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Abstract: In this article, we consider the Qian–Sheng model in the Landau–de Gennes framework
describing nematic liquid crystal flows when the inertial effect is neglected. By taking the limit of
elastic constant to zero (also called the uniaxial limit) and utilizing the so-called Hilbert expansion
method, we provide a rigorous derivation from the non-inertial Qian–Sheng model to the Ericksen–
Leslie model.
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1. Introduction

Liquid crystals feature partial order (also called the local anisotropy), which results
in physical properties between liquid and solid. Nematic order is the simplest kind of
orientational order, with the molecules displaying a long-range orientation but randomly
distributing in space. Roughly speaking, there exists three different but closely related
models to describe the dynamical behavior of nematic liquid crystals: the Doi–Onsager
model, the Ericksen–Leslie model and the Landau–de Gennes model. The first one is
based on microscopic statistical mechanics. The latter two are based on macroscopic
continuum mechanics.

Exploring relationships between different dynamical models is a fundamental sub-
ject in the theoretical study of liquid crystals. In this respect, the formal derivations
were constructed by Kuzzu-Doi [1] and E-Zhang [2] from the Doi–Onsager model to the
Ericksen–Leslie model. By the Hilbert expansion, the rigorous convergence result for
smooth evolution from the Doi–Onsager model to the Ericksen–Leslie model was subse-
quently established by Wang-Zhang-Zhang [3] under the small Deborah number limit.
By means of carefully analyzing the properties of the linearized operators, rigorous verifica-
tion given in [3] circumvent essential difficulties from the uniform control for the singular
terms with respect to a small parameter. Following the spirit of [3], Li-Wang-Zhang [4]
provided a strict derivation from the molecular-based Q-tensor dynamical model, obtained
from the molecular kinetic theory by the Bingham closure, to the Ericksen–Leslie model.
Similar rigorous convergence results were obtained by Wang et al. [5] for the Beris–Edwards
model in the framework of smooth solutions. A unified formulation for liquid crystal
modeling was proposed by Han et al. [6] to establish relations between microscopic theory
and macroscopic theory.

The main aim of this article is to rigorously justify the uniaxial limit from the non-
inertial Qian–Sheng model in Landau–de Gennes framework into the Ericksen–Leslie
model away from singularities of the solution. Concerning the inertial Qian–Sheng model,
which is the hyperbolic-parabolic system, the corresponding uniaxial limit has been rigor-
ously proved by the first author and coauthor in [7]. The Qian–Sheng model is a represen-
tative dynamical model in the Landau–de Gennes framework, and the small inertial term
is usually neglected on physical grounds(see [8,9] and so on). For the case of the inertial
coefficient being zero, this article provides a valuable supplement to the singular limit
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problem of the Q-tensor dynamical model for liquid crystals. Similar to the idea in [5,7],
to control the singular terms in the equation for remainders, we also need to deeply explore
the cancellation relation and symmetric structures of the equations. What follows is a brief
overview of two macroscopic continuum models concerned in this article.

The Ericksen–Leslie model, established by Ericksen [10] and Leslie [11] in the 1960s,
is a system coupling the Navier–Stokes equation of the fluid velocity v = v(x, t) with the
evolution equation of the director field n = n(x, t) ∈ S2. Taking no account of inertial
effects, the Ericksen–Leslie model can be given as follows:

∂v
∂t

+ v · ∇v = −∇p +∇ · σ, (1)

∇ · v = 0, (2)

n×
(
h− γ1N− γ2D · n

)
= 0, (3)

where v is the fluid velocity and p the pressure, the stress σ = σL + σE and the molecular
field h are respectively defined by:

σL =α1(nn : D)nn + α2nN + α3Nn + α4D + α5nn ·D + α6D · nn, (4)

σE =− ∂EF
∂(∇n)

· (∇n)T , (5)

h =− δEF
δn

= −∂EF
∂n

+∇ · ∂EF
∂(∇n)

.

Here the Oseen–Frank energy EF is given by

EF(n,∇n) =
k1

2
(∇ · n)2 +

k2

2
(n·(∇× n))2 +

k3

2
|n×(∇× n)|2

+
k2 + k4

2
(
tr(∇n)2 − (∇ · n)2), (6)

where k1, k2, k3, k4 are the Frank constants. In addition, D = 1
2 ((∇v)T + ∇v) and

Ω = 1
2 (∇v− (∇v)T) stand for the rate of strain tensor and the vorticity tensor, respectively.

While N = nt + v · ∇n−Ω · n is called the co-rotational time flux of the director n.
The six constants α1, · · · , α6 in (4) are called the Leslie viscosity coefficients. They and

the coefficients γ1, γ2 together fulfil the following relations:

α2 + α3 = α6 − α5, (7)

γ1 = α3 − α2, γ2 = α6 − α5. (8)

The relations (7) and (8) guarantee the dissipative character of the system (1)–(3), i.e.,

− d
dt

( ∫
R3

1
2
|v|2dx + EF

)
=
∫
R3

(
(α1 +

γ2
2

γ1
)(D : nn)2 + α4|D|2

+
(
α5 + α6 −

γ2
2

γ1

)
|D · n|2 + 1

γ1
|n× h|2

)
dx. (9)

For the Ericksen–Leslie model, there has been published much analytic work. We only
recall some relevant results here. For the non-inertial version, the well-posedness results
can be referred to [12–15] and references therein. Concerning the inertial (hyperbolic)
version, the well-posedness of classical solutions was studied in [16–18].

We next introduce the hydrodynamical model of liquid crystals based on the Landau–
de Gennes theory. This theory employs a symmetric traceless Q-tensor to characterize the
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alignments of molecules. The tensor Q(x) can be interpreted as the second-order moment
of the density distribution function f ,

Q(x) =
∫
S2
(mm− 1

3
I) f (x, m)dm. (10)

For a symmetric traceless tensor Q(x), one can find s(x), r(x) ∈ R, n, m ∈ S2 with n ·m = 0
such that

Q(x) = s(x)
(

nn− 1
3

I
)
+ r(x)

(
mm− 1

3
I
)

, (11)

where I is a 3× 3 identity matrix. Liquid crystals are said to be isotropic when s = r = 0,
uniaxial when s 6= 0, r = 0, and biaxial when s 6= 0, r 6= 0.

The general Landau–de Gennes energy functional is given as follows:

F (Q,∇Q)

=
∫
R3

{
− a

2
Tr(Q2)− b

3
Tr(Q3) +

c
4
(Tr(Q2)2

+
1
2

(
L1|∇Q|2 + L2Qij,jQik,k + L3Qij,kQik,j + L4QijQkl,iQkl,j

)}
dx

def
=
∫
R3

(
Fb(Q) + Fe(Q,∇Q)

)
dx, (12)

where x is the material point in R3, the coefficients a, b, c are non-negative bulk constants
depending on the temperature and material, and Li(i = 1, 2, 3, 4) are material-dependent
elastic constants. In (12), Fb(Q) is the bulk energy characterizing the isotropic-nematic
phase transition, while Fe(Q,∇Q) is the elastic energy describing the distortion effect.
More details can be referred to [19,20].

In the Landau–de Gennes framework, there are two representative Q-tensor dynam-
ical models: the Beris–Edwards model [21] and the Qian–Sheng model [22], which can
be directly derived by the variational method. The well-posedness results of the Beris–
Edwards model on whole space and bounded domain can be referred to [23–28], respec-
tively. The well-posedness results for the inertial Qian–Sheng model and the non-inertial
version can be found in [29–31], respectively.

