous development of numerical methods in computational mechanics, there was
a tendency towards boundary-type methods, in addition to the domain-type methods. To
name but a few, the boundary domain integral method was applied to study the double
diffusive natural convection in porous media [4]; the boundary element method was
introduced to simulate three-dimensional double-diffusive natural convection in porous
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media [5]. As the meshfree methods get rid of mesh constraint and the strong form methods
discard domain integral, a growing number of studies appear and are reported as follows:
the local radial basis collocation method was used to solve the two-dimensional double
diffusion and natural convection problem in 2012 [6]; the exponentially convergent scalar
homotopy algorithm was introduced as the nonlinear solver. Later, in 2018, the generalized
finite difference method combined with the Newton–Raphson method was proposed to
solve both single thermal natural convection in parallelogrammic enclosures and double-
diffusive natural convection in parallelogrammic enclosures filled with fluid-saturated
porous media [7].

By examining the work done by Fan et al. [6] and Li et al. [7], the major features in
common is the local approximation adopted in the meshfree methods, in which a stable
system of equations can be established for nonlinear analysis. As motivated by this idea,
the present study proposes the reproducing kernel collocation method in conjunction with
the Newton–Raphson method to efficiently and effectively solve the natural convection
problems with parallelogrammic enclosures. As there exist several parameters affecting
the convergence of the proposed method in solving nonlinear PDEs, only single thermal
natural convection in parallelogrammic enclosures filled with fluid-saturated porous media
is considered in this study.

In the collocation methods, both global and local functions can be used in the approxi-
mation. The commonly adopted global function is the radial basis function (RBF) defined
by the Euclidean norm; nevertheless, the shape parameter of RBF cannot be determined
uniquely by a given formula so far. As the resulting system is often ill-conditioned with
a large condition number, numerical instability might be raised; for more information,
see [8–10]. In contrast, the reproducing kernel (RK) shape function is a local function;
although it maintains an algebraic convergence rate, the resulting system is more stable
to yield promising results [11–13]. Other types of approximation adopted in the colloca-
tion method, such as global expansion in Bernstein polynomials, exponential functions,
and Taylor matrix, can be referred to the studies [14–16] for solving nonlinear ODE sys-
tems. Regarding the two-phase coupling problems, the concept of u-p formulation for
describing displacement–pressure behavior was developed early in the Biot theory for
the analysis of poromechanics in fluid-saturated media [17]. Later, the u-p formulation
was further introduced in the weak-form reproducing kernel particle method (RKPM)
to perform the hydro-mechanical analysis in porous media coupled by solid stiffness
matrix and compressibility matrix [18]. Unlike the u-p formulation for describing displace-
ment and pressure, the present study first introduces the strong-form reproducing kernel
collocation method (RKCM) to the analysis of two-phase coupling system governed by
thermal-convection equations.

The structure of this study is the following: the mathematical formulation of the
two-phase coupling in a porous enclosure is re-visited in Section 2. The RKCM for the
nonlinear system coupled by two variables is introduced with detailed formulation in
direct collocation in Section 3. Four numerical examples are given in Section 4. Section 5
concludes the present study.

2. Mathematical Formulation
2.1. Governing Equations

As shown in Figure 1a, the parallelogram is formed by an angle θ with two sides of
length L and H. Assuming that the fluid-saturated porous medium has two phases, the
components of flux or velocity Qx and Qy along the X and Y directions are described by
Darcy’s law with the following proportionality to pressure drop:

Qx = −K
µ

(
∂p
∂X

)
, (1)

Qy = −K
µ

(
∂p
∂Y

+ ρg
)

, (2)
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where K is the permeability of the isotropic medium; µ, p, and ρ are the dynamic viscosity,
pressure, and density of the fluid, respectively; and g is the gravitational constant. The
stream function Ψ is introduced to relate the flux as given by:

ρQx =
∂Ψ
∂Y

, (3)

ρQy = − ∂Ψ
∂X

, (4)
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Figure 1. Mathematical model: (a) geometry; (b) boundary conditions.

