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Abstract: Renewable energies have increased in importance in recent years due to the harm caused
to the environment by fossil fuels. As a result, renewable energy companies seem to be profitable
investment opportunities given their likely substantial future earnings. However, previous empirical
evidence has not always agreed about this likely profitability. In addition, the methodologies
employed in the existing empirical literature are complicated and not feasible for most investors
to use. Therefore, it is proposed an approach which combines the use of performance measures,
screening rules, devolatized returns and portfolio strategies, all of which can be implemented by
investors. This approach results in high cumulative returns of more than 200% and other positive
ratios, even when transaction costs are considered. This should encourage people to invest in these
renewable energies and contribute to improving the environment.

Keywords: renewable energy; energy companies; performance measures; screening test; devolatized
returns; portfolio strategies

1. Introduction

In the transition to sustainable finance, it is crucial to properly combine sustainable
development goals with profitable investments in order to show investors the benefit
of investing in these new markets and, therefore, the importance of supporting their
development. Renewable energy companies are therefore a key instrument for achieving
the sustainable development goals because they increase access to clean energy, reduce our
reliance on fossil fuels and respect land tenure, among other benefits.

Renewable energies and, therefore, renewable energy companies, have undeniable
potential and advantages. This is partly because they do not produce greenhouse-gas
emissions, and therefore help improve the environment, but also because they help solve
energy problems because they can be located anywhere, as highlighted by Halkos and
Gkampoura [1]. However, the main disadvantages are their high initial and operating
costs, the existence of policy or technology risks, the cost of storage systems and weather
conditions, see [2,3] among others. Nonetheless, renewable energies are considered the
best option for supplying future energy demands.

In this context, Reboredo et al. [4] argued that the universe of renewable energy
company stocks is limited and that renewable energy projects may be less attractive because
they offer low returns. They analyzed the performance of various alternative energy funds
using linear regression models and concluded that they underperform compared to the
benchmark. This outcome was corroborated, using different methodologies, by [5–7]
and [8].

However, there are recent studies which conclude that renewable energy is a good
alternative for investors. Ahmad [9] suggested that clean energy can provide a profitable
hedging opportunity in combination with crude oil futures. Bai et al. [10] proposed a robust
portfolio method capable of obtaining a better performance from a renewable energy stock
portfolio than from a classic Markowitz approach in various market conditions. Miralles-
Quirós and Miralles-Quirós [11], who employed a VAR-ADCC approach jointly with
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different portfolio optimization problems, provided clear evidence that Alternative Energy
ETFs outperform Energy ETFs.

More recently, Marti-Ballester [12] has compared renewable-energy, black-energy and
conventional investors decisions adopting a panel-data approach with Petersen’s standard
errors clustered by fund and year founding that renewable-energy investors are less sensi-
tive to past financial performance. Kazak et al. [13] have evaluated the relation between
investment funds allocated for Renewable Energy Sources development and renewable
energy production potential by applying the agglomeration method and k-mean method
to define clusters. They found that renewable energy production should be considered for
energy policy implementation. Nasreen et al. [14] have made a portfolio strategy of clean
energy and technology companies after examining the dynamic connectedness between
oil prices and stock returns from those companies. They have shown that there is an im-
portant connection between portfolio weights and oil prices. Finally, Dragomirescu-Gaina
et al. [15] have focused on investors’ group behavior with respect to U.S. energy equities
finding that it is necessary to reduce uncertainty stemming from its raising impact on
investors’ portfolios.

These previous studies often employed complicated methodologies that are not feasi-
ble for a normal investor to replicate given that they normally face serious restrictions in
terms of analysis and technical approaches. As a result, an appropriate way to invest in
these markets is to employ a combination of performance measures, the so-called screening
rule methodology (whose purpose is to rank a set of assets to select the best ones and
exclude the worst ones) and portfolio strategies with simple long positions that also allow
for the possibility of taking short positions.

Billio et al. [16] proposed the use of optimal combinations of performance measures
where the combination of weights was derived from an optimization problem. They also
showed that their proposed composite performance index provided superior results in
terms of realized returns than a naïve (equally weighted) portfolio. Carneiro and Leal [17]
formed equally weighted portfolios according to the lowest or highest values of different
ratios, related to the Fama and French [18] factors, for a previous period and found that
these portfolios frequently outperformed the benchmark. Finally, León et al. [19] analyzed
whether different portfolio measures generate different subsequent returns by using a fixed
one-year rolling window of past returns to estimate the measures and then selecting the
assets to create an equally weighted portfolio. Their results show that the screening rule
influences portfolio returns.