In this article, we will be concerned with the following Q-tensor hydrodynamical sys-
tem, proposed by T. Qian and P. Sheng in [22], with taking no account of the inertial effect:

∂Q
∂t

+ v · ∇Q =
1

µ1
H + χD + Ω ·Q−Q ·Ω, (13)

∂v
∂t

+ v · ∇v = −∇p +∇ ·
(
σs + σa + σd), (14)

∇ · v = 0, (15)

where Ω ·Q−Q ·Ω are induced by the rotation part of the velocity gradient, the molecular
field H is given by

H = − δF (Q,∇Q)

δQ
.

σd
ij = −

∂F
∂Qkl,j

∂iQkl is the distortion stress, σa = Q ·H−H ·Q is the anti-symmetric stress,

and σs is the symmetric stress defined as

σs = χH + β′1Q(Q : D) + β′2D + β′3(Q ·D + D ·Q).
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While the viscosity coefficients are expressed as

χ = −1
2

µ2

µ1
, β′1 = β1, β′2 = β4 −

µ2
2

4µ1
, β′3 =

β5 + β6

2
. (16)

Here β1, β4, β5, β6, µ1 and µ2 are viscosity coefficients in the original Qian–Sheng model
and satisfy the following Parodi’s relation [32]:

β6 − β5 = µ2. (17)

In order to maintain the energy dissipation law of the system (13)–(15), we assume that
the viscosity coefficients χ, µ1, β′1, β′2 are positive constants, µ2 < 0 and β′2 > max{β′1, β′3}.
This assumptions have the physical meanings. For instance, the relations between the
coefficients corresponding to the classical physical material, MBBA (4-methoxybenzyliden-
4’-butylanilin), are given in [9] by

µ2

µ1
≈ −1.92,

β1

µ1
≈ 0.17,

β4

µ1
≈ 1.99,

β5

µ1
≈ 0.70,

β6

µ1
≈ −0.79.

More specific assumptions on the viscosity coefficients can be also found in [8].
The article is organized as follows. In Section 2, we present some important properties

of the linearized operators which will be used in deriving the Ericksen–Leslie model from
the non-inertial Qian–Sheng model. Meanwhile, the main result of this article is stated.
In Section 3, by making the so-called Hilbert expansion, we present a rigorous derivation
from the non-inertial Qian–Sheng model to the Ericksen–Leslie model.

Notations and Conventions: The Einstein summation convention is employed in this
article. The space of symmetric traceless tensors is defined as:

M3
0

def
=
{

Q ∈ R3×3 : QT = Q, Tr(Q) = 0
}

, (18)

which is endowed with the inner product 〈Q1, Q2〉
def
=
∫
R3 Q1(x) : Q2(x)dx. The set

M3
0 is a five-dimensional linear subspace of R3×3. The matrix norm on M3

0 is defined as

|Q| def
=
√

trQ2 =
√

QijQij. For two tensors A, B ∈ M3
0, we denote (A · B)ij = AikBkj and

A : B = AijBij. In addition, n1 ⊗ n2 denotes the tensor product of two vectors n1, n2, and
we usually omit the symbol ⊗ for simplicity. We use f,i to denote ∂i f and I to denote the
3× 3 order identity tensor.

2. Preliminaries and Main Results

In this section, we first recall some results from [5] concerning critical points and the
linearized operator, which will play a key role in deriving the Ericksen–Lesile model from
the non-inertial Qian–Sheng model. The main result of this article is subsequently stated.

In physics, in contrast to the bulk constants a, b, c, the elastic coefficients Li(i = 1, 2, 3, 4)
are usually regarded as very small parameters, we thus give the Landau–de Gennes energy
functional (12) with a small parameter ε:

Fε(Q,∇Q) =
∫
R3

(1
ε

Fb(Q) + Fe(Q,∇Q)
)

dx, (19)

where a, b, c, Li(i = 1, 2, 3) ∼ O(1). When the small elastic parameter ε → 0, then Qε →
Q0 = s(nn− 1

3 I), i.e., the corresponding liquid crystal system will converge to a unixial
state in which molecules tend to align in a preferred direction. We assume that the elastic
coefficients Li(i = 1, 2, 3, 4) satisfy

L1 > 0, L1 + L2 + L3 > 0, L4 = 0. (20)
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Under the assumption (20), we see from Lemma 2.5 in [5] that the elastic energy is strictly
positive, i.e., there exists some constant L0 = L0(L1, L2, L3) > 0 such that∫

R3
L (Q) : Qdx ≥ L0‖∇Q‖2

L2 ,

where the definition of the operator L will be given below.
In this article, we primarily investigate the singular limit of the non-inertial Qian–

Sheng model with a small parameter ε:

∂Qε

∂t
+ vε · ∇Qε =

1
µ1

Hε + χDε + Ωε ·Qε −Qε ·Ωε, (21)

∂vε

∂t
+ vε · ∇vε = −∇pε +∇ ·

(
σs

ε + σa
ε + σd

ε

)
, (22)

∇ · vε = 0, (23)

where Dε = 1
2 (∇vε + (∇vε)T), Ωε = 1

2 (∇vε − (∇vε)T), and

σs
ε =χHε + β′1Qε(Qε : Dε) + β′2Dε + β′3(Q

ε ·Dε + Dε ·Qε),

σa
ε =Qε ·Hε −Hε ·Qε, (σd

ε )ji = −
∂Fε

∂Qε
kl,j

Qε
kl,i

def
= σd(Qε, Qε).

The molecular field Hε is defined by

Hε(Q) = −1
ε

∂Fb
∂Q

+ ∂i

( ∂Fe

∂Q,i

)
def
= −1

ε
T (Q)−L (Q),

where two operators T and L are respectively expressed as

T (Q) =− aQ− bQ2 + c|Q|2Q +
1
3

b|Q|2I,

(L (Q))kl =−
(

L1∆Qkl +
1
2
(L2 + L3)(Qkm,ml + Qlm,mk −

2
3

δklQij,ij)
)

.

2.1. Critical Points and the Linearized Operator

We first provide the definition of critical points for the bulk energy Fb(Q). A tensor Q0
is called a critical point of Fb(Q) if T (Q0) = 0. The following characterization of critical
points can be seen from [5,33].

Proposition 1. T (Q) = 0 if and only if Q = s(nn− 1
3 I) for some n ∈ S2, where s = 0 or s is a

solution of 2cs2 − bs + 3a = 0, that is,

s1 =
b +
√

b2 + 24ac
4c

, s2 =
b−
√

b2 + 24ac
4c

.

Moreover, the critical point Q0 = s(nn− 1
3 I) is stable if s = s1.

Given a critical point Q0, the linearized operator HQ0 of T (Q) around Q0 is defined by

HQ0(Q) = −aQ− b(Q0 ·Q + Q ·Q0) + c|Q0|2Q + 2(Q0 : Q)
(

cQ0 +
b
3

I
)

.
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Then a direct calculation yields

HQ0(Q) =bs
(

Q− (nn ·Q + Q · nn) +
2
3
(Q : nn)I

)
+ 2cs2(Q : nn)(nn− 1

3
I)

def
=Hn(Q). (24)

The kernel space of the linearized operator Hn, being a two-dimensional subspace of
M3

0, can be defined as

KerHn
def
= {nn⊥ + n⊥n ∈M3

0 : n⊥ ∈ Vn},

for any given n ∈ S2, where Vn
def
= {n⊥ ∈ R3 : n⊥ · n = 0} and n⊥ represents a unit vector

perpendicular to n. Let P in be the projection operator from M3
0 into KerHn and Pout the

projection operator from M3
0 into (KerHn)⊥. The projection operators P in and Pout (see

the definitions in [5]) can be respectively expressed as

P in(Q) =(nn ·Q + Q · nn)− 2(Q : nn)nn, (25)

Pout(Q) =Q− (nn ·Q + Q · nn) + 2(Q : nn)nn. (26)

The important properties of the linearized operator Hn obtained in [5] are as follows:

Proposition 2. (i) For any n ∈ S2, it holds that HnKerHn = 0, i.e., Hn(Q) ∈ (KerHn)⊥.
(ii) There exists a positive constant C0 = c0(a, b, c) > 0 such that for any Q ∈ (KerHn)⊥,

Hn(Q) : Q ≥ c0|Q|2.

