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Abstract: The current article presents a design procedure for obtaining robust multiple-input and
multiple-output (MIMO) fractional-order controllers using a µ-synthesis design procedure with D–K
iteration. µ-synthesis uses the generalized Robust Control framework in order to find a controller
which meets the stability and performance criteria for a family of plants. Because this control problem
is NP-hard, it is usually solved using an approximation, the most common being the D–K iteration
algorithm , but, this approximation leads to high-order controllers, which are not practically feasible. If
a desired structure is imposed to the controller, the corresponding K step is a non-convex problem. The
novelty of the paper consists in an artificial bee colony swarm optimization approach to compute the
nearly optimal controller parameters. Further, a mixed-sensitivity µ-synthesis control problem is solved
with the proposed approach for a two-axis Computer Numerical Control (CNC) machine benchmark
problem. The resulting controller using the described algorithm manages to ensure, with mathematical
guarantee, both robust stability and robust performance, while the high-order controller obtained with
the classical µ-synthesis approach in MATLAB does not offer this.

Keywords: µ-synthesis; robust control; fractional-order control; swarm optimization; artificial bee
colony optimization; CNC machine; mixed sensitivity; D–K iteration; Linear Matrix Inequality

1. Introduction

One of the active problems with major impact which have been studied for years in
Control Theory refers to robustness. Robustness encompasses the sensitivity of a control
system with respect to both internal and external disturbances. Several robust methods
have been developed in order to achieve robust performance and stability in the presence
of uncertainties. Robust control problems use H2 and H∞ norms defined in frequency
domain as a performance measure. To solveH2/H∞ control problems, there are several
approaches. One possible solution is presented in [1] and is based on Algebraic Riccati
Equations (AREs). A more numerically stable approach to solve ARE was developed using
Popov triplets in [2], approach recently implemented in an open-source manner in [3], with
an iterative refinement method presented in [4] , but an ARE-based solution presents a
limitation due to the impossibility of solving singular problems. An alternative way which
manages to solve such problems was introduced in [5], where AREs were replaced by
Algebraic Riccati Inequalities (ARIs). ARIs are solved through Linear Matrix Inequalities
(LMIs), while regular assumptions are no longer needed due to LMI system versatility. An
open-source solver for Robust Control problems using LMIs is presented in [6].

TheH2/H∞ approach designs a suitable controller for the nominal plant, therefore
only nominal stability and nominal performance are fulfilled. Additionally, generalized
Robust Control framework allows to impose robust stability and robust performance, which
cover the previous two aspects for an entire family of physical processes. As such, the µ-
synthesis approach extends theH∞ optimization in order to obtain a robust controller for
the uncertain plant which includes parametric and dynamic uncertainties [7,8]. µ-synthesis

Mathematics 2021, 9, 911. https://doi.org/10.3390/math9080911 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8752-6747
https://orcid.org/0000-0001-7409-4124
https://orcid.org/0000-0001-5156-0831
https://orcid.org/0000-0001-7866-5553
https://orcid.org/0000-0001-6041-5820
https://doi.org/10.3390/math9080911
https://doi.org/10.3390/math9080911
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9080911
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9080911?type=check_update&version=2


Mathematics 2021, 9, 911 2 of 21

is based on using structured singular values to quantify robustness margins and also on
using linear fractional descriptions of the control problem containing the nominal plant
model and uncertainty weighting functions. In [9], the authors present the µ-synthesis
problem used with the so-called D–K iteration, which, in essence, provides two steps
iteratively repeated until the robust performance stops improving: designing aH∞ control
law and µ analysis on closed-loop system.

µ-synthesis is, however, a non-convex problem and the D–K iteration represents only
an approximation, without any convergence guarantees. Another significant concern of
D–K iteration is that the method generates high order controllers. In order to solve this
issue, various approaches based on fixed structure controller are proposed in different
papers [10–12]. The method presented in [10] uses nonsmooth techniques forH∞ synthesis.
Then, using the same technique, the µ-synthesis was solved using D–K iteration and the
result are presented in [13].

The main issue which appears when controller structure constraints are imposed
is that the optimization problem in no longer convex and also, µ-synthesis is in general,
considered nondeterministic polynomial time hard (NP-hard). A possible solution to that are
swarm optimization algorithms. There are different approaches presented in papers [14–16]
based on Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). A solution for
imposing a fixed structure controller, such as low-order or decentralized, was proposed in
paper [14], which splits the problem in two parts: the convex part, solved using the classical
ARE approach, and the non-convex part, solved using GA. The same authors proposed
in [16] a new technique based on an evolutionary D–KD0 iteration method, which combines
the classical D-step with a KD0 algorithm based on also a GA. Authors of the paper [15]
propose an evolutionary approach to solve the µ-synthesis problem without order reduction
by using an improved PSO.

Artificial Bee Colony (ABC) can also be used to solve complex optimization problems
with constraints and could possibly outperform the other approaches and return the best
solution in shorter execution time. The initial idea was presented in [17] as an extension of
another metaheuristic algorithm, namely Honey Bee Swarm (HBS). The efficiency of the
algorithm for several state-of-the-art optimization problems, along with an improvement
for the stopping criterion, were underlined in [18].

One possible fixed structure controller is fractional-order proportional-integral-derivative
(FO-PID). FO-PID is one of the most remarkable fractional order techniques with great
interest in research [19]. It is used to generalize the classical PID control by adding extra
degrees of freedom [20]. Compared to the integer PID controller, FO-PID brings the advan-
tage of improving the robustness and providing better performance. In [21], the authors
propose a FO-PID controller for a fractional-order plant model, presenting an analysis in
both frequency and time domains, proving that achieving better control performance is
one of the advantages of this approach. The FO-PID was used on a benchmark problem,
i.e., the speed control of a DC motor [22], obtaining good results in terms of performance
and robustness. Two generalized versions of Kessler’s magnitude method with fractional
order controllers were developed in [23,24]. A detailed comparison between classical mod-
elling approaches and a fractional integrator approximation as a control baseline model is
presented to the servo problem in [25]. A graphical method was developed in [26], while
in [27] a fractional order internal model controller with event-based implementation was
developed. Other applications comprise in an optimal FO-PID controller for a PMSM speed
control, presented in [28], while a robust controller for a steam turbine was developed
in [29].