For the sake of convenience, Equations (1) and (2) are normalized as:

qx =
Qx

α/H
=

H
ρα

∂Ψ
∂Y
≡ ∂ψ

∂y
, (5)

qy =
Qy

α/H
= − H

ρα

∂Ψ
∂X
≡ −∂ψ

∂x
, (6)

where the non-dimensional parameters x = X
H , y = Y

H , and ψ = Ψ
ρα are used. α is the

thermal diffusivity of the porous medium; nevertheless, it is assumed to be the thermal
diffusivity of the fluid alone herein, i.e., the effective thermal diffusivity [1,2]. The non-
dimensional temperature is given by:

T =
Tp − TpL

TpH − TpL
, (7)

where the subscript p in Equation (7) represents the quantity in the physical domain; the
subscripts H and L refer to the corresponding higher and lower values. For the non-solute
transferring problem, the governing equations are described by the balance laws of linear
momentum and thermal energy:

∂2ψ

∂x2 +
∂2ψ

∂y2 + RaT
∂T
∂x

= 0, (8)
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∂2T
∂x2 +

∂2T
∂y2 −

∂

∂x
(qxT)− ∂

∂y
(
qyT

)
= 0, (9)

where a steady state is assumed in the above two equations. Introducing Equations (5) and
(6) to Equation (9) gives:

∂2T
∂x2 +

∂2T
∂y2 −

∂ψ

∂y
∂T
∂x

+
∂ψ

∂x
∂T
∂y

= 0, (10)

For natural heat convection in a non-porous medium, Rayleigh number Ra and Darcy
number Da are:

Ra =
gβT

(
TpH − TpL

)
H3

να
, (11)

Da =
K

H2 , (12)

where βT is the thermal expansion coefficient (βT ≥ 0) and ν is the kinematic viscosity of
the fluid. Based on Equations (11) and (12), the Darcy-modified Rayleigh number RaT can
be defined as:

RaT = Da× Ra =
gβT

(
TpH − TpL

)
KH

να
, (13)

which is also the non-dimensional parameter.

2.2. Boundary Conditions

Referring to the general model depicted in Figure 1b, the boundary walls of the
porous medium in a parallelogram are assumed to be impermeable, which indicates ψ = 0.
As such, the non-dimensional components of velocity qx and qy are zero at boundary
walls, while they can be evaluated by using Equations (5) and (6). The explicit boundary
conditions for T and ∂T/∂n together with ψ = 0 are described as follows:

ψ(0, y) = 0,
T(0, y) = 1,

(14)

ψ
(

cos θ
H/L , y

)
= 0,

T
(

cos θ
H/L , y

)
= 0,

(15)

Along the inclined bottom side:

ψ = 0,
∂T
∂n = 0,

(16)

Along the inclined upper side:

ψ = 0,
∂T
∂n = 0.

(17)

In Equations (16) and (17), n denotes the non-dimensional normal to the inclined wall.

3. RKCM for a Nonlinear Coupling System
3.1. Reproducing Kernel Approximation for Two-Phase Variables

To efficiently solve the nonlinear system of equations, the RK shape functions are
introduced for two variables ψ and T at Ns source points as follows:

ψ(x) =
Ns
∑

I=1
ΨI(x) aψ

I ,

T(x) =
Ns
∑

I=1
ΨI(x) aT

I ,
(18)
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where aψ
I and aT

I are the generalized coefficients. ΨI(x) is the RK shape function consisting
of a monomial basis H(x− xI), coefficient vector b(x), and kernel function ϕa(x− xI) of
the following form:

ΨI(x) = HT(x− xI)b(x)ϕa(x− xI), (19)

where b(x) is found by the reproducing conditions listed below:

Ns

∑
I=1

ΨI(x)xα
I = xα, |α| ≤ p, (20)

where α is the multi-index defined as |α| = α1 + α2, and p is the order of H(x− xI). The
detailed derivation of RK shape functions is referred to previous work [19]. The explicit
form of RK shape functions is:

ΨI(x) = HT(0)M−1(x)H(x− xI)ϕa(x− xI), (21)

with the moment matrix M(x) given by:

M(x) =
Ns

∑
I=1

H(x− xI)HT(x− xI)ϕa(x− xI), (22)