(iii) Hn is a 1-1 map on (KerHn)⊥ and its inverse H −1
n is given by

H −1
n (Q) =

1
bs

(
Q− (nn ·Q + Q · nn) +

2
3
(Q : nn)I

)
+

4b + 2cs
bs(4cs− b)

(Q : nn)(nn− 1
3

I).

2.2. The Main Result

We define the viscosity coefficients in the Ericksen–Leslie model as:

α1 = β′1s2, α2 = −(sχ + s2)µ1, α3 = (−sχ + s2)µ1,

α4 = µ1χ2 + β′2 −
2
3

sβ′3, α5 = sβ′3 + µ1sχ, α6 = sβ′3 − µ1sχ, (27)

and the coefficients γ1 and γ2 are

γ1 = 2µ1s2, γ2 = −2µ1sχ. (28)

In addition, the elastic constants in the Oseen–Frank energy are given by

k1 = k3 = 2(L1 + L2 + L3)s2, k2 = 2L1s2, k4 = L3s2. (29)

The main result of this article is stated as follows.
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Theorem 1. Assume Q0(t, x) = s
(
n(t, x)n(t, x)− 1

3 I
)

is a stable critical point of the bulk energy
Fb(Q). Let (n(t, x), v(t, x)) be a smooth solution of the Ericksen–Leslie model (1)–(3) on [0, T]
with the coefficients given by (27)–(29), which satisfies

v ∈ C([0, T]; Hk), ∇n ∈ C([0, T]; Hk) for k ≥ 20.

Suppose that the initial data (Qε
I , vε

I) takes the form

Qε
I(x) =

3

∑
k=0

εkQk(0, x) + ε3Qε
I,R(x), vε

I(x) =
2

∑
k=0

εkvk(0, x) + ε3vε
I,R(x),

where the functions
(
Q1, Q2, Q3, v1, v2

)
are determined by Proposition 4, and (Qε

I,R, vε
I,R) fulfils

‖vε
I,R‖H2 + ‖Qε

I,R‖H3 + ε−1‖Pout(Qε
I,R)‖L2 ≤ E0.

Then there exists ε0 > 0 and E1 > 0 such that for all ε < ε0, the non-inertial Qian–Sheng model
(21)–(23) has a unique solution (Qε(t, x), vε(t, x)) on [0, T] that has the Hilbert expansion

Qε(t, x) =
3

∑
k=0

εkQk(t, x) + ε3Qε
R(t, x), vε(t, x) =

2

∑
k=0

εkvk(t, x) + ε3vε
R(t, x),

where, for any t ∈ [0, T], (Qε
R, vε

R) satisfies∥∥∥(Qε
R, ε−

1
2 (H ε

n (Q
ε
R) : Qε

R)
1
2 , ε

1
2 (H ε

n (∂iQε
R) : ∂iQε

R)
1/2, ε

3
2 (H ε

n (∆Qε
R) : ∆Qε

R)
1
2

)
(t)
∥∥∥

L2

+
∥∥∥(vε

R, ε∇vε
R, ε2∆vε

R
)
(t)
∥∥∥

L2
≤ E1,

here H ε
n (Q) = Hn(Q) + εL (Q) and the constant E1 is independent of ε.

Remark 1. It is worth pointing out that the relations between the Leslie coefficients (27) are
completely in agreement with those given by Qian and Sheng’s original work in [22] if taking
s = 3

2 S0.

Remark 2. The existence of the Hilbert expansion and the error estimates of remainder equations
are closely related to whether the energy of the Ericksen–Leslie model is dissipated or not. Theorem 1
requires that the coefficients χ, µ1, β′1, β′2 are positive constants, µ2 < 0 and β′2 > max{β′1, β′3},
however, we do not assume β′2 is large enough. Proposition 2.2 in [15] tells us that the energy
dissipation law (9) holds, that is,

β̂1|nn : D|2 + β̂2|D|2 + β̂3|D · n|2 > 0 (30)

for any nonzero symmetric traceless matrix D and unit vector n if and only if

β̂2 > 0, 2β̂2 + β̂3 > 0,
3
2

β̂2 + β̂3 + β̂1 > 0, (31)

where

β̂1 = α1 +
γ2

2
γ1

, β̂2 = α4, β̂3 = α5 + α6 −
γ2

2
γ1

.

Using the above equivalent property we may infer that the energy is dissipated for the Ericksen–
Leslie model derived from the non-inertial Qian–Sheng model. In fact, taking notice of (16) and
s ∈ (0, 1], then the coefficients (27) and (28) fulfill the following relations:
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α4 =µ1χ2 + β′2 −
2
3

sβ′3 > 0,

2α4 + α5 + α6 −
γ2

2
γ1

=2µ1χ2 + 2β′2 −
4
3

sβ′3 + 2sβ′3 − 2µ1χ2

=2β′2 +
2
3

sβ′3 > 0,

3
2

α4 + α5 + α6 + α1 =
3
2

µ1χ2 +
3
2

β′2 − sβ′3 + 2sβ′3 + s2β′1

=
3
2

µ1χ2 +
3
2

β′2 + sβ′3 + s2β′1 > 0.

Let us conclude this section by providing the framework of proof for the main result.
We first perform the Hilbert expansion for (Qε, vε):

Qε(t, x) =Q0(t, x) + εQ1(t, x) + ε2Q2(t, x) + ε3Q3(t, x) + ε3QR(t, x),

vε(t, x) =v0(t, x) + εv1(t, x) + ε2v2(t, x) + ε3v(t, x).

Inserting the above expansions into the system (21)–(23) and equating like powers of ε leads
to a hierarchy of equations. We will prove that (Qi, vi)(i = 0, 1, 2) and Q3 can be determined
in this way: Q0 must be a critical point of L (Q), and the system of (Q0, v0) can be reduced
to the non-inertial Ericksen–Leslie model (see Proposition 3), while (Qi, vi)(i = 1, 2) and
Q3 solve the linear equations obtained by using the projection operators (see Proposition 4).
However, the main difficulty is contained in the analysis of the remainder term (QR, vR).
We introduce the definition of good term to derive the system of the remainder. In order to
show that the remainder (QR, vR) can be uniformly controlled in ε, we take full advantage
of the cancellation relation in the system and the estimates of singular terms (see Lemma 4).
We thus obtain the uniform energy estimates for the remainder, see Proposition 5.

3. Uniaxial Limit for the Non-Inertial Qian–Sheng Model

By making the Hilbert expansion for the solution of the system (21)–(23), this section is
devoted to rigorously justifying the uniaxial limit from the non-inertial Qian–Sheng model
to the Ericksen–Leslie model in the framework of smooth solutions.

3.1. The Hilbert Expansion

Let (Qε, vε) be a solution of the system (21)–(23), we perform the following
Hilbert expansion:

Qε =
3

∑
k=0

εkQk + ε3QR
def
= Q̃ + ε3QR, (32)

vε =
2

∑
k=0

εkvk + ε3vR
def
= ṽ + ε3vR, (33)

where Qi(0 ≤ i ≤ 3), vj(0 ≤ j ≤ 2) are independent of ε, while (QR, vR) are called the
remainder term which depend upon ε.