The spirit of [16,17,19] is followed and a contribution to this strand of the empirical
literature is done by proposing a new approach to estimating performance measures
and, therefore, improving an investor’s ability to determine the best assets for a portfolio.
Additionally, the profitability of investing in renewable energy companies, which are the
main focus of this study, is shown and which, to the best of our knowledge, have not been
analyzed previously using this approach.

For this reason, a methodology is proposed in which the investor evaluates the
performance measures of a group of assets until time t and uses the outcome to select the
best ones to hold in time t + 1. This approach led us to construct 12 portfolios using different
strategies (taking long positions, short positions and also investing in risk-free assets) and
rebalancing periods (from monthly to annually) for each performance measure applied.

Additionally, the fact that asset returns, which are assumed to follow a normal dis-
tribution is considered. However, they are usually far from being normally distributed.
Pesaran and Pesaran [20,21], Molnár [22] and Miralles-Quirós et al. [23] proposed the use
of standardized or devolatized returns through range-based volatility estimators instead
of classical returns because they show that these devolatized returns are approximately
normally distributed.

Therefore, the use of these devolatized returns to estimate performance measures, to
avoid these measures being misleading when the shape of the return distribution deviates
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from normality, is suggested and then applying the screening rules to select the assets and
build the portfolio strategies.

Reality Check and Superior Predictive Ability tests are performed to check for data
snooping bias while evaluating the performance of the portfolios, the aim being to test
whether the proposed portfolio strategies perform better just after scanning and re-scanning
to search for the objectives.

The existence of important improvements in investor profitability is reported, com-
pared to those that could be obtained using a naïve rule, when returns standardized by
range-based volatility estimators are used instead of classic returns (natural logarithm
returns). Additionally, clear evidence that taking long and short positions on renewable
energy companies is the best strategy for investors, even when transaction costs are con-
sidered, is provided and also that quarterly rebalancing periods are the best option for
investors due to their lower turnover. Finally, the null hypothesis that the best performance
of the proposed strategies compared to the rest is just based on luck is rejected. In short,
we show that investing in renewable energy companies is certainly profitable for investors
if they follow the approach proposed in this study.

The rest of the paper is organized as follows. Section 2, describes the theoretical
background for this paper, explaining the performance measures used for selecting the
assets and the portfolio strategies estimated using these selected assets. The volatility
proxies used for standardizing the returns and the data snooping methodology employed
for testing the validity of the results are also discussed. Section 3, analyzes the distribution
of the initial returns and show the empirical results from the proposed strategies. This is
followed by Section 4 which provides evidence of the robustness of the result, and finally
Section 5 sets out the main conclusions.

2. Materials and Methods

This section is divided into four main sub-sections. Firstly, the different performance
measures used to employ the screening rules are described. Secondly, the strategies fol-
lowed to construct the portfolios and the criteria employed to evaluate the performance
of the alternative framework proposed are explained. Thirdly, the volatility proxies for
standardizing the returns are defined. Finally, the approaches employed to assess the
effectiveness of the portfolios in the presence of data snooping bias are presented.

2.1. Performance Measures

Performance measures are ratios often used by financial analysts and investors to
select a set of assets from among a group of assets or to evaluate the capability of an asset
or portfolio to be profitable.

The most widely used ratio is the Sharpe ratio, which was proposed by Sharpe [24].
This ratio measures the relationship between the excess return and the standard deviation
of the asset. The higher the Sharpe ratio, the better the return from the fund relative
to the amount of risk taken (this statement of higher is better is valid for the rest of the
performance measures that are employed in this paper). Therefore, this Sharpe ratio is
calculated as follows:

Shape =
E(Ri)− Rf

σi
(1)

where E(Ri) denotes the expected return on asset i (which is calculated as the mean return
of a 252-days rolling window), Rf is the risk-free rate and σi is the standard deviation of the
asset returns (as well as the expected return is calculated using a 252-days rolling window).