To ensure continuity, the high order B-spline kernel function is usually required in
strong form collocation methods. The quintic B-spline kernel function used herein is
given by:

ϕa(s) =


11
20 −

9s2

2 + 81s4

4 −
81s5

4 , 0 ≤ s < 1
3

17
40 + 15s

8 −
63s2

4 + 135s3

4 − 243s4

8 + 81s5

8 , 1
3 ≤ s < 2

3
81
40 −

81s
8 + 81s2

4 −
81s3

4 + 81s4

8 −
81s5

40 , 2
3 ≤ s < 1

0, s ≥ 1

, (23)

where the normalized nodal distance s = ‖x− xI‖/a, and a denotes the radius of a circular
support. For the pth order monomial basis, the RK support size is chosen to be proportional
to the average nodal distance h, i.e., a = (p + δ)h with δ > 0 for any discretization.

The two equations in Equation (18) can be combined as:[
ψ(x)
T(x)

]
=

[
ΨT(x) 0

0 ΨT(x)

]
a, (24)

with:

a =

[
aψ

aT

]
, (25)

ΨT(x) =
[

Ψ1(x) Ψ2(x) · · · ΨNs(x)
]
, (26)

aψ =


aψ

1
aψ

2
...

aψ
Ns

, aT =


aT

1
aT

2
...

aT
Ns

, (27)

Substituting Equation (24) into Equations (8) and (10) leads to:[
ΨT

,xx(x)+ΨT
,yy(x)

]
aψ+RaTΨT

,x(x)a
T = 0, (28)[

ΨT
,xx(x)+ΨT

,yy(x)
]
aT −ΨT

,y(x)a
ψ ·ΨT

,x(x)a
T + ΨT

,x(x)a
ψ ·ΨT

,y(x)a
T = 0, (29)
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Similarly, substituting Equation (24) into Equations (14)–(17) gives the following
equations:

ΨT(x)aψ = 0,
ΨT(x)aT = 1,

(30)

along x = 0, and:
ΨT(x)aψ = 0,
ΨT(x)aT = 0,

(31)

along x = cos θ
H/L , and:

ΨT(x)aψ = 0,
ΨT

,n(x)aT = 0,
(32)

for the inclined bottom side, and:

ΨT(x)aψ = 0,
ΨT

,n(x)aT = 0.
(33)

for the inclined upper side.

3.2. Newton–Raphson Collocation Method for Nonlinear System

From Equations (28) and (29), it is obvious that the system is nonlinear and coupled by
two phases. To this end, the Newton–Raphson method is introduced under the collocation
framework, which is designated as a Newton–Raphson collocation method in this work.

As a beginning of the formulation, three sets of collocation points are defined:
xp(p = 1 . . . . . . Np) for governing equations in the domain, xq(q = 1 . . . . . . Nq) for Neu-
mann boundary conditions, and xr(r = 1 . . . . . . Nr) for Dirichlet boundary conditions.
Note that the same discretization of collocation points Nc and source points Ns is adopted
herein; for two field variables, the total number of collocation equations is 2Nc, which is
equal to Np + Nq + Nr. By using the direct collocation, Equations (28)–(33) can be recast
as follows:

A =

 Ap
(
xp
)

Aq
(
xq
)

Ar(xr)

 = 0, (34)

where:

Ap
(
xp
)
=

[
Aψ

p
(
xp
)

AT
p
(
xp
) ]

Np×1

, (35)

with:
Aψ

p
(
xp
)
=
[
ΨT

,xx
(
xp
)
+ΨT

,yy
(
xp
)]

aψ + RaTΨT
,x
(
xp
)
aT , (36)

AT
p
(
xp
)
=
[
ΨT

,xx
(
xp
)
+ΨT

,yy
(
xp
)]

aT −ΨT
,y
(
xp
)
aψ ·ΨT

,x
(
xp
)
aT

+ΨT
,x
(
xp
)
aψ ·ΨT

,y
(
xp
)
aT

(37)

Nevertheless, to obtain the general expression of boundary collocation equations for
wider application, the prescribed non-zero values, but not limited to, of both Neumann
and Dirichlet boundary conditions are presented. That is, ψn, Tn, ψ, and T are assumed in
the following derivation. Therefore:

Aq
(
xq
)
=

[
Aψ

q
(
xq
)

AT
q
(
xq
) ] =

[
ΨT

n
(
xq
)
aψ − ψn

ΨT
n
(
xq
)
aT − Tn

]
Nq×1

, (38)

Ar(xr) =

[
Aψ

r (xr)
AT

r (xr)

]
=

[
ΨT(xr)aψ − ψ

ΨT(xr)aT − T

]
Nr×1

, (39)
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As the collocation system is coupled in matrix Ap, the nonlinear version of direct
collocation is established by using the Newton–Raphson method given by:

ak+1 = ak −
(

Jk
)−1

Ak, (40)

in which the superscript k denotes the step of iteration and J is the Jacobian matrix defined
as J = ∂A

∂a . Thus, the Jacobian matrix is derived as:

J =

 Jp
Jq
Jr

 =


∂Ap
∂aψ

∂Ap
∂aT

∂Aq
∂aψ

∂Aq
∂aT

∂Ar
∂aψ

∂Ar
∂aT

, (41)

in which:

Jp =

 ∂Aψ
p

∂aψ

∂Aψ
p

∂aT

∂AT
p

∂aψ

∂AT
p

∂aT


Np×2Ns

=

[
ΨT

,xx
(
xp
)
+ΨT

,yy
(
xp
)

RaTΨT
,x
(
xp
)

Jp1 Jp2

]
, (42)

with:
Jp1 = −ΨT

,y
(
xp
)
T,x
(
xp
)
+ ΨT

,x
(
xp
)
T,y
(
xp
)
,

Jp2 = ΨT
,xx
(
xp
)
+ΨT

,yy
(
xp
)
− ψ,y

(
xp
)
ΨT

,x
(
xp
)
+ ψ,x

(
xp
)
ΨT

,y
(
xp
)
,

(43)

and:

Jq =

 ∂Aψ
q

∂aψ

∂Aψ
q

∂aT

∂AT
q

∂aψ

∂AT
q

∂aT


Nq×2Ns

=

[
ΨT

n
(
xq
)

0
0 ΨT

n
(
xq
) ], (44)

Jr =

 ∂Aψ
r

∂aψ
∂Aψ

r
∂aT

∂AT
r

∂aψ
∂AT

r
∂aT


Nr×2Ns

=

[
ΨT(xr) 0

0 ΨT(xr)

]
, (45)

However, from Equation (40), it can be observed that the computation of the inverse of
the Jacobian matrix at each iteration is computationally expansive. As such, the following
two-step Newton–Raphson method is adopted [7]:

Jk∆ak = −Ak, (46)

ak+1 = ak + ∆ak. (47)

where ∆ak denotes the increment of vector ak at kth step. The explicit expressions for
matrices A and J are detailed in Appendix A. The stopping criterion for iteration is given by:

max
∣∣∣∆ak

∣∣∣ < 10−9. (48)

which is adopted in the present study.

3.3. Remarks

For illustration purpose, a schematic diagram of discretization shown in Figure 2 is
considered, where the numbers of collocation points in the parallelogram are marked by
Nv, Nh, and Nd for vertical, inclined, and domain points, respectively. It is noted that the
four corner points are included in the present method without causing any difficulty in
the numerical simulation, while they were excluded in the generalized finite difference
method as reported in [7].
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Figure 2. Schematic diagram of collocation points.

By taking the boundary conditions described in Equations (14)–(17) or Equations (30)–
(33) as an example, the total collocation points are 2Nc = 2Nd + 4Nv + 4Nh with Np = 2Nd,
Nq = 2Nh, and Nr = 4Nv + 2Nh. This indicates that the Jacobian matrix is a square matrix,
and the resulting system is determined. As such, the present study adopts the direct
collocation method. For the problem in consideration, the same location and number of
source points and collocation points are utilized herein, i.e., Ns = Nc. Unlike the weighted
collocation method with least-squares formulation in the previous studies [11–13,19], there
are typically more collocation points than source points in the collocation system, and
boundary conditions are imposed by weights to balance the errors in the domain and
on the boundary. With the RK approximation in the direct collocation method, a sparse
system of Jacobian matrix is reached, thereby making the Newton–Raphson collocation
method efficient.