We first introduce the following two definitions

B(Q1, Q2)
def
=Q1 ·Q2 + QT

2 ·QT
1 −

2
3
(Q1 : Q2)I,

C (Q1, Q2, Q3)
def
=Q1(Q2 : Q3) + Q2(Q1 : Q3) + Q3(Q1 : Q2).
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Let Q̂ε = Q1 + εQ2 + ε2Q3, based on the polynomial expansion technique adopted in [5],
we obtain the expansion of T (Qε) in ε as follows:

T (Qε) =T (Q0) + εHn(Q1) + ε2(Hn(Q2) + B1) + ε3(Hn(Q3) + B2)

+ ε3Hn(QR) + ε4T ε
R , (34)

where B1, B2 and Bε, being all independent of QR, are respectively defined as

B1 =− b
2
B(Q1, Q1) + cC (Q0, Q1, Q1),

B2 =− bB(Q1, Q2) + 2cC (Q0, Q1, Q2),

Bε =− b
2 ∑

i + j ≥ 4
1 ≤ i, j ≤ 3

εi+j−4B(Qi, Qj) +
c
3 ∑

i + j + k ≥ 4
at least two of i, j, k are not zero

εi+j+k−4C (Qi, Qj, Qk),

and the fourth order term T ε
R in ε is given by

T ε
R =Bε − bB(Q̂ε, QR) + cC (QR, Q̂ε, Q0) +

c
2

εC (QR, Q̂ε, Q̂ε)

− b
2

ε2B(QR, QR) + cε2C (QR, QR, Q0 + εQ̂ε) + cε5C (QR, QR, QR). (35)

For the sake of simplicity, we also denote

H0 = Hn(Q1) +L (Q0),

H1 = Hn(Q2) +L (Q1) + B1,

H2 = Hn(Q3) +L (Q2) + B2.

We are now in a position to write down the expansion of the system (21)–(23) and
collect the terms (independent of QR) with same order of ε. Specifically, we have

• The O(ε−1) system

T (Q0) = 0. (36)

• The zero-order term in ε

∂Q0

∂t
+ v0 · ∇Q0 =− 1

µ1
H0 + χD0 + Ω0 ·Q0 −Q0 ·Ω0, (37)

∂v0

∂t
+ v0 · ∇v0 =−∇p0 +∇ ·

(
χH0 + β′1Q0(Q0 : D0)

+ β′2D0 + β′3(Q0 ·D0 + D0 ·Q0)

−Q0 ·H0 + H0 ·Q0 + σd(Q0, Q0)
)

, (38)

∇ · v0 =0. (39)
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• The first-order term in ε

∂Q1

∂t
+ v0 · ∇Q1 =− 1

µ1
H1 + χD1 + Ω1 ·Q0 + Ω0 ·Q1

−Q0 ·Ω1 −Q1 ·Ω0 − v1 · ∇Q0, (40)
∂v1

∂t
+ v0 · ∇v1 =− v1 · ∇v0 −∇p1 +∇ ·

(
χH1 + β′1

(
Q0(Q0 : D1)

+ Q0(Q1 : D0) + Q1(Q0 : D0)
)
+ β′2D1

+ β′3(Q0 ·D1 + D0 ·Q1 + Q1 ·D0 + D1 ·Q0)

−Q1 ·H0 + H0 ·Q1 −Q0 ·H1 + H1 ·Q0

+ σd(Q1, Q0) + σd(Q0, Q1)
)

, (41)

∇ · v1 =0. (42)

• The second-order term in ε

∂Q2

∂t
+ v0 · ∇Q2 =− 1

µ1
H2 + χD2 + Ω2 ·Q0 + Ω0 ·Q2 + Ω1 ·Q1

−Q0 ·Ω2 −Q2 ·Ω0 −Q1 ·Ω1 − v2 · ∇Q0 − v1 · ∇Q1, (43)
∂v2

∂t
+ v0 · ∇v2 =− v2 · ∇v0 − v1 · ∇v1 −∇p2 +∇ ·

(
χH2 + β′1

(
Q0(Q0 : D2)

+ Q0(Q1 : D1) + Q0(Q2 : D0) + Q1(Q0 : D1)

+ Q1(Q1 : D0) + Q2(Q0 : D0)
)
+ β′2D2

+ β′3(Q0 ·D2 + D2 ·Q0 + Q1 ·D1 + D1 ·Q1 + Q2 ·D0 + D0 ·Q2)

−Q2 ·H0 + H0 ·Q2 −Q1 ·H1 + H1 ·Q1 −Q0 ·H2 + H2 ·Q0

+ σd(Q2, Q0) + σd(Q1, Q1) + σd(Q0, Q2)
)

, (44)

∇ · v2 =0. (45)

In the sequel, our main task is how to solve (Qi, vi)(0 ≤ i ≤ 2) and Q3. First of all,
combining the Equation (36) with Proposition 1, we deduce that Q0 is a critical point and

Q0(t, x) = s(n(t, x)n(t, n)− 1
3

I), (46)

for some n(t, x) ∈ S2 and s = b+
√

b2+24ac
4c .

Proposition 3. Suppose that (Q0, v0) is a smooth solution of the system (37)–(39), then (n, v0)
must be a solution of the Ericksen–Leslie model (1)–(3), where the coefficients are determined by
(27)–(29).

Remark 3. Proposition 3 implies that the evolution of (n, v0) can be determined by the system
(37)–(39). However, the appearance of unknown Q1 in this system leads to the failure of closure.
Fortunately, based on Proposition 2, if we project the Equation (37) into the subspace KerHn, then
Q1 vanishs in the Equation (37). Furthermore, if we project the Equation (37) into the subspace
(KerHn)⊥, then we can solve Hn(Q1) by using (Q0, v0), in other words, Q1 can also be removed
in the Equation (38).

Proof. This proof is based on the same arguments as Proposition 3.2 in [5]. Recalling the
first property Hn(Q1) ∈ (KerHn)⊥ in Proposition 2, we can deduce from (37) that(∂Q0

∂t
+ v0 · ∇Q0 + Q0 ·Ω0 −Ω0 ·Q0 +

1
µ1

L (Q0)− χD0

)
: (nn⊥ + n⊥n) = 0. (47)
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Substituting (46) into (47), it follows by a subtle calculation as in [5] that

n⊥ ·
(

2s2µ1N− h− 2χµ1sD0 · n
)
= 0,

which implies

n×
(

h− γ1N− γ2D0 · n
)
= 0. (48)

Applying the definition of the kernel space KerHn and (46) yields

∂Q0

∂t
+ v0 · ∇Q0 + Q0 ·Ω0 −Ω0 ·Q0 = s(nN + Nn) ∈ KerHn.

Then from (37) and the definition of the projection operator Pout we have

Hn(Q1) =Pout(−L (Q0) + µ1χD0)

=−L (Q0)−
1
2s

(hn + hn) +
1
s
(h · n)nn

+ µ1χD0 − µ1χ(nn ·D0 + D0 · nn)− 2µ1χ(D0 : nn)nn,

which together with (48) yields

H0 = Hn(Q1) +L (Q0) = −µ1s(nN + Nn) + µ1χD0. (49)

Consequently, we have

ΣL def
=χH0 + β′1Q0(Q0 : D0) + β′2D0 + β′3(Q0 ·D0 + D0 ·Q0)

−Q0 ·H0 + H0 · Q0

=− sµ1χ(nN + Nn) + µ1χ2D0 + β′1s2(nn : D0)nn + β′2D0

+ β′3s(nn ·D0 + D0 · nn)− 2
3

β′3sD0 + µ1s2(nN−Nn)

− µ1sχ(nn ·D0 −D0 · nn)− 1
3

β′1s2(nn : D0)I

=β′1s2(nn : D0)nn + (−sχ− s2)µ1Nn + (−sχ + s2)µ1nN

+ (µ1χ2 + β′2 −
2
3

β′3s)D0 + (β′3s + µ1sχ)(D0 · nn)

+ (β′3s− µ1sχ)(nn ·D0) + pressure terms

=σL + pressure terms.