This ratio is an optimal performance measure under a normal distribution assumption.
However, stock market assets, such as shares and funds, frequently generate returns that
have non-normal distributions. Additionally, other ratios exist which differ from the
Sharpe one in terms of the measure used to quantify risk, as was highlighted by Bacon [25]
and Auer and Schuhmacher [26]. Given this, different performance measures have been
considered in this study.
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The first alternative is the Treynor ratio, proposed by Treynor [27], which is very
similar to the Sharpe ratio. This measure is calculated as the excess return of the asset
divided by its systematic risk, βi. This beta factor is the coefficient that represents the asset
return’s sensitivity to changes in the market return.

Treynor =
E(Ri)− Rf

βi
(2)

In order to calculate the systematic risk, βi, the excess return on the market down-
loaded from the Kenneth R. French website (http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/index.html, accessed on 10 April 2021) has been employed.

In addition to the use of standard deviation or systematic risk, there are a group of
ratios that use lower partial moments, LPMs, to measure risk. This measure, which was
first proposed by Bawa and Lindenberg [28], consider only negative deviations of returns
from a minimal acceptable return or threshold. This is different to standard deviation
which considers both positive and negative deviations from the expected return.

LPMni(τ) =
1
T

T

∑
t=1

max[τ− rit, 0]
n

(3)

where τ is the minimum acceptable return (zero in this case), n is the order of the lower
partial moment which can be interpreted, in accordance with Eling and Schuhmacher [29],
as the investor’s risk attitude and T is the number of returns below the minimum acceptable
return. Therefore, a lower partial moment order of 0 < n < 1 is appropriate for risk-seeking
investors; a lower partial moment order of 1 is the expected shortfall (for risk-neutral
investors) and a lower partial moment order of 2, where τ is equal to the expected return
of the asset, is the semi-variance (appropriate for risk-averse investors).

Shadwick and Keating [30] proposed the Omega ratio which is defined as:

Omega =
E(Ri)− Rf
LPM1i(τ)

+ 1 (4)

Sortino and van der Meer [31] suggested the Sortino ratio:

Sortino =
E(Ri)− Rf√

LPM2i(τ)
(5)

Kaplan and Knowles [32] introduced the Kappa ratio which in its general form is
calculated as:

Kappa =
E(Ri)− Rf
3
√

LPM3i(τ)
(6)

Sortino, van der Meer and Platinga [33] proposed the Upside potential ratio where
instead of using the excess return in the numerator they suggest using the Higher partial
moment (HPM) which measures the positive excess above the threshold.

HPMni(τ) =
1
T

T

∑
t=1

max[rit − τ, 0]
n

(7)

Upside =
HPM1i(τ)√

LPM2i(τ)
(8)

Another option for measuring risk is a drawdown-based estimator such as the Calmar
ratio proposed by Young [34]:

Calmar =
E(Ri)− Rf
−MDi

(9)

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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where MD is the maximum drawdown, which is the greatest loss on an asset that an
investor can incur over a certain investment period.

Finally, there are other alternatives for the numerator, such as Value at Risk (VaRi),
Conditional Value at Risk (CVaRi) and Modified Value at Risk (MVaRi), which are risk
measures based on quantiles. Value at Risk (VaRi) describes the possible loss of an invest-
ment over a given period for a given confidence interval, while Conditional Value at Risk
(CVaRi) determines the average worst-case scenario among all scenarios at or below a
predetermined threshold. Finally, Modified Value at Risk (MVaRi), which was proposed
by Favre and Galeano [35], takes the high moments of the return distribution into account
by using the Cornish and Fisher [36] expansion to calculate the adjusted Z value (ZCF)
as follows:

ZCF = ZC +
1
6

(
Z2

C − 1
)

S +
1
24

(
Z3

C − 3ZC

)
K− 1

36

(
2Z3

C − 5ZC

)
S2 (10)

where ZC is the critical value of the probability based on a standard normal distribution and
S and K denote Fisher’s skewness and excess kurtosis of the return distribution respectively.
Therefore, MVaRi is defined as:

MVaRi = −(E(Ri) + ZCFσi) (11)

Based on these risk measures, the Excess return on Value at risk ratio (see [35,37,38]),
the Conditional VaR Sharpe ratio (see [39,40]), and the Modified Sharpe ratio (see [41]) are
calculated as:

Excess return on VaR(Eronvar) =
E(Ri)− Rf

VaRi
(12)

Conditional VAR (CVaR) Sharpe =
E(Ri)− Rf

CVaRi
(13)

Modified Sharpe(Modsharpe) =
E(Ri)− Rf

MVaRi
(14)

2.2. Portfolio Strategies

Once the performance measures have been calculated, for which a rolling window of
252 days (approximately one stock market year) is employed, twelve portfolios of 5, 6 or
10 assets are estimated for each measure following three strategies. Firstly, a Long-only
strategy where an equally weighted portfolio is built by taking a long position in period
t + 1 on the best five assets (those with the higher ratios for each performance measure)
as defined in the rolling window ending in period t is used. This portfolio, as well as
those following the other two strategies, is initially rebalanced monthly, but also quarterly,
biannually and annually.