In this paper, we present a new technique to design FO-PID robust controllers using
µ-synthesis. The novelty of the current approach consists in implementing an algorithm
able to find the nearly optimal values of the controller parameters using an artificial bee
colony optimization. The cost function to be minimized is theH∞ norm of the closed-loop
system, when stable, and, otherwise, a large value affinely dependent on the largest real
part of the eigenvalues of the closed-loop state matrix. Therefore, the non-convex part
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of the NP-hard µ-synthesis problem is solved using such a swarm optimization, while
the D step is solved using the classical LMI technique. More than that, the realp object
from MATLAB’s Robust Control Toolbox embodies a limitation because it cannot be used
as an exponent, necessary in approximating the fractional element with an integer-order
system. Our approach manages to deal with this limitation in order to obtain the controller
parameters, because the only information necessary in our approach is the range of the con-
troller’s parameters stored in such variables, which can be replaced with a simpler software
object. Additionally, using our approach, a numerical example illustrates that the resulting
controller manages to fulfill the robust stability and performance, while the controller
obtained using unstructured µ-synthesis does not rigorously guarantee these specifications.
Therefore, our method proposes a general framework able to synthesize arbitrary fixed
structure fractional order controllers by optimizing their parameters in terms of robustness
and performance, surpassing the well-established approach of manually tuning them for a
desired problem, harnessing the Robust Control framework’s design strongness.

We illustrate our proposed method on a benchmark problem: obtaining a controller for a
two axis computer numerical control (CNC) system by solving a mixed-sensitivity µ-synthesis
problem. Several control methods using the state space model of the machine are presented in
literature. A comparison between the classical pole-placement method and Linear Quadratic
Regulator (LQR) method is presented in [30]. For the LQR problem, an energy-based
minimization algorithm was proposed, which proves to be suitable in terms of stability and
robustness. As presented in [31], a different approach is recommended, in order to obtain a
PI controller for each axis, using the state-feedback control algorithm. In this case, the state
space model is augmented with an extra state which represents the integral of the position.
The PI regulator parameters are obtained from the state-feedback gains.

The paper is organized in four sections. Section 2 introduces several ideas relevant
to the proposed method, such as a mathematical foundation of FO-PID, continuing with
the fundamental robust control problem based on µ-synthesis, and, finally, the ABC op-
timization algorithm. After that, the last subsection focuses on solving the non-convex
problem of computing fixed structure controllers. Section 3 illustrates an application of the
proposed method for position control of a two axis CNC machine, along with numerical
results. In Section 4, the previously mentioned results are compared with those obtained
using the well-established algorithms from MATLAB. Finally, conclusions are presented in
Section 5.

2. Materials and Methods

In this section we present a controller synthesis procedure which manages to find a
fixed structure fractional-order controller using the µ-synthesis technique from the Robust
Control framework, where the non-convex subproblem involved in the classical D–K itera-
tion is replaced by a swarm optimization algorithm. First, the mathematical background
comprised in fractional-order control, robust control and artificial bee colony optimization
is underlined, while the fourth subsection presents the proposed design procedure using
all the mechanisms briefly described.

2.1. Fractional-Order Controller

The classical integer-order calculus was extended by Riemann and Liouville to
fractional-order calculus by introducing the fractional integral operator [32]:

Iα
a { f (t)} = 1

Γ(α)

∫ t

a
f (τ)(t− τ)α−1dτ, (1)

where Γ(α) : C+ → C is the Euler Gamma function and the order of the integral operator
is the complex parameter α ∈ C+. This extension develops a new area of research in the
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Control System domain. A commonly used definition of this operator was introduced
in [33] as:

J α
C { f (t)} = 1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ = Iα

0 { f (t)}, (2)

with t > 0 and α ∈ R+, having the Laplace transform [34]:

L{J α
c { f (t)}}(s) = s−αF(s), (3)

where F(s) = L{ f (t)}(s). One of the most common controller structures used in practice
is the proportional-integral-derivative (PID) controller, having three degrees of freedom.
Using fractional-order calculus, two new degrees of freedom can be added to a PID, having
the notation PIλDµ. As such, the fractional order PID (FO-PID) has, as extra degrees of
freedom, the order λ ∈ R+ of the integrator and the order µ ∈ R+ of the differentiator,
with the resulting transfer function:

Hc(s) = KP +
KI

sλ
+ KDsµ. (4)

The time domain expression of the command signal c(t) can be expressed using the error
signal ε(t) as:

c(t) = Kp · ε(t) + KI · J λ
c {ε(t)}+ KD · J

−µ
c {ε(t)}. (5)

One of the major issues of such a fractional element, i.e., J λ
c or J −µ

c , is its implemen-
tation. In order to solve this problem, the Oustaloup recursive approximation (ORA) was
introduced [35], and allows the approximation of the fractional-order element with an LTI
system of pre-specified order N:

sλ =
N

∏
k=1

1 + s/ωz,k

1 + s/ωp,k
, (6)

where the frequency values of the singularities are obtained based on the desired fractional
order λ ∈ (0, 1), the integer order of the approximation N, along with the frequency range
in which the approximation is valid [ωl , ωu]. Using the following two coefficients:

ε =

(
ωu

ωl

) λ
N

and η =

(
ωu

ωl

) 1−λ
N

, (7)

the above mentioned frequencies can be computed using:

ωz,1 = ωl
√

η, (8)

ωp,n = ωz,n · ε, n = 1, N, (9)

ωz,n+1 = ωp,n · η, n = 1, N − 1. (10)

For the rest of the possible real values of λ, the approximation can be easily extended as:
for λ ∈ (−1, 0) by inverting the relation (6), while for |λ| ≥ 1, the components could be
the integer part [λ] and the fractional part {λ}, with the fractional part only approximated
using (6).