4. Numerical Examples

To validate the proposed method in solving the nonlinear system coupled by two-
field variables, four numerical examples with various parallelogrammic geometries are
provided in the following study. In the reproducing kernel collocation method, the RK
shape functions are constructed by using the quadratic basis with a quintic B-spline kernel
function, and the support size of RK shape functions is chosen as a = 3h without loss of
generality. In particular, the parametric study is conducted in each example to thoroughly
understand the effect of nonlinearity and the convergence of approximation.

4.1. Square Domain

The schematic diagrams of the uniform and non-uniform discretizations in a unit
square are depicted in Figure 3a,b, respectively. In the uniform discretization, three refine-
ments with Ns = Nc = 202, 302, 402 are considered in the approximation for RaT = 100
with initial conditions

(
ψ0, T0) = (0, 0.5). Figure 4 compares the number of iterations

obtained by three refinements; Figure 5 shows the corresponding contour plots of ψ and T.
Clearly, the present method converges fast and stably in 7 iterative steps for all discretiza-
tions; the contour plots of both ψ and T also exhibit the same pattern. The convergence
of approximation is validated through the refinement of discretization. In the following
study, Nc = 302 is used. In Figure 3b, the non-uniformly discretized domain is obtained by
adding 3% (disturbing factor s = 3) disturbance to Figure 3a. By using the same values
of RaT and

(
ψ0, T0), the number of iterations for various non-uniform discretizations

obtained by s = 1, 2, 3 are given in Figure 6. For s = 3, the contour plots of ψ and T are
shown in Figure 7, where a similar distribution of ψ and T to those obtained by uniform
discretization is observed.
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Figure 5. Contour plots obtained by various collocation points: (a) ψ by Nc = 202; (b) ψ by Nc = 302; (c) ψ by Nc = 402;
(d) T by Nc = 202; (e) T by Nc = 302; (f) T by Nc = 402.
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Figure 7. Contour plots obtained by non-uniform discretization: (a) ψ; (b) T.

Based on the quadratic basis adopted in constructing the RK shape functions, the RK
support size generally ranges from 2.5 h to 4 h. To understand the influence of support size
for the nonlinear system, the number of iterations corresponding to various support size is
summarized in Figure 8 for RaT = 100 with

(
ψ0, T0) = (0, 0.5). It is shown that the number

of iterations is 7 for all cases regardless of the support size. As for the Newton–Raphson
method, the choice of initial conditions may affect the convergence of approximation. To
this end, several sets of initial conditions

(
ψ0, T0) are tested, and the corresponding iteration

is shown in Figure 9; all approximate solutions converge within 7 iterative steps, although
their initial errors in the first step may be quite different. For wider application, various
initial values, such as

(
ψ0

le f t, ψ0
right, T0

le f t, T0
right

)
, are considered as depicted in Figure 10a;

the corresponding iteration is shown in Figure 10b. It is found that the initial conditions
might affect the path of convergence, and more iterations might be needed to meet the
stopping criterion. Nevertheless, most initial conditions yield convergent approximation.
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Figure 10. Various initial conditions
(

ψ0
le f t, ψ0

right, T0
le f t, T0

right

)
in the discretized square domain: (a) schematic diagram; (b)

iterations.

For the nonlinear system in consideration, the parameter RaT governs the nonlinearity,
and various values of RaT such as 1 and 60 are considered herein. The comparison of the
number of iterations obtained by various RaT is made in Figure 11; it was found that more
iteration steps are needed for a larger value of RaT . For illustration purpose, the contour
plots of ψ and T obtained by RaT = 1 and RaT = 60 are presented in Figure 12. From
Figure 12a, the contour of ψ is almost symmetric in both vertical and horizontal directions
for RaT = 1; as RaT increases to 60 and 100, the contours of ψ gradually showed anti-
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symmetric distribution along the line inclined at 45◦ to the horizontal direction as referred
to Figures 5b and 12b. As for the contour of T, with increasing RaT , its distribution moved
from a vertical direction toward a curved orientation as shown in Figures 5e and 12c,d.
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Figure 12. Contour plots obtained by various RaT : (a) ψ with RaT = 1; (b) ψ with RaT = 60; (c) T with RaT = 1; (d) T with
RaT = 60.