From Lemma 3.5 in [5] we know that

σE =σd(Q0, Q0).

Here σE and σL are the elastic stress and the viscous stress in the Ericksen–Leslie model,
respectively. In conclusion, this completes the proof of Proposition 3.

Proposition 4. Let (n, v0) be a smooth solution of the Ericksen–Leslie model (1)–(3) on [0, T]
and satisfy

v0 ∈ C([0, T]; Hk), ∇n ∈ C([0, T]; Hk) for k ≥ 20.
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Then there exists the solution (Qi, vi)(i = 0, 1, 2) and Q3 ∈ (KerHn)⊥ of the system (40)–(45)
satisfying

vi ∈ C([0, T]; Hk−4i), Qi ∈ C([0, T]; Hk+1−4i)(i = 0, 1, 2), Q3 ∈ C([0, T]; Hk−11).

Proof. The idea of the proof is mainly based on that of [3,5]. To be specific, for 1 ≤ i ≤ 3,
Qi can be decomposed into two parts: Qi = Q>i + Q⊥i with Q>i ∈ KerHn and Q⊥i ∈
(KerHn)⊥, and then we solve Q>i and Q⊥i respectively.

Suppose that (n, v0) is a smooth solution of the Ericksen–Leslie model (1)–(3) on [0, T]
such that

v0 ∈ C([0, T]; Hk), ∇n ∈ C([0, T]; Hk)

for k ≥ 20. Thanks to Q0 = s(n(t, x)n(t, x)− 1
3 I), we know Q0 ∈ C([0, T], Hk+1). Note

that we could solve Q⊥1 from (49), and easily get Q⊥1 ∈ C([0, T]; Hk−1) by Proposition 2.
Thus, the existence of (Q1, v1) can be reduced to solving (Q>1 , v1)

In what follows, we denote by L(Q>1 , v1) the terms which only depend on (Q>1 , v1)
(not their derivatives) linearly with the coefficients belonging to C([0, T]; Hk−1). We also
use R ∈ C([0, T]; Hk−3) to denote the terms relying only on n, v0 and Q⊥1 . We denote

B̂1(Q, Q) = −b
(
Q ·Q− 1

3
(Q : QI)

)
+ c
(
2(Q : Q0)Q + (Q : Q)Q0

)
.

Thus we have

B1 =B̂1(Q1, Q1) = B̂1(Q>1 , Q>1 ) + B̂1(Q>1 , Q⊥1 ) + B̂1(Q⊥1 , Q>1 ) + B̂1(Q⊥1 , Q⊥1 )

=B̂1(Q>1 , Q>1 ) + L(Q>1 , v1).

By a simple calculation we get

B̂1(Q>1 , Q>1 ) ∈ (KerHn)
⊥. (50)

We are now in a position to derive the system of (Q>1 , v1). We denote

A1 = P in(L (Q>1 )
)
, U1 = P in(χD0 + Ω1 ·Q0 −Q0 ·Ω1

)
,

A2 = Pout(L (Q>1 )
)
, U2 = Pout(χD0 + Ω1 ·Q0 −Q0 ·Ω1

)
.

Taking the projection P in on both sides of (40), note that Hn(Q2) ∈ (KerHn)⊥ and
L (Q1) = L (Q>1 ) + R, from Lemma 1 and (50), there holds

∂Q>1
∂t

+ v0 · ∇Q>1 = − 1
µ1

A1 +U1 + L(Q>1 , v1) + R. (51)

Taking the projection Pout on both sides of (40) yields

− 1
µ1

(
A2 +Hn(Q2) + B̂1(Q>1 , Q>1 )

)
+U2 + L(Q>1 , v1) + R = 0,

which implies that

H1 =Hn(Q2) +L (Q1) + B1

=A1 + µ1U2 + L(Q>1 , v1) + R. (52)
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Substituting (52) into (41) and together with (51), we obtain the following closed system for
(Q>1 , v1)

∂Q>1
∂t

+ v0 · ∇Q>1 = − 1
µ1

A1 +U1 + L(Q>1 , v1) + R, (53)

∂v1

∂t
+ v0 · ∇v1 =−∇p1 +∇ ·

(
χ(A1 + µ1U2) + β′1Q0(Q0 : D1)

+ β′2D1 + β′3(Q0 ·D1 + D1 ·Q0)

−Q0 · (A1 + µ1U2) + (A1 + µ1U2) ·Q0

+ σd(Q>1 , Q0) + σd(Q0, Q>1 ) + L(Q>1 , v1) + R
)

, (54)

∇ · v1 = 0. (55)

Clearly, (53)–(55) is a linear system with respect to (Q>1 , v1). The solvability of this
system strongly relies on the dissipation relations. For this reason, we introduce the
energy functional

E (t) def
=

β′2
3
〈v1, v1〉+

〈
Q>1 , L (Q>1 )

〉
+
〈

Q>1 , Q>1
〉
.

Bearing in mind relations between the coefficients in (30), it follows that

−
〈

β′1Q0(Q0 : D1) + β′2D1 + β′3(Q0 ·D1 + D1 ·Q0),∇v1

〉
= −s2β′1‖nn : D1‖2

L2 − (β′2 −
2
3

sβ′3)‖D1‖2
L2 − 2sβ′3‖n ·D1‖2

L2

≤ 0.

Meanwhile, taking into account the following key dissipation

−
〈

χ(A1 + µ1U2)−Q0 · (A1 + µ1U2) + (A1 + µ1U2) ·Q0,∇v1

〉
+ 〈U1, L (Q>1 )〉

= −
〈
A1 + µ1U2, χD0 + Ω1 ·Q0 −Q0 ·Ω1

〉
+ 〈U1, L (Q>1 )〉

= −
〈
P in(L (Q>1 )

)
, χD0 + Ω1 ·Q0 −Q0 ·Ω1

〉
+
〈
P in(χD0 + Ω1 ·Q0 −Q0 ·Ω1

)
, L (Q>1 )

〉
− µ1

〈
U2, χD0 + Ω1 ·Q0 −Q0 ·Ω1

〉
= −µ1

〈
Pout(χD0 + Ω1 ·Q0 −Q0 ·Ω1

)
, χD0 + Ω1 ·Q0 −Q0 ·Ω1

〉
≤ 0.

Then we can deduce by a simple energy estimate that there exists a positive constant C
such that

d
dt

E (t) ≤ C(1 + E (t)).

The similar method gives rise to the estimate of higher-order derivative for (Q>1 , v1). Hence,
this indicates the existence of (Q1, v1).

Finally, from (52) we can solve Q⊥2 as

Q⊥2 = H −1
n
(
−L (Q1)− B1 +A1 + µ1U2 + L(Q>1 , v1) + R

)
∈ C([0, T]; Hk−5). (56)
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Then (Q>2 , v2) can be solved in a similar way as (Q>1 , v1). Q3 can be solved as in (56)
(unique up to a term in KerHn). Here we omit the details.

Lemma 1. It holds that

Pout(∂Q1

∂t
+ v0 · ∇Q1

)
= L(Q>1 ) + R,

P in(∂Q1

∂t
+ v0 · ∇Q1

)
=

∂Q>1
∂t

+ v0 · ∇Q>1 + L(Q>1 ) + R.

Proof. For further details, one refers to [5].

3.2. The System for the Remainder

This subsection aims to deriving the remainder system and uniform estimates for
the remainder. The previous Proposition 4 tells us that vi ∈ C([0, T]; Hk−4i) for i = 0, 1, 2
and Qi ∈ C([0, T]; Hk+1−4i) for i = 0, 1, 2, 3. Hence, vi and Qi will be treated as known
functions in this subsection. In what follows, we denote by C a constant depending on

2

∑
i=0

sup
t∈[0,T]

‖vi(t)‖Hk−4i and
3

∑
i=0

sup
t∈[0,T]

‖Qi(t)‖Hk+1−4i , and independent of ε.