2.2. Robust Control

The Robust Control framework assumes to minimize theH2/H∞ norm of the lower
linear fractional transformation (LLFT) of a plant P and a controller K:

Po = LLFT(P, K) = P11 + P12K(I − P22K)−1P21, (11)
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where the plant P can be written, in general form, as:

P :
(

P11 P12
P21 P22

)
=

 A Bw Bu
Cz Dzw Dzu
Cy Dyw Dyu

, (12)

where the signals involved in the above relation will be further detailed in a more general
context. One approach to solvingH2/H∞ problems is using AREs, which presents several
limitations that are removed by the LMI approach. However, this framework can be used
to ensure nominal stability and nominal performance only , but, the plant P must also
contain an augmented model of the real process in which uncertainties are also present.
There are two classic uncertainties types: parametric, represented by δI, where δ is the
maximum bound of the parameter for a physical variable, and unstructured, represented by
a full block ∆ ∈ Rm×m. The latter illustrates neglected or unknown dynamics uncertainties.
In the mixed-scenario case, the following set is considered:

∆ =
{

∆ = diag
(

δ1 In1 , . . . , δs Ins , ∆1, . . . , ∆ f

)
|δk ∈ R, ∆j ∈ Rmj×mj , k = 1, s, j = 1, f

}
. (13)

In the Robust Control field, one of the main tools used for robustness analysis is the
structured singular value, defined as follows.

Definition 1. For a square matrix M ∈ CN×N the structured singular value with respect to the
set ∆ is:

µ∆(M) =
1

min
∆∈∆
{σ(∆)|det(I −M∆) = 0} , (14)

if there exists ∆ ∈ ∆ such that the matrix I −M∆ is rank deficient, otherwise 0.

For an LTI system described by the transfer matrix M(s) and an upper linear fractional
transformation (ULFT) connection shown in Figure 1 (left), the structured singular value
µ∆(M) can be defined as:

µ∆(M(s)) = sup
ω∈R+

µ∆(M(jω)). (15)

Figure 1. (Left) The generalized M-∆ structure containing the plant and the uncertainty block ∆.
(Right) The closed-loop P-∆-K structure containing the plant, controller and uncertainty block ∆.

Now, considering M(s) = LLFT(P, K)(s) as being the lower linear fractional transfor-
mation (LLFT) between plant P and controller K, the connection illustrated in Figure 1
(right) results. The generalized plant structure is:

P∆(s) =

Pvd(s) Pvw(s) Pvu(s)
Pzd(s) Pzw(s) Pzu(s)
Pyd(s) Pyw(s) Pyu(s)

⇔ P∆ :


ẋ(t)
v(t)
z(t)
y(t)

 =


A Bd Bw Bu
Cv Dvd Dvw Dvu
Cz Dzd Dzw Dzu
Cy Dyd Dyw Dyu




x(t)
d(t)
w(t)
u(t)

, (16)
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where three types of input signals are present—the command input u ∈ Rnu , the perfor-
mance input w ∈ Rnw , and the disturbance input d ∈ Rnd —and three types of outputs—the
measurements vector y ∈ Rny , the performances vector z ∈ Rnz , and the disturbance output
v ∈ Rnv .

Besides the well-known H2/H∞ methods, a controller that meets robust stability
and robust performance alike can be computed using the µ-synthesis framework. Robust
stability implies that a specific controller manages to stabilize all the processes described
by the upper linear fractional transformation (ULFT) presented in Figure 1 (left), while
robust performance implies that the controller is able to impose the desired closed-loop
performance in the worst case scenario. In order to have a mathematical guarantee that a
controller K meets the robust stability and performance, the Main Loop theorem can be
used. It implies that closed-loop system meets robust stability and performance if and
only if the structural singular value of the LLFT of the plant and controller, with respect to
∆, fulfills:

sup
ω∈R+

µ∆(LLFT(P, K)(jω)) < 1. (17)

Therefore, the robust control problem can be written as:

inf
K stab.

sup
ω∈R+

µ∆(LLFT(P, K)(jω)), (18)

which is not convex. More than that, the structural singular values are hard to be explicitly
computed. In practice, there are various bounds which can be used to approximate the
structural singular value. One of the most used approximations of the upper bound is
in [9]:

µ∆(M) ≤ inf
D∈D

σ(DMD−1), (19)

where σ denotes the largest singular value, and the set D is defined as:

D =
{

diag
(

D1, . . . , Ds, d1 Im1 , . . . , d f Im f

)
|Dk = D>k ∈ Rnk×nk , dj > 0, k = 1, s, j = 1, f

}
. (20)

Based on this upper bound, a good approximation of the initial non-convex problem
can be employed by solving the following quasi-convex problem:

inf
K stab.

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

. (21)

If the scaling factor, represented by the system D, is fixed, then the problem (21) is
nothing but aH∞ optimization problem. On the other hand, fixing the controller K, the D
scaling step can now be obtained by solving a Parrot problem for a desired frequency set
Ω = {ω1, . . . , ωN} using the following generalized eigenvalue problem:

min γ,

s.t. (LLFT(P, K)(jωi))
∗·X · LLFT(P, K)(jωi) ≤ γ2X,

(22)

where from the solution X = (D(jωi))
∗ · D(jωi), the matrix D(jωi) can be extracted

using a singular value decomposition. After all Parrot problems are solved, a minimum
phase system is found in order to approximate the analytical solution D(s). In summary,
an iterative algorithm which solves the µ-synthesis problem starts by setting D = I,
with the following steps applied successively:

1: Fix D and solve theH∞ optimal problem to find a controller K:

K = arg inf
K stab.

||LLFT(P, K)||∞. (23)
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2: Fix the controller K and solve the set of convex problems:

D(jω) = arg inf
D∈D

σ
(

D · LLFT(P, K)(jω) · D−1
)

, (24)

for a given frequency range Ω and, then, fit a stable minimum phase transfer matrix
D(s).

Steps 1 and 2 are executed in a loop sequence until the difference between two
consecutive H∞ norms is less than a prescribed tolerance or the maximum number of
iterations is reached.

2.3. Artificial Bee Colony Optimization

The artificial bee colony (ABC) optimization is a nature-inspired algorithm used to
minimize a cost function:

f : D → R, where D = [lb1, ub1]× [lb2, ub2]× · · · × [lbd, ubd] ⊂ Rd. (25)

The ABC algorithm mimics the behaviour of real honeybees, where each food source
represents a possible solution of the optimization problem described above. The location
and the amount of nectar correspond to the design variables and the cost function, respec-
tively. The bees are divided in two main groups: employed and unemployed bees, while
the unemployed bees could be of two types as well: onlooker and scout bees. The employed
bees are the ones that investigate the food source and return to the hive to inform the others
by performing the waggle dance; the onlooker bees are the ones that watch the dance and
decide whether or not a food source is worthy of being searched or not; the scout bees
are former employed bees that have abandoned their previous food source, due to lack of
nectar, and which now search for a new one. The Best Solution is represented by the food
source, and the quality (or cost) of the solution is represented by the amount of nectar.