Secondly, a Long-only with risk free asset strategy, estimating a six-asset portfolio
where 50% is invested by taking a long position in period t + 1 in the best five assets
following each performance measure and the other 50% is invested in a risk free asset
(one-month Treasury bill rate) is suggested. Finally, an equally weighted portfolio of ten
assets is formed following a so-called Long-Short strategy where a long position in period
t + 1 is taken on the best five assets and a short position on the worst five ones. Therefore,
12 portfolios are estimated for each performance measure (4 for each strategy) which gives
us a total of 120 estimated portfolios.

In all cases, we opt for small portfolio sizes because we agree with Carneiro and
Leal [17] who use small portfolios due to their focus on individual investors. It is not
appropriate for these investors to hold a well-diversified portfolio with a large number of
assets, mainly because calculating this is not feasible for them. Additionally, it is important
to point out that small portfolio sizes reduce transaction costs and the burden of monitoring
many stock prices.
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All these portfolios are evaluated over an out-of-sample period, calculating the Cu-
mulative return and the Sharpe, Sortino and Omega ratios. It should be noted that the
cumulative returns obtained from natural logarithm returns are transformed into simple
returns by using the relationship Rpt = erpt − 1 where Rpt is the simple return of the
portfolio strategy and rpt is the portfolio strategy return using natural logarithms.

2.3. Volatility Proxies and Standardized Returns

There is a significant weakness in the previous approach, namely the assumption
that asset returns are normally distributed. It is widely known that asset returns are not
normally distributed and usually show patterns of leptokurtosis and skewness. This could
lead to risk being underestimated because loss distributions tend to exhibit heavy tails or
empirical discreteness.

For that reason, we follow [42–45], and more recently [22,23], who show that standard-
ized returns (returns divided by their standard deviations) are approximately normally dis-
tributed. More precisely, the approach suggested by Molnár [22] and Miralles Quirós et al. [23]
who choose to divide the returns by the daily standard deviations of range-based volatil-
ity estimators, namely those proposed by Parkinson [46], Garman and Klass [47] and
Meilijson [48] is followed.

Before explaining how the different range-based volatility estimators are calculated,
we need to show how the open-to-close (c), open-to-high (h) and open-to-low (lw) returns
are estimated:

c = ln(C)− ln(O)
h = ln(H)− ln(O)
lw = ln(L)− ln(O)

(15)

where O, H, L and C are the daily opening, high, low, and closing prices of each asset.
Parkinson [46] proposed using the daily range of high and low prices, meaning that

the volatility proxy is calculated as:

Parkinson (P) = σ̂2
P =

(h− lw)2

4 ln 2
(16)

Garman and Klass [47] added closing prices to the equation proposed by Parkin-
son [46] in order to create a more precise volatility estimator. Their estimator is calculated
as follows:

Garman−Klass (GK) = σ̂2
GK = 0.511(h− lw)2 − (2 ln 2− 1)c2 (17)

The approach proposed by Meilijson [48] which has a smaller variance than that
proposed by Garman and Klass [47] is also considered. This estimator is constructed
as follows:

Meilijson (M) = σ̂2
M = 0.274σ2

1 + 0.16σ2
2 + 0.365σ2

3 + 0.2σ2
4 (18)

where
σ2

1 = 2
[(

h′ − c′
)2

+ lw′
]

σ2
2 = c′2

σ2
3 = 2

(
h′ − c′ − lw′

)
c′

σ2
4 =

(h′−c′)lw′

2 ln 2−5/4

(19)

where c′ = c, h′ = h, lw′ = lw if c > 0 and c′ = −c, h′ = −lw, lw′ = −h if c < 0.
There are other options for calculating a volatility proxy, such as that proposed by

Rogers and Satchell [49] and Yang and Zhang [50]. However, the first of these was not
included in this study because, as has been highlighted by Miralles Quirós et al. [23], its
value can be zero in some cases and this could result in some missing data when dividing
by zero. The second approach was not included in this paper because it requires the use
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of the opening, high, low, and closing prices on a number of days, a procedure that goes
against the spirit of this paper where only daily volatility proxies are considered.