By the Hilbert expansion (32) and (33), we have

QR =
1
ε3 (Q

ε − Q̃), vR =
1
ε3 (v

ε − ṽ), (57)

where QR and vR depend on ε. For the sake of deriving the evolution equations of the
remainder (QR, vR), we rewrite the system of (Qε, vε) as follows:

∂

∂t
Qε =M(Qε) + G(Qε, vε), (58)

∂

∂t
vε = Pdiv∇ ·

(
K(Qε) + S(Qε, vε)

)
. (59)

where Pdiv is a projection operator mapping a vector field into its solenoidal part,
M(Qε) = 1

µ1
H(Qε) and

G(Qε, vε) = χDε + Ωε ·Qε −Qε ·Ωε − vε · ∇Qε,

K(Qε) = χH(Qε)−Qε ·H(Qε) + H(Qε) ·Qε,

S(Qε, vε) = β′1Qε(Qε : Dε) + β′2Dε + β′3(Q
ε ·Dε + Dε ·Qε) + σd(Qε, Qε)− vε ⊗ vε

, S1(Qε, vε) + β′2Dε + S2(Qε, vε) + S3(Qε) + S4(vε).

Consequently, from (57) we can get

∂

∂t
QR =

1
ε3

(
M(Qε)−M(Q̃)

)
+

1
ε3

(
G(Qε, vε)− G(Q̃, ṽ)

)
+

1
ε3

(
M(Q̃) + G(Q̃, ṽ)− ∂

∂t
Q̃
)

, (60)

∂

∂t
vR =Pdiv∇ ·

( 1
ε3

(
K(Qε)−K(Q̃)

)
+

1
ε3

(
S(Qε, vε)− S(Q̃, ṽ)

))
+

1
ε3

(
Pdiv∇ ·

(
K(Q̃) + S(Q̃, ṽ)

)
− ∂

∂t
ṽ
)

. (61)

Needless to say, this is a tedious task if we want to precisely express the right-hand
terms of the above system. To greatly simplifying the derivation of the remainder system,
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as will be shown later, we introduce a notation R, called good terms, to stand for all terms
in (60) and (61) satisfying

‖R‖L2 + ε‖∇R‖L2 + ε2‖∆R‖L2 ≤ C(εE)(1 + E + εF) + ε f (E), (62)

where R possibly depends on ‖Qi‖ and parameters of the system but is independent of
ε, C(·) and f (·): R+ ∪ {0} 7→ R+ ∪ {0} are increasing functions, E and F are respectively
defined as

E = ‖QR‖H1 + ε‖∆QR‖L2 + ε2‖∇∆QR‖L2 + ‖vR‖L2 + ε‖∇vR‖L2 + ε2‖∆vR‖L2 ,

F = ε‖∇L (QR)‖L2 + ε2‖∆L (QR)‖L2 + ε2‖∆∇vR‖L2 .

It needs to mention that in order to get the property (62) of good terms R, we take full
advantage of the following simple facts obtained by Sobolev embedding theorem that for
k = 0, 1, 2 and some constant C, there holds

εk‖QR‖Hk + εk‖vR‖Hk ≤ E, ε‖QR‖L∞ + ε2‖vR‖L∞ ≤ CE, (63)

εk+1‖L(QR)‖Hk + ε3‖∇vR‖L∞ ≤ C(E + εF), (64)

‖Qε‖Hk ≤ C(εE), ‖vε‖Hk ≤ C(εE). (65)

The unique advantage of the good terms R lies in the right-hand side being controlled
by C(1 + E) as ε→ 0. This will contribute to a uniformly closed energy estimate in ε, see
Proposition 5 for details.

With the definition of good term R, we could now analyze the right-hand terms of the
system (60) and (61). First, by means of the choices of Qi(0 ≤ i ≤ 3), vj(0 ≤ j ≤ 2), it is
easy to see that∥∥∥ 1

ε3

(
K(Q̃) + G(Q̃, ṽ)− ∂

∂t
Q̃
)∥∥∥

H2
,
∥∥∥ 1

ε3

(
Pdiv∇ ·

(
M(Q̃) + S(Q̃, ṽ)

)
− ∂

∂t
ṽ
)∥∥∥

H2
(66)

can be all controlled by a constant uniformly in ε, thus can be absorbed in R.
In addition, for the remaining terms, we have the following two lemmas:

Lemma 2. For the terms of G and S , it follows that

G(Qε, vε)− G(Q̃, ṽ) = ε3
(

χDR + ΩR ·Q0 −Q0 ·ΩR

)
+ ε3R, (67)

S1(Qε, vε)− S1(Q̃, ṽ) = ε3β′1Q0(Q0 : DR) + ε3R, (68)

S2(Qε, vε)− S2(Q̃, ṽ) = ε3β′3(Q0 ·DR + DR ·Q0) + ε3R, (69)

S3(Qε)− S3(Q̃) = ε3R, (70)

S4(vε)− S4(ṽ) = ε3R. (71)

Proof. First, for 0 ≤ k ≤ 2, noting that

εk+3‖Ωε ·QR‖Hk ≤ε3C(1 + ε3‖∇vR‖L∞)‖εkQR‖Hk

≤ε3C(1 + εF)E,

εk‖vε · ∇Qε − ṽ · ∇Q̃‖Hk ≤εk‖vε · ∇Qε − vε · ∇Q̃‖Hk + εk‖vε · ∇Q̃− ṽ · ∇Q̃‖Hk

≤ε3‖εkQR‖Hk‖vε‖L∞ + ε3‖εkvR‖Hk‖∇Q̃‖L∞

≤ε3C(1 + εE)E,
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then we have

Ωε ·Qε −Qε ·Ωε − Ω̃ · Q̃ + Q̃ · Ω̃ + vε · ∇Qε − ṽ · ∇Q̃

= ε3(Ωε ·QR −QR ·Ωε) + ε3(ΩR · Q̃− Q̃ ·ΩR) + ε3R

= ε3(ΩR ·Q0 −Q0 ·ΩR) + ε3R.

Therefore, (67) holds.
For (70), we have

εk‖σd(Qε, Qε)− σd(Q̃, Q̃)‖Hk = ε3+k‖σd(Qε, QR) + σd(QR, Q̃)‖Hk

≤ Cε3‖εk∇QR‖Hk (1 + ‖ε3∇QR‖L∞)

≤ ε3C(1 + εE)E.

Finally, (68), (69) and (71) can be deduced in the same way.

Lemma 3. For the terms ofM and K, it follows that

M(Qε)−M(Q̃) =
ε2

µ1
H ε

n (QR) + ε3R, (72)

K(Qε)−K(Q̃) = ε2
(

χH ε
n (QR)−Q0 ·H ε

n (QR) +H ε
n (QR) ·Q0

)
+ ε3R. (73)

Proof. By (34) and the definitions of Hi(i = 0, 1, 2), then µ1M(Qε) can be expanded as

µ1M(Qε) = H0 + εH1 + ε2H2 + ε2HR + ε3TR,

where HR = H ε
n (QR)

def
= Hn(QR) + εL (QR). Notice that, for 0 ≤ k ≤ 2,

εk‖TR‖Hk ≤ C(εE)(1 + E + εF) + ε f (E),

which can be also absorbed in R. So we have

M(Qε)−M(Q̃) =
ε2

µ1
H ε

n (QR) + ε3R.

It is easy to obtain (73) from (72).