4.2. Diamond Domain

A unit diamond with θ = 30◦ is discretized uniformly and non-uniformly as shown in
the schematic diagrams Figure 13a,b, respectively. The analysis is performed by following
the previous example as described in Section 4.1. For RaT = 100 and

(
ψ0, T0) = (0, 0.5),

the number of iterations obtained by uniform discretizations with Nc = 202, 302, 402 are
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shown in Figure 14; the corresponding contour plots of ψ and T are given in Figure 15. It is
shown that only 7 steps are required in the iteration process. In addition, the convergence
of approximation is assured by the presence of consistent patterns in the contours, as
also shown in the previous work [7]. The non-uniform discretization with Nc = 302 in
Figure 13b is obtained by adding 3% disturbance to the uniform discretization. For various
percentage of disturbance s = 1, 2, 3, the number of iterations are given in Figure 16. For
large disturbance s = 3, more iterations are required due to a longer path of convergence;
the corresponding contour plots of ψ and T are shown in Figure 17, where similar patterns
of ψ and T to those obtained by uniform discretization are retrieved, while the smoothness
of the contours is reduced.
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Figure 15. Contour plots obtained by various collocation points: (a) ψ by Nc = 202; (b) ψ by Nc = 302; (c) ψ by Nc = 402;
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Figure 17. Contour plots obtained by non-uniform discretization: (a) ψ; (b) T.

The influence of initial conditions are investigated by considering
(
ψ0, T0) for en-

tire domain and
(

ψ0
le f t, ψ0

right, T0
le f t, T0

right

)
for two half domains, and the corresponding

results are shown in Figures 18 and 19, with Figure 19a illustrating the arrangement of(
ψ0

le f t, ψ0
right, T0

le f t, T0
right

)
. From Figures 18 and 19b, it is observed that the initial conditions

may affect the path of convergence, i.e., the number of iterations. As for the influence of
RaT , Figure 20 compares the number of iterations obtained by various RaT ranging from 1
to 100; the larger value RaT is, the more iterations it requires. The selected contour plots of
ψ and T obtained by RaT = 1 and RaT = 60 are shown in Figure 21. As RaT increases, the
contour of ψ changes from symmetry to anti-symmetry with respect to the line inclined at
45◦ in the horizontal direction, and its magnitude increases as well, as shown in Figures
15b and 21a,b. The contour of T gradually changes the orientation from left to right with
increasing nonlinearity, as can be observed in Figures 15e and 21c,d.
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ψ0, T0) and corresponding iterations.
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4.3. Parallelogram Domains I and II

As shown in Figure 22a,b, two parallelograms (L/H = 4) with inclined angles 30◦

and −30◦ are considered, in which the former is denoted as domain I, while the latter is
denoted as domain II. For clarity, when comparing the results of two parallelograms in
domain I and domain II, the corresponding results are depicted in terms of blue and red
lines as will be shown in the following figures. For RaT = 100 and

(
ψ0, T0) = (0, 0.5), three

refinements of uniform discretization with Nc = 10× 40, 20× 50, 30× 60 are considered.
The path of convergence expressed in terms of iteration is depicted in Figure 23. In each
domain, the approximation converges with the same number of iterations regardless of
whether different points are used in the discretization; moreover, domain I shows slower
convergence than domain II. The contour plots of ψ and T obtained by Nc = 20× 50 are
shown in Figure 24, which are consistent with the results given in [7]. The distributions
of both ψ and T in two domains are dissimilar due to different inclination; in particular,
the contour of ψ in domain II with a negative inclined angle has two small vortices at the
two ends.
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Figure 22. Schematic diagrams of uniform discretization in the parallelograms: (a) domain I; (b) domain II.
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Figure 23. Various collocation points and corresponding iterations.
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Figure 24. Contour plots obtained by uniform discretization with Nc = 20× 50: (a) ψ in domain I; (b) ψ in domain II; (c) T
in domain I; (d) T in domain II.
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The influence of initial conditions on the solutions is investigated by concerning(
ψ0, T0) and