The number of employed bees coincides with number of the onlooker bees and
represents the dimension of the swarm problem, denoted by N. The employed bees start
the foraging process by randomly searching an initial position x(0)i in the domain D:

x(0)i =


lb1 + φ

(0)
i,1 · (ub1 − lb1)

lb2 + φ
(0)
i,2 · (ub2 − lb2)

...
lbd + φ

(0)
i,d · (ubd − lbd)

 ∈ D, (26)

where φ
(0)
i,1,d
∈ [−1, 1] are random numbers. After this initialization step, the first Best

Solution appears.
Each employed bee searches a new food source based on the location of the current food

source x(k)i and another food source x(k)j randomly selected. The new possible position is:

x(k)i = sat
(

x(k)i + φ� (x(k)i − x(k)j )
)

, (27)

where φ ∈ [−1, 1]d is an array of random numbers, � is the element-wise multiplication,
and sat is the saturation function that does not allow the position to be outside the searching
domain D. Now, the position of the ith employed bee for the next iteration will be:

x(k+1)
i = arg min{ f (x(k)i ), f (x(k)i )}, (28)

which means that an employed bee will never choose a source with less nectar. If the
position for the next iteration will not be changed, the abandonment counter of the ith
employed bee increments.
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The onlooker bees use the information shared by each employed bee and choose a
location around the position of the employed bees. The fitness value of a solution x(k)i is
given by:

log W(i) =
− f (x(k)i )

1
N ∑j f (x(k)j )

, (29)

and the probability that ith bee’s source will be selected by an onlooker bee is:

pi =
W(i)

∑j W(j)
. (30)

Now, using a roulette wheel selection method, the onlooker bee will choose a source i
and, using the same searching technique as an employed bee, a new position is computed
using (27). If the outlooker bee founds a better solution than the ith employed bee, they
change their roles, otherwise the abandonment counter for the ith source increments.
After this step, we have N employed bees and N unemployed bees. However, if the
abandonment counter for the ith source exceeds a threshold, the ith employed bee becomes
a scout and tries to find a new location using the relation (26).

After every loop corresponding to employed, outlooker and scout bees, it is checked if
there is a food source with a solution better than the last one. The algorithm is over when
the maximum number of cycles is reached or when there is no improvement of the Best
Solution after a prescribed number of cycles.

2.4. Proposed Method

The solution of the problem described in (21) using the classical D–K iteration with
H2/H∞ framework leads to a high-order controller. As a solution to this issue, a fixed
structure family of controllers K can be considered, and the problem (21) becomes:

inf
K∈K

K stab

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

. (31)

The new problem has the disadvantage of being non-convex in terms of the parameters
of the proposed controller structure. However, the problem described in (31) will also be
solved using a D–K iterative procedure, but the non-convex part of the problem has fewer
degrees of freedom and it will be managed with an ABC optimization.

Starting with the model of the process G, a plant P is obtained after the augmentation step:

P :

ẋ(t)
z(t)
y(t)

 =

 A Bw Bu
Cz Dzw Dzu
Cy Dyw Dyu

 x(t)
w(t)
u(t)

, (32)

where the meaning of the inputs and outputs remains the same as in Section 2.2. Con-
sidering the advantages of the fractional-order controllers, the proposed structure of the
controller is:

Kθ(s) =


C(1,1)

FO (s) C(1,2)
FO (s) . . . C

(1,ny)
FO (s)

C(2,1)
FO (s) C(2,2)

FO (s) . . . C
(2,ny)
FO (s)

...
...

. . .
...

C(nu ,1)
FO (s) C(nu ,2)

FO (s) . . . C
(nu ,ny)
FO (s)

, (33)

where C(i,j)
FO is a fractional order controller from the ith input to the jth output and has

the form:

C(i,j)
FO (s) = K(i,j)

P +
K(i,j)

i

sλ(i,j) + K(i,j)
D sµ(i,j)

, (34)
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with the tunable parameters described by the vector:

θ(i,j) =
(

K(i,j)
P K(i,j)

i λ(i,j) K(i,j)
D µ(i,j)

)>
∈ D(i,j)

ABC ⊂ R5. (35)

Using these considerations, the desired family of the fixed structure controllers can be
described as follows:

K =
{

Kθ(s)
∣∣∣ θ ∈ DABC ≡ D(1,1)

ABC × D(1,2)
ABC × · · · × D

(nu ,ny)
ABC

}
, (36)

where all parameters are stored in a single vector θ describing all degrees of freedom
of the tunable controller. Using the ORA mechanism, each component Kθ(s) ∈ K has a
state-space representation:

Kθ :
(

ẋK(t)
u(t)

)
=

(
AK(θ) BK(θ)
CK(θ) DK(θ)

)(
xK(t)
y(t)

)
(37)

Next, we denote by Pθ
o the closed-loop system represented by the lower linear frac-

tional transformation between the augmented plant P and controller Kθ , which can be
represented as:

Pθ
o = LLFT(P, Kθ) :

(
ẋo(t)
zo(t)

)
=

(
Ao(θ) Bo(θ)
Co(θ) Do(θ)

)(
xo(t)
wo(t)

)
, (38)

where state vector, input vector and output vector of the closed-loop system are:

xo =

(
x

xK

)
, wo ≡ w and zo ≡ z. (39)

In Algorithm 1 the main steps necessary to obtain the parameters of the controller
having the structure (33) are presented. The inputs of the algorithm are the closed-loop
plant Pθ

o , containing the tunable controller parameters θ, and the parameters α and β which
describe the cost function that needs to be minimized using an ABC optimization , but, Pθ

o
must also contain the varying parameters and unmodelled dynamics. Therefore, the plant
P∆ obtained after the augmentation step with uncertainties ∆ has the form presented in (16).
Thus, the first step made in Algorithm 1 consists in transforming the closed-loop system
Pθ

o in the generalized closed-loop system Pθ
o,∆ described as follows:

Pθ
o,∆ = LLFT(P∆, Kθ) :

(
ẋo(t)
zo(t)

)
=

(
Ao(θ) Bo(θ)

Co(θ) Do(θ)

)(
xo(t)
wo(t)

)
, (40)

where the new extended performance inputs and outputs are:

wo =

(
d

wo

)
zo =

(
v
zo

)
(41)

As mentioned in Section 2.2, the structured singular value can be bounded using
two D-scaling factors, one for the left and one for the right scaling, denoted DL and DR,
respectively. As it can be notice in Figure 2, a new closed-loop plant Pθ

o is obtained:

P(θ)
o (s) = DL(s) · Pθ

o,∆(s) · D−1
R (s), (42)

having the state-space representation:

Pθ
o :
( ˙̂xo(t)

ẑo(t)

)
=

(
Âo(θ) B̂o(θ)

Ĉo(θ) D̂o(θ)

)(
x̂o(t)
ŵo(t)

)
. (43)
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All the above mentioned plants are presented in Figure 2. First, the generalized plant P∆
has a LLFT connection with the controller Kθ , resulting the closed-loop plant Pθ

o,∆, having

the input vector wo and the output vector zo. After the D-scaling step, a new plant Pθ
o is

obtained, having the input vector ŵo and the output vector ẑo.