In conclusion, combining Lemma 2 with Lemma 3 leads to the following remainder
system:

∂QR
∂t

= − 1
µ1ε

H ε
n (QR) + χDR + ΩR ·Q0 −Q0 ·ΩR +R, (74)

∂vR
∂t

= −∇pR +
1
ε
∇ ·

(
χH ε

n (QR)−Q0 ·H ε
n (QR) +H ε

n (QR) ·Q0

)
+∇ ·

(
β′1Q0(Q0 : DR) + β′2DR + β′3(Q0 ·DR + DR ·Q0)

)
+∇ ·R+R, (75)

∇ · vR = 0. (76)

It can be observed that the remainder system (74)–(76) involves the singular term
1
ε H

ε
n (QR) in ε. Therefore, as shown in [3,5], in order to obtain the uniform energy estimates,

we have to construct the following suitable energy functionals
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E(t) =
1
2

∫
R3

(
|vR|2 + |QR|2 +

1
ε
H ε

n (QR) : QR

)
+ ε2

(
|∇vR|2 +

1
ε
H ε

n (∂iQR) : ∂iQR

)
+ ε4

(
|∆vR|2 +

1
ε
H ε

n (∆QR) : ∆QR

)
dx,

F(t) =
∫
R3

(
ν|∇vR|2 +

1
µ1ε2 H ε

n (QR) : H ε
n (QR)

)
+ ε2

(
ν|∆vR|2 +

1
µ1ε2 H ε

n (∂iQR) : H ε
n (∂iQR)

)
+ ε4

(
ν|∇∆vR|2 +

1
µ1ε2 H ε

n (∆QR) : H ε
n (∆QR)

)
dx,

where ν = 1
3 β′2 > 0 and H ε

n (Q) = Hn(Q) + εL (Q).
The a priori estimate for the remainder (QR, vR) is stated as follows.

Proposition 5. There exist two functions C and f depending on Qi, vj and the parameters of the
system (but independent of ε), such that if (QR, vR) be a smooth solution of the system (74)–(76)
on [0, T], then for any t ∈ [0, T], it holds that

d
dt
E(t) + F(t) ≤ C(εE)

(
1 + E

)
+ ε f (E) + C(εE)εF.

The proof of Proposition 5 will be presented in next subsection. Provided that Propo-
sition 5 holds, we can now adopt a standard argument to finish the proof of the main result
in this article.

Proof of Theorem 1. Given the initial data (vε
0, Qε

0) ∈ H2 × H3, it can be proved from the
standard energy method in [23,24,29,31] that there exists a maximal time Tε > 0 and a
unique solution (vε, Qε) of the system (21)–(23) such that

Qε ∈ C([0, Tε); H3) ∩ L2(0, Tε; H4), vε ∈ C([0, Tε); H2) ∩ L2(0, Tε; H3).

From Proposition 5 we have

d
dt
E(t) + F(t) ≤ C(εE)

(
1 + E

)
+ ε f (E) + C(εE)εF.

for any t ∈ [0, Tε]. Under the assumptions of Theorem 1, it follows that

E(0) ≤ C1

(
‖vε

I,R‖H2 + ‖Qε
I,R‖H3 + ε−1‖Pout(Qε

I,R)‖L2

)
≤ C1E0.

Let E1 = (2 + C1E0)eT − 2 > E(0), and

T1 = sup{t ∈ [0, Tε] : E(t) ≤ E1}.

If we take ε0 small enough such that

C(ε0E1) ≤ 1, ε0 f (E1) ≤ 1, ε0 ≤ 1/2,

then for t ≤ T1, there holds

d
dt
E(t) ≤ 2 + E.

Therefore, we can infer by means of a continuous argument that T ≤ Tε and E(t) ≤ E1 for
t ∈ [0, T]. This completes the proof of Theorem 1.
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3.3. Proof of Proposition 5

To finish the proof of Proposition 5, we also need to control two singular terms
1
ε 〈∂t(nn) · Q, Q〉 and 1

ε 〈Q : ∂t(nn), Q : nn〉 which come from 1
ε

d
dt
〈

QR, H ε
n (QR)

〉
. Fortu-

nately, two singular terms are all bounded as demonstrated in the following Lemma 4.

Lemma 4. For any δ > 0, there exists a constant C = C(δ, ||∇t,xn||L∞ , ||∇nt||L∞) such that for
any Q ∈M3

0, it holds that

1
ε
〈∂t(nn) ·Q, Q〉 ≤δ‖1

ε
H ε

n (Q)‖2
L2 + Cδ

(1
ε
〈H ε

n (Q), Q〉+ ‖Q‖2
L2

)
,

1
ε
〈Q : ∂t(nn), Q : nn〉 ≤δ‖1

ε
H ε

n (Q)‖2
L2 + Cδ

(1
ε
〈H ε

n (Q), Q〉+ ‖Q‖2
L2

)
.

Proof. The proof of Lemma 4 can be found in [5].

Lemma 5. There holds

‖QR‖H1 + ‖(ε∇2QR, ε2∇3QR)‖L2 + ‖(vR, ε∇vR, ε2∇2vR)‖L2 ≤ CE
1
2 , (77)

‖(1
ε
H ε

n (QR),∇H ε
n (QR), ε∆H ε

n (QR))‖L2 ≤ C(E+ F)
1
2 , (78)

‖
(
ε∇L (QR), ε2∆L (QR)

)
‖L2 + ‖(∇vR, ε∇2vR, ε2∇3vR)‖L2 ≤ C(E+ F)

1
2 . (79)

Proof. The proof of Lemma 5 refers to [4,5] for details.

Corollary 1. E ≤ CE1/2, F ≤ C(E+ F)1/2.

Based on the above preliminaries, we now give the proof of Proposition 5.

Proof of Proposition 5. First, we give the following cancellation relation: for any symme-
try matrix M ∈ R3×3, there holds

−
〈

χM−Q0 ·M + M ·Q0,∇vR

〉
+
〈

χDR + ΩR ·Q0 −Q0 ·ΩR, M
〉
= 0. (80)

The proof is divided into four parts as follows:
Step 1. L2-estimate. From the system of remainder (74)–(76) and Lemma 5, we have

〈∂QR
∂t

, QR
〉
+

1
µ1ε

〈
H ε

n (QR), QR
〉
=
〈
χDR + ΩR ·Q0 −Q0 ·ΩR, QR

〉
+
〈
R, QR

〉
≤ C||QR||L2

(
‖∇vR‖L2 + ‖R‖L2

)
≤ δ0F+ Cδ0E+ C‖R‖2

L2 . (81)
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and 〈∂vR
∂t

, vR
〉
+
〈∂QR

∂t
,

1
ε
H ε

n (QR)
〉

= −1
ε

〈
χH ε

n (QR)−Q0 ·H ε
n (QR) +H ε

n (QR) ·Q0,∇vR

〉
+
〈
∇ ·R+R, vR

〉
−
〈

β′1Q0(Q0 : DR) + β′2DR + β′3(Q0 ·DR + DR ·Q0),∇vR

〉
− 1

µ1ε2

〈
H ε

n (QR), H ε
n (QR)

〉
+
〈

χDR + ΩR ·Q0 −Q0 ·ΩR,
1
ε
H ε

n (QR)
〉

+
〈
R,

1
ε
H ε

n (QR)
〉

= −s2β′1‖nn : DR‖2
L2 − (β′2 −

2
3

sβ′3)‖DR‖2
L2 − 2sβ′3‖n ·DR‖2

L2

− 1
µ1ε2

〈
H ε

n (QR), H ε
n (QR)

〉
+
〈
∇ ·R+R, vR

〉
+
〈
R,

1
ε
H ε

n (QR)
〉
,

where we have already used the following cancelation relation

−1
ε

〈
χH ε

n (QR)−Q0 ·H ε
n (QR) +H ε

n (QR) ·Q0,∇vR

〉
+
〈

χDR + ΩR ·Q0 −Q0 ·ΩR,
1
ε
H ε

n (QR)
〉
= 0.