(
ψ0

le f t, ψ0
right, T0

le f t, T0
right

)
for RaT = 100 and Nc = 20× 50; the corresponding

paths of iteration are shown in Figure 25a,b, respectively. In general, domain I needs more
iterations to reach the desired accuracy in approximation as compared with domain II.
Nevertheless, domain II might require more iterations under certain initial conditions. The
influence of RaT is presented in Figure 26, where more iterations are needed for larger
RaT ; in addition, domain I shows slower convergence than domain II. To further unveil the
nonlinearity of the problem with different inclined angles, the contour plots obtained by
RaT = 1, RaT = 60, and RaT = 100 are shown in Figures 24, 27 and 28. For both domain
I and domain II, the magnitude of ψ increases with larger RaT , and the order of contour
(nonlinearity) of T increases with larger RaT as well. Specifically, for domain II, the two
vortices in the contour of ψ become more pronounced as RaT increases.
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(d) T with RaT = 60.
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The disturbance of discretization is added to test the stability of the method. By
using RaT = 100 and Nc = 20× 50 with various s = 1, 2, 3, the convergence paths of
two domains are compared in Figure 29; again, domain I shows slower convergence than
domain II, and a larger s requires more iterations. For illustration purpose, the non-uniform
discretization obtained by s = 3 is presented in Figure 30, and the corresponding contour
plots of ψ and T are given in Figure 31. Similar trends in the distribution of both contours
ψ and T are observed while the smoothness of the contours is reduced to some extent
in comparison with those obtained by uniform discretization. Lastly, a higher level of
disturbance s = 4 is further investigated, as shown in Figure 32, which has not been
discussed in the literature. It is found that the RK support size a = 3h is not able to yield
satisfactory results. Nevertheless, the flexibility of RKCM enables a larger support size
in the approximation. When using a = 4h, the contour plots of ψ and T are shown in
Figure 33 with corresponding iteration given in Figure 34. The patterns of the contours
are ensured.
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Figure 30. Non-uniform discretization with s = 3 in the parallelograms: (a) domain I; (b) domain II.
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Figure 31. Contour plots obtained by non-uniform discretization with s = 3: (a) ψ in domain I; (b) ψ in domain II; (c) T in
domain I; (d) T in domain II.
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Figure 33. Contour plots obtained by non-uniform discretization with 4s = : (a) ψ  in domain I; (b) ψ  in domain II; 

(c) T  in domain I; (d) T  in domain II. 
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Figure 32. Non-uniform discretization with s = 4 in the parallelograms: (a) domain I; (b) domain II.
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Figure 33. Contour plots obtained by non-uniform discretization with s = 4: (a) ψ in domain I; (b) ψ in domain II; (c) T in
domain I; (d) T in domain II.
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Figure 34. Non-uniform discretization with s = 4 and corresponding iterations.
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5. Conclusions

The Newton–Raphson collocation method with reproducing kernel approximation is
proposed to solve the natural convection problem within a parallelogrammic enclosure.
Particularly, a nonlinear system is established on the basis of local approximation. In
addition to the benchmark problems given in the literature, a unit square enclosure is
designed to unveil the parameters in RKCM when nonlinearity is of importance in such a
porous enclosure. From the parametric study, the convergence of the method is stable and
efficient, regardless of various initial conditions, disturbance of discretization, inclination,
aspect ratio, and the RK support size. Additionally, it is observed that the parameter RaT
controls the nonlinearity of the system. In all examples, as the value of RaT increases, the
magnitude of ψ increases, and so does the nonlinearity of contour T. Even so, the present
method yields the desired accuracy for a large value of RaT . Although the RK support
size is not sensitive to uniformly discretized domains, for highly irregular discretization,
it is shown that a larger support size in RKCM offers flexibility in yielding accurate
approximation. The feasibility of the method for analyzing two-phase coupling problems
is, therefore, demonstrated. To keep the article an adequate length, the extension to three-
phase coupling problems, i.e., double-diffusive natural convection problems, is left to be
investigated by future works.
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Appendix A

Explicit Expression for Matrix A:

A =
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Explicit Expression for Matrix J:

J =
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