Figure 2. The augmented plant with uncertainties P∆ in LLFT connection with controller Kθ forms
the closed-loop plant Pθ

o,∆. After each D-scale step, the plant used to find the controller parameters

is Pθ
o .

Before starting the while loop of Algorithm 1, an initialization of the generalized closed-
loop plant with D-scale Pθ

o is performed with the initial scale factors DL = Inw and DR = Inz ,
as seen in line 2. As noticed in line 4, the K step is performed using this generalized plant
having as degrees of freedom the tunable parameters θ. In order to compute the controller
parameters θ∗, the ABC optimization will be used. The cost function to be minimized is:

f : DABC → R+, f (θ) =

{∣∣∣∣Pθ
o
∣∣∣∣

∞, if Pθ
o is stable

αλmax(Âo) + β, if Pθ
o is unstable

, (44)

where the operator λmax is defined by:

λmax : RM×M → R, λmax(A) = max{Re(λ) | λ ∈ Λ(A)}. (45)

Algorithm 1: Fixed Structure µ-Synthesis.

Input: Pθ
o , α, β

Output: Kθ?

1 get uncertain closed-loop plant Pθ
o,∆ as in (40)

2 set DL = Inw and DR = Inz and compute Pθ
o = DL · Pθ

o,∆ · D
−1
R

3 while Niter ≤ MAX_ITER and exists_improvement do
4 Pθ∗

o = computeKstep(Pθ
o , α, β)

5 update the uncertain plant Pθ?

o,∆
6 Pθ∗

o,nom = getNominalPlant(Pθ∗
o,∆)

7 [DL, DR] = computeDstep(Pθ∗
o,nom)

8 Pθ?

o = DL · Pθ?

o,∆ · D
−1
R

9 check if improvement exists and increase Niter

The procedure computeKstep used to obtain the controller parameters is briefly pre-
sented in Algorithm 2 and will be described below. The inputs of the algorithm are the
generalized closed-loop plant with D-scaling step Pθ

o , along with the parameters α and β
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which describe the cost function (44). The first step of this routine consists in computing
the domain DABC of the cost function based on the constraints of the tunable parameters.
The main limitation is represented by the fractional orders of the integral and derivative
effects of the controller which must remain in (0, 1), according to ORA.

In the second step of routine Algorithm 2, an initial population is created. Let N
be the dimension of the swarm problem. This parameter can be given as input, but as a
good practice, this can be chosen 100 times larger than the number of tunable parameters.
The initialization step consists in randomly generating the positions θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
N of

the food sources for each employed bee in the domain DABC using relation (26). After the
initialization step, the first Best Solution (BS) is computed as:

θ? = arg min
{

f (θ(k)i )
∣∣ i = 1, N

}
⇒ BS = f (θ?). (46)

Using this initial population, the main while loop starts. In line 4, the employed bees step is
performed. In this step, each employed bee searches a new position around using relation (27),

resulting N new possible positions for the next step, denoted by θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
N , and the

proposed positions of the employed bees at step k + 1 will be:

θ̂
(k+1)
i = arg min{ f (θ(k)i ), f (θ(k)i )}, i = 1, N. (47)

If, for a specific food source i, the proposed position coincides with the previous position,
the abandonment counter increments.

Using the proposed solutions of the above step, each onlooker bee selects a new possi-
ble solution based on the roulette wheel selection mechanism and relation (27), resulting a
new set of proposed solutions: θ̃

(k)
1 , θ̃

(k)
1 , . . . , θ̃

(k)
N . If the ith onlooker bee has a better solution

than ith employed bee, they exchange their roles, otherwise the abandonment counter for
the ith food source increments. After this step, the new set of proposed positions for the
employed bees are:

θ̂
(k+1)
i = arg min{ f (θ̃(k)i ), f (θ̂(k+1)

i )}, i = 1, N. (48)

Algorithm 2: Compute K Step.

Input: Pθ
o , α, β

Output: Pθ?

o
1 compute the domain D of the optimization problem
2 create an initial population of employed bees using (26) and select the first Best

Solution
3 while Ncycles < MNC and exists_improvement do
4 perform the employed bees step
5 perform the outlooker bees step
6 perform the scout bees step
7 find the new Best Solution, check if improvements exist and increase Ncycles
8 end

After performing the outlooker bees step from line 5, the abandonment counter for
each active food source will be interrogated. If the abandonment counter of the ith position
exceeds a prescribed threshold, denoted by LIMIT, the employed bee becomes a scout bee
and its new position is obtained using (26). As a good practice, this paper proposed an
improved mechanism of converting employed bees in scout bees. If the value of the cost
function at the proposed position f (θ̂(k+1)

i ) is over β, this means that, in the case of a good
calibration of parameters α and β, the solution corresponds to an unstable closed-loop
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system and can be dropped. The positions of the employed bees for the next iteration
become θ

(k+1)
1 , θ

(k+1)
2 , . . . , θ

(k+1)
N .

The last step of the main while loop, presented in line 7, consists in computing the
Best Solution after this new iteration:

θ? = arg min
{

f (θ?old), f (θ(k)1 ), f (θ(k)2 ), . . . , f (θ(k)N )
}
⇒ BS = f (θ?), (49)

and, then, checking if there exist any improvements after this step. In order to have a
good trade-off between execution time and solution accuracy, it can be useful to establish
a threshold for the number of steps when no improvement appears in Best Solution and
mark if there exists such an improvement. Being a metaheuristic optimization algorithm,
the runtime can be made deterministic and theoretically finite by imposing the variable
MNC, without convergence guarantees. In practice, such methods have been success-
fully employed in various global optimization problems and, being that it is an offline
optimization, it is not problematic for our approach.