Shu and Zhang [51], Molnar [22,52] and Miralles Quirós et al. [23] highlighted that
previous volatility proxies had only considered trading day prices, that is between opening
and closing, and had not taken into consideration the overnight period (that period from
closing time to opening time) during which prices can change to produce a so-called
opening jump. Not including that opening jump could cause an upward bias in kurtosis,
particularly when the opening jump is large. For that reason, the previous volatility proxies
in this study were adjusted for the presence of volatility jumps by adding the term j2 to
the previous equations. This term is the difference between the natural logarithms of the
opening price on day t and the closing price on day t − 1.

j = ln(Ot)− ln(Ct−1) (20)

As an example, the final equation for the Parkinson volatility estimator would re-
main as:

σ̂2
P =

(h− lw)2

4 ln 2
+ j2 (21)

Once these three volatility proxies have been estimated, the proposal is to standardize
the asset returns, dividing them by the standard deviations of the volatility proxies, and
using these returns for re-estimating the performance measures and strategies initially
suggested. In this way, we can determine whether long or short positions (when necessary)
are taken in each asset and, once these positions have been decided, natural logarithms are
employed to calculate the performance ratios (taking also into account that the cumulative
return obtained using this approach is converted into a simple return by applying the
relationship previously mentioned).

2.4. Data Snooping

Different tests to demonstrate the avoidance of the typical problem faced by re-
searchers who scan and rescan their databases in search of their objectives (an activity
called data mining or data snooping) have been developed.

White [53] proposed the Reality Check framework for data snooping which is able
to test the predictive ability of a set of models using bootstrapping with replacement.
In this framework, the expected loss for each model is estimated and the lowest is com-
pared to a benchmark with the null hypothesis being that there is no strategy superior to
the benchmark:

Ho : max
k=1,...,M

fk ≤ 0 (22)

where fk = 1
n

T
∑

t=R
fk,t is the performance statistic for the portfolio strategy and fk,t (k = 1, . . . ,

M) is the period t return for the k-th portfolio strategy out of an universe of M strategies.
Hansen [54] extended the previous model by suggesting the Superior Predictive

Ability, SPA, model which analyzes whether a benchmark is outperformed by a set of
alternatives. In this model, the estimated variance and p-values are simulated according
to the stationary bootstrap method proposed by Politis and Romano [55]. Therefore,
Hansen [54] proposed to use the following studentized test statistic:

T∗ = max
k=1,...,M

[√
n Zk

$̂k
, 0
]

(23)

where
Zk = 1

n

n
∑

t=1
Zk,t

Zk,t = f∗k,b − fk1
(√

nfk ≥ −$̂k
√

2 ln ln(n)
)
(b = 1, . . . , B)
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B = Number of replacements
Following that procedure, the bootstrap p-value could then be given as:

p =
B

∑
i=1

1(T∗i > T)
B

(24)

where T = max
k=1,...,M

[√
n fk
$̂k

, 0
]

with $̂k representing the estimator of the standard deviation

of
√

n fk. Finally, the lower, centered, and upper values for the consistent p-values are
also calculated.

The data used in this paper are daily returns from 2 January 2009 through 31 December
2019 (amounting to 2768 usable observations) for ten renewable energy companies which
are cited as the best investment opportunities in different reports, such as the Thomson
Reuters Top 100 Global Energy Leaders. Additionally, these companies are those that pro-
vide the longer historical dataset of quotes which is difficult to find due to the early period
of this economic sector. Table 1 shows the name, market and subsector for each company.

Table 1. Renewable Energy companies.

Ticker Name Market Subsector

ALB Albemarle Corporation NYSE Specialty Chemicals
CQP Cheniere Energy Partners, L.P. NYSE AMERICAN Oil & Gas
FSLR First Solar, Inc. NASDAQGS Solar
GPRE Green Plains Inc. NASDAQGS Specialty Chemicals
LEU Centrus Energy Corp. NYSE AMERICAN Nuclear Power
NEE NextEra Energy, Inc. NYSE Wind Power
ORA Ormat Technologies, Inc. NYSE Geothermal
PEIX