Therefore, noting the following dissipation inequality

−s2β′1‖nn : DR‖2
L2 − (

2
3

β′2 −
2
3

sβ′3)‖DR‖2
L2 − 2sβ′3‖n ·DR‖2

L2 ≤ 0,

we can get

〈∂vR
∂t

, vR
〉
+
〈∂QR

∂t
,

1
ε
H ε

n (QR)
〉
+

1
µ1ε2

〈
H ε

n (QR), H ε
n (QR)

〉
+

1
3

β′2‖DR‖2
L2

≤ δ0F+ CE+ C‖R‖2
L2 . (82)

Step 2. H1-estimate. Using (74)–(76), we have

ε2〈 ∂

∂t
∂ivR, ∂ivR

〉
+ ε
〈 ∂

∂t
∂iQR, H ε

n (∂iQR)
〉

= −ε
〈

∂i

[
χH ε

n (QR)−Q0 ·H ε
n (QR) +H ε

n (QR) ·Q0

]
,∇∂ivR

〉
− ε2

〈
∂i

[
β′1Q0(Q0 : DR) + β′2DR + β′3(Q0 ·DR + DR ·Q0)

]
,∇∂ivR

〉
− 1

µ1

〈
∂iH

ε
n (QR), H ε

n (∂iQR)
〉
+ ε
〈

∂i

[
χDR + ΩR ·Q0 −Q0 ·ΩR

]
, H ε

n (∂iQR)
〉

+ ε2〈∇ · ∂iR+ ∂iR, ∂ivR
〉
+ ε
〈
∂iR, H ε

n (∂iQR)
〉

def
= I + I I + I I I + IV + V + VI.
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The terms on the right-hand sides can be estimated as follows:

I ≤−
〈

χ∂iH
ε

n (QR)−Q0 · ∂iH
ε

n (QR) + ∂iH
ε

n (QR) ·Q0, ε∇∂ivR

〉
+ C‖H ε

n (QR)‖L2‖ε∆vR‖L2

≤−
〈

χH ε
n (∂iQR)−Q0 ·H ε

n (∂iQR) +H ε
n (∂iQR) ·Q0, ε∇∂ivR

〉
+ δ0F+ CE,

I I ≤− ε2
〈

β′1Q0(Q0 : ∂iDR) + β′2∂iDR + β′3(Q0 · ∂iDR + ∂iDR ·Q0),∇∂ivR

〉
+ C‖ε∇vR‖L2‖ε∇∂ivR‖L2

≤− ε2s2β′1‖nn : ∂iDR‖2
L2 − ε2(β′2 −

2
3

sβ′3)‖∂iDR‖2
L2 − 2ε2sβ′3‖n · ∂iDR‖2

L2

+ δ0F+ CE,

I I I ≤− 1
µ1
‖H ε

n (∂iQR)‖2
L2 + C‖QR‖L2‖H ε

n (QR)‖L2

≤− 1
µ1
‖H ε

n (∂iQR)‖2
L2 + δ0F+ CE,

IV ≤ε
〈

χ∂iDR + ∂iΩR ·Q0 −Q0 · ∂iΩR, H ε
n (∂iQR)

〉
+ δ0F+ CE,

V ≤‖ε∂iR‖L2‖ε∇∂ivR‖L2 + ‖ε∂iR‖L2‖ε∂ivR‖L2

≤δ0F+ CE+ C‖ε∂iR‖2
L2 ,

VI ≤‖ε∂iR‖L2‖H ε
n (∂iQR)‖L2 ≤ δ0F+ C‖ε∂iR‖2

L2 .

Therefore, by the cancelation relation (80) and the dissipation inequality similar to that in
Step 2, we have

ε2〈 ∂

∂t
∂ivR, ∂ivR

〉
+ ε
〈 ∂

∂t
∂iQR, H ε

n (∂iQR)
〉

≤ −ε2 1
3

β′2‖∂iDR‖2
L2 −

1
µ1
‖H ε

n (∂iQR)‖2
L2 + δ0F+ CE+ C‖ε∂iR‖2

L2 . (83)

Step 3. H2-estimate. Using (74)–(76) and emulating the proof of Step 2, it is easy to obtain
the corresponding H2-estimate:

ε4〈 ∂

∂t
∆vR, ∆vR

〉
+ ε2〈 ∂

∂t
∆QR, H ε

n (∆QR)
〉

≤ −ε4 1
3

β′2‖∆DR‖2
L2 −

ε2

µ1
‖H ε

n (∆QR)‖2
L2 + δ0F+ CE+ C‖ε∆R‖2

L2 . (84)

Step 4. Closure of error estimates. Noting the definition of H ε
n (QR), from Lemma 4, it

follows that

1
ε

d
dt
〈

QR, H ε
n (QR)

〉
=

2
ε

〈 ∂

∂t
QR, H ε

n (QR)
〉
+

1
ε

〈
QR,−2cs2(nn : QR)∂t(nn)− 2cs2(∂t(nn) : QR)nn

+ bs
(
∂t(nn) ·QR + QR · ∂t(nn)

)〉
=

2
ε
〈 ∂

∂t
QR, H ε

n (QR)〉+
2
ε

〈
QR,−2cs2(∂t(nn) : QR)nn + bs∂t(nn) ·QR

〉
≤ 2

ε
〈 ∂

∂t
QR, H ε

n (QR)〉+ δ‖1
ε
H ε

n (QR)‖2
L2 + Cδ

(1
ε
〈H ε

n (QR), QR〉+ ‖QR‖2
L2

)
.
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Then we obtain

1
2ε

d
dt
〈QR, H ε

n (QR)〉 ≤ 〈
∂

∂t
QR, H ε

n (QR)〉+ δF+ CE.

A similar method leads to the following inequalities:

ε

2
d
dt
〈∂iQR, H ε

n (∂iQR)〉 ≤ ε〈 ∂

∂t
∂iQR, H ε

n (∂iQR)〉+ δF+ CE,

ε3

2
d
dt
〈∆QR, H ε

n (∆QR)〉 ≤ ε3〈 ∂

∂t
∆QR, H ε

n (∆QR)〉+ δF+ CE.

Therefore, together with (81)–(84), by using the property of good terms R and Corollary 1,
we arrive at

1
2

d
dt
E(t) + F(t) ≤δF+ CδE+ ‖R‖2

L2 + ‖ε∇R‖2
L2 + ‖ε2∆R‖2

L2

≤δF+ CδE+ C(εE)(1 + E + εF) + ε f (E)

≤δF+ CδE+ C(ε2E)(1 + E+ ε2F) + ε2 f (E),

which concludes the proof of Proposition 5 by taking small enough δ.

4. Conclusions

This article is mainly concerned with the non-inertial Qian–Sheng model describing
nematic liquid crystal flows. In the framework of smooth solutions, by taking the elastic
constants tend to zero and using the Hilbert expansion, we rigorously prove that the
solution to the non-inertial Qian–Sheng model converges to the solution to the Ericksen–
Leslie model. The original Qian–Sheng model, in which the inertial term is responsible for
the hyperbolic feature of the evolution equation of Q-tensor, involves two small parameters:
the inertial coefficient and the elastic coefficient. In recent work [7], the inertial coefficient is
fixed and the singular limit (also called the unixial limit) of the original model is rigorously
investigated. A natural problem is how to understand the singular limit of the original
model when the two small parameters go to zero at the same time. It is natural to conjecture
that by taking the two parameters tend to zero, the smooth solution to the original model
will converge to the solution to the non-inertial Ericksen–Leslie model. This is an interesting
problem which will be discussed, while this article paves the way for our future work.
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