Returning to Algorithm 1, after the K step is performed, a new parameter vector θ?

results, which leads to a new generalized closed-loop plant Pθ?

o and to a new uncertain
plant Pθ?

o,∆. The closed-loop plant Pθ?

o,∆ is used to compute the next D-scale factors. From Pθ?

o,∆
we extract a nominal plant Pθ?

o,nom by fixing the tunable parameters of the controller with
the values determined in step 4.

The computeDstep routine from line 7 receives as input this nominal plant and returns
the left and the right D-scale factors. Based on the poles and the transmission zeros of the
nominal plant Pθ?

o,nom, a set Ω = {ω1, ω2, . . . , ωF} of frequencies is generated. Then, we
need to get the frequency response data for each scaling factor by solving the following
generalized eigenvalue problem:

min γ,

s.t. σ
(

DL(jωi) · Pθ?
o,nom(jωi) · D−1

R (jωi)
)
< γ,

(50)

for each i = 1, F, which is nothing but a Parrot problem which can be solved point by point
using LMI techniques, as mentioned in Section 2.2. Once the frequency response data points
are obtained for each value in Ω, we need to fit two minimum phase systems, one for each
scaling factor, then perform the D-scaling step, giving a new generalized closed-loop system:

Pθ?

o (s) = DL(s) · P?
o,∆(s) · D−1

R (s). (51)

In a similar manner with the computeKstep routine, there are possible stopping crite-
ria which can be used. First, a threshold for the maximum number of D–K iterations can be
imposed. Another important stopping condition appears if the upper bound of the struc-
tural singular value is less than 1, because this fact already guarantees that the controller
ensures robust stability and robust performance. In accordance with the allowed maximum
number of steps, a stopping criterion could be to check if there are any improvements after
a certain number of steps.

3. Numerical Results

In this section we illustrate how the proposed method can be used on a benchmark
problem. The process is represented by a Computer Numerical Control (CNC) machine
with two orthogonal axis which are operated by two servo DC motors. A Trio Motion
Coordinator family controller was used for the CNC motors. The programming language
was Trio Basic, which provides various functions such as linear, circular and helical inter-
polation, variable speed and acceleration profile functions and control functions to ensure
smooth and synchronized motions.
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A mathematical model for each axis was determined on the basis of measured data:
angular speeds ωx and ωy, and angular positions θx and θy. The state space mathematical
model of the machine is described as follows:

G :



ω̇x
θ̇x
ω̇y
θ̇y
θx
θy

 =



− 1
Tmx

0 0 0 Kmx
Tmx

Kxy

1 0 0 0 0 0
0 0 − 1

Tmy
0 Kyx

Kmy
Tmy

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0





ωx
θx
ωy
θy
ux
uy

, (52)

where the state vector is x =
(
ωx θx ωy θy

)>, the input vector is u =
(
ux uy

)> and

the output vector is y =
(
θx θy

)>. The model parameters, along with their nominal
values and uncertainty range are detailed in Table 1.

Table 1. Nominal values and uncertainty ranges of the CNC model parameters.

Parameter Nominal Value Uncertainty Range Parameter Nominal Value Uncertainty Range

Tmx 0.02448 ±10% Tmy 0.01139 ±10%
Kmx 25.8017 ±10% Kmy 25.1494 ±10%
Kxy 26.65 ±10% Kyx 24.46 ±10%

For this control problem a mixed-sensitivity loop shaping technique is used, which
provides a good trade-off between performance and robustness. In order to use this
technique, a new plant model will be obtained after the augmentation process, as in
Figure 3. The performance inputs for the resulting augmented plant P are the references
for both axis w ≡ r =

(
rx ry

)>. For the augmentation procedure, the closed-loop transfer
functions need to be weighted from the reference signals r to their corresponding error
signals e, output signals y and command signals u, which are named: sensitivity function
S = (I + GK)−1, complementary sensitivity function T = I − S and control effort KS,
respectively. The performance output vector is composed from the weighted outputs of
these three vector-valued functions:

z =

 zS
zT
zKS

, where zS =

(
zS,x
zS,y

)
, zT =

(
zT,x
zT,y

)
and zKS =

(
zKS,x
zKS,y

)
. (53)

Figure 3. Closed-loop augmented plant.
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In order to ensure good disturbance rejection, good reference tracking and stabiliza-
tion of an unstable plant, the sensitivity function must have small magnitude, which means
that the magnitude of the open loop must be large. On the other hand, in order to en-
sure mitigation of measurement noise and robust stability, the complementary sensitivity
function must have small magnitudes, which implies that the magnitude of the open loop
system must be small. More than that, the command signal must have small magnitude,
which implies that the control effort transfer function must also have small magnitude.
However, although these requirements seem to be conflicting, the frequency range where
the magnitude of the open loop must be small and high are mostly disjunctive: the magni-
tude should be high for low frequencies and should be low for high frequencies. In order
to ensure the desired shape of these three functions, three weighting functions must be
designed, respectively.

The sensitivity function is a very good indicator of the closed-loop system tracking
performance and has the advantage of being sufficient to consider only the magnitude.
Typical specifications for sensitivity weighting functions are: minimum bandwidth fre-
quency ω?

B, maximum steady-state error A and maximum peak magnitude M, imposed by
the following model [36]:

WS(s) =
1
M s + ω?

B
s + ω?

B A
. (54)

In a similar manner, the weighting function for the complementary sensitivity must be
designed using the following specifications: the maximum peak amplitude MT , the max-
imum value for high frequencies AT , the minimum bandwidth ω?

BT and the roll-off n,
formulated as:

WT(s) =
(s + ω?

BT)
n(

A1/n
T s + ω?

BT M1/n
T

)n . (55)

For the control effort weighting function, the main performance specifications are the
maximum value of the magnitude at low and high frequencies, denoted by DC and HF,
respectively, and an intermediate point of interest. Sometimes, the main goal is simply to
maintain the command signal under a prescribed value due to physical limitations of the
system or other causes.

The major advantage of this approach consists in sculpting the relevant loop functions
to impose performances implying good tracking and dynamic behaviour. Of great use
are the rise time limitation through ωB, steady-state error through A, while the roll-off
slope of the closed-loop system imposed using n is directly coupled with sensor noise
characteristics. These performances are specified for different frequency ranges, using the
adequately selected weighting functions presented above.

Being a MIMO system with two inputs and two outputs, all weighting functions must
be described by 2× 2 transfer matrices , but, following a standard decoupling procedure,
the weighting functions will be 2× 2 diagonal transfer matrices. For the sensitivity, we
consider two nearly similar weighting transfer functions, one for each axis, having the
maximum bandwidth ω?

B,x = 3 [rad/s] and ω?
B,y = 5 [rad/s], the maximum steady-state

error Ax = Ay = 10−2 and the desired maximum sensitivity peak Mx = My = 1.5,
resulting in:

WS(s) =
(

WS,x(s) 0
0 WS,y(s)

)
, where WS,x(s) =

0.6667s + 3
s + 0.03

and WS,y(s) =
0.6667s + 5

s + 0.05
. (56)

For the complementary sensitivity weighting function, the same 2× 2 diagonal struc-
ture approach will be used, imposing the same parameters for both axis: maximum com-
plementary bandwidth ω?

BT,x = 50 [rad/s], maximum peak magnitude MT,x = MT,y = 1.5,
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maximum magnitude at high frequencies AT,x = AT,y = 10−2 and roll-off nx = ny = 1,
resulting in:

WT(s) =
(

WT,x(s) 0
0 WT,y(s)

)
, where WT,x(s) = WT,y(s) =

s + 50
0.01s + 75

, (57)

while the control effort weighting function being designed to encompass only the physical
limitation of the command signal (between −1 and 1), resulting the transfer matrix:

WKS(s) =
(

WKS,x(s) 0
0 WKS,y(s)

)
, where WKS,x(s) = WKS,y(s) = 1. (58)

The proposed structure of the controller is a decentralized one with two PIλDµ controllers:

K =

{
Kθ(s) =

(
KP,x + KI,xs−λx + KD,xsµx 0

0 KP,y + KI,ys−λy + KD,ysµy

)∣∣∣θ ∈ D ⊂ R10
}

, (59)

where the tunable parameters are:

θ =
(
KP,x KI,x λx KD,x µx KP,y KI,y λy KD,y µy

)>. (60)

The problem to be solved with the proposed method is the mixed-sensitivity fixed
structure µ-synthesis one, described as:

min
K∈K

K stab

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

,

s.t.

∣∣∣∣∣
∣∣∣∣∣

WSS
WTT

WKSKS

∣∣∣∣∣
∣∣∣∣∣
∞

< 1.
(61)

The settings for computeKstep used in the experiments are: the swarm dimension
N = 1000, the maximum number of cycles MNC = 50, the maximum number of cycles
with no improvements NOIMP = 10, the limit for the abandonment counter LIMIT = 10.
The parameters necessary to describe the cost function (44) are α = 1 and β = 105.
The maximum number of D–K iterations is MAX_ITER = 10 and the maximum window
length for assessing lack of progress is 4. Using this setup, the mixed-sensitivity fixed
structure µ-synthesis problem (61) is solved using four D–K iterations, as noticed in Table 2.
The fractional order controller has been approximated using ORA with the following
parameters: the frequency range is [ωl , ωu] = [1× 10−4, 1× 103] [rad/s] and the order of
the approximation is N = 3. Given that, the resulting controller is:

Kθ?(s) =
(

0.01 + 7.1116 · s−0.7648 + 0.1133 · s0.0909 0
0 0.1464 + 10 · s−0.9926 + 0.1344 · s0.0549

)
. (62)

Table 2. The evolution of the structural singular value in the D–K iteration procedure used to solve
the mixed-sensitivity fixed structure µ-synthesis problem for the case study—FO-PID structure.

D–K Iteration Number 1 2 3 4
Number of ABC Iterations 50 39 50 45

Peak Value of µ 1.8956 1.0185 1.0021 0.9822

The imposed shape of the sensitivity, complementary sensitivity and control effort
functions for both axis are depicted in Figure 4, along with the obtained shapes of those
functions with the resulting controller for 100 Monte Carlo simulations. It can be noticed
that all resulting Bode diagrams are under the prescribed shapes, which is guaranteed by
the fact that the upper bound of the structured singular value µ∆

(
Pθ?

o,∆

)
is less than 1. The
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time-domain performances of the systems rx → θx and ry → θy are depicted in Figure 5,
which are correlated with the frequency-domain performances. As such, the minimum
values of the bandwidths for both x and y axis are over ω?

B,x = 3 [rad/s] and ω?
B,y = 5

[rad/s], which means that the rise time is less than 0.33 [s] and 0.2 [s], respectively. For the
system rx → θx, the rise time of the nominal system is 0.248 [s] and varies from 0.227 [s]
to 0.281 [s], while the settling time is 0.558 [s] and varies from 0.496 [s] to 0.664 [s]. On the
other hand, for the system ry → θy, the rise time of the nominal system is 0.211 [s] and
varies from 0.19 [s] to 0.235 [s], having the settling time for the nominal system 0.405 [s] and
varying from 0.363 [s] to 0.454 [s]. According to the shape of the actual obtained sensitivity
functions, there is no overshoot and no steady-state error for neither of the experiments
presented using Monte Carlo simulations. Moreover, the reciprocal axis influence is small,
as resulted from numerical simulations, where the peak amplitude from ry to θx varies from
0.01 to 0.0143, and the peak amplitude from rx to θy varies from 3.55× 10−3 to 4.97× 10−3,
respectively.

Figure 4. Imposed shapes of the sensitivity, complementary sensitivity and control effort frequency responses for both axis,
along with 100 Monte Carlo simulations with FO-PID closed-loop systems.

Figure 5. Time-domain closed-loop FO-PID performances for rx → θx and ry → θy systems.

4. Discussion

As noticed, the resulting controller contains a small fractional D term, which may be
negligible. As such, the controller may be resynthesized with an imposed diagonal PIλ structure:

K =

{
Kθ(s) =

(
KP,x + KI,xs−λx 0

0 KP,y + KI,ys−λy

)∣∣∣θ ∈ D ⊂ R6
}

, (63)
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where the tunable parameters are:

θ =
(
KP,x KI,x λx KP,y KI,y λy

)>. (64)

The control problem remains the same as in (61), maintaining the constraints as in (56)–(58).
The settings for this experiment were kept the same as for the previous case: N = 1000,
MNC = 50, NOIMP = 10, LIMIT = 10, α = 1, β = 105, MAX_ITER = 10, [ωl , ωu] =
[1e-4, 1e3] [rad/s] and N = 3. Using this setup, the mixed-sensitivity fixed structure
µ-synthesis problem (61) is solved using four D–K iterations, as noticed in Table 3. The
resulting controller is:

Kθ?

FO−PI(s) =
(

0.2229 + 5.9392 · s−0.7792 0
0 0.3949 + 10 · s−0.9733

)
. (65)

Table 3. The evolution of the structural singular value in the D–K iteration procedure used to solve
the mixed-sensitivity fixed structure µ-synthesis problem for the case study—FO-PI structure.

D–K Iteration Number 1 2 3 4
Number of ABC Iterations 30 30 24 30

Peak Value of µ 3.0676 1.1961 1.0026 0.9959

The imposed s hape of the sensitivity, complementary sensitivity and control effort
functions for both axis are depicted in Figure 6, along with the obtained shapes of those
functions with the resulting controller for 100 Monte Carlo simulations. It can be noticed
that all resulting Bode diagrams are under the prescribed shapes, which is guaranteed by
the fact that the upper bound of the structured singular value µ∆

(
Pθ?

o,∆

)
is less than 1.

Figure 6. Imposed shapes of the sensitivity, complementary sensitivity and control effort frequency responses for both axis,
along with 100 Monte Carlo simulations with actual FO-PI closed-loop systems.

The proposed method results are compared with those obtained using the musyn
routine from MATLAB [37]. The musyn routine manages to solve both fixed structure
and free-structure µ-synthesis control problems. The first solution of the problem (61) is
obtained using the proposed method with results already presented in Section 3. Starting
from the same control problem, the structured µ-synthesis version of the musyn routine with
the same stopping criteria was used. The resulting controller after 2 iterations achieved its
best performance µ∆(Pθ?

o,∆) = 0.9842, which means that there is a mathematical guarantee
for robust stability and robust performance. The transfer matrix of this controller is:
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Kθ?(s) =
(

0.0101 + 7.4689 · s−0.7860 + 0.1729 · s0.0542 0
0 0.0881 + 5.4840 · s−0.9749 + 0.2031 · s0.0348

)
. (66)

In opposition with the above approaches, the controller obtained with µ-synthesis
procedure from MATLAB without imposing a fixed structure is of order 74 and, after
10 iterations, the best achieved performance is µ∆(Pθ?

o,∆) = 1.003. The frequency-domain
data for structured singular values corresponding to these three numerical simulations are
presented in Figure 7. As mentioned, the peak value of the µ values for the unstructured
problem is over the critical value 1, while the FO-PID controller manages to fulfill all
requirements. A comparison between the frequency responses of the controllers is shown
in Figure 8.

Figure 7. Comparison between structured singular values’ frequency response obtained with the structured µ-synthesis from
MATLAB (blue), with the unstructured µ-synthesis from MATLAB (orange) and with the proposed method (red), respectively.

Figure 8. Obtained controllers’ frequency responses with the structured µ-synthesis from MATLAB
(blue), unstructured (orange) µ-synthesis from MATLAB, and with the proposed method (red).

The integer-order approximation of a fractional element using ORA contains two
exponential terms, as seen in (7), which presently cannot be treated using the realp objects
in MATLAB. The actual solution used for this paper is to approximate the exponential
function using Taylor series truncation. As stated in the Introduction, our approach
requires only the range of the controller parameters and, thus, another object could be
used instead of the entire structure of realp necessary in nonsmooth optimization-based
algorithms used in MATLAB hinfstruct and systune routines. Based on this limitation,
the toolbox presented in [38] will be extended in order to address the previously mentioned
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mathematical issues, due to the fact that only the fixed-structureH∞ synthesis algorithm
uses the realp object, which can be replaced by our approach, where the NP-hard non-
convex problem is solved using an ABC swarm optimization.

Compared to other approaches previously described in the introduction, where LQR
methods were considered for CNC machines, the advantages of the proposed method
consist in the generality of the method and the flexibility of the robustness, with the
possibility to compensate measurement noise, unmodelled dynamics and input-output
disturbances. Therefore, while LQR requires the complete state vector to be measured at
runtime, the proposed method requires only the provided measurements, modelled by
the actual outputs of the system. Although the LQR method can be augmented with a
state estimator in order to obtain output feedback, the main limitation of this approach
is that the model of the plant must be accurate, while in the Robust Control framework,
utilized in our method, an entire family of uncertain plants can be taken into consideration
at the design phase. Moreover, it is difficult to impose exact limitations on the maximum
allowed command signals, using the energy-based approach, which generally is an intrinsic
limitation of the execution element.

5. Conclusions and Future Work

The current paper presents a new design method for fixed structure fractional-order
controllers using the Robust Control framework. The proposed method manages to return
nearly optimal parameters of a MIMO FO-PID as a solution for a mixed-sensitivity fixed
structure µ-synthesis control problem. Although the µ-synthesis control problem is NP-
hard, the D–K iteration algorithm represents a good approximation which allows to convert
it into a P-hard problem. However, the returned controller is of high order, which means
that an order reduction must be performed in order to implement the control law. Therefore,
the imposed structure is an increasingly explored approach, although such a problem
presents a non-convex component for the K step. Our approach consists of an artificial bee
colony swarm optimization as a solution to this non-convex fixed structureH∞ subproblem.
This solution requires only the range of the controller parameters, as opposed to the
nonsmooth optimization-based approach from MATLAB’s Robust Control Toolbox, where
the parameters can be used only in polynomial structured expressions, which is an inherent
limitation when fractional-order controllers are desired. Further, the case study of mixed-
sensitivity µ-synthesis position control problem for both axis of a CNC machine manages
to underline the strong points of the method and of the imposed structure of the controller:
it provides a mathematical guarantee for robust stability and robust performance, while
the unstructured version of µ-synthesis from MATLAB does not manage to offer it.

As future work, we want to include our method in a toolbox, as stated in the Discussion
section, which starts from an initial process model and a set of desired performances,
and manages to automatically obtain the augmented plant, the controller decoupling
transfer matrix, the optimal values of the controller parameters, followed by closed-loop
simulations and validations. Additionally, we propose to extend this technique for certain
types of nonlinear systems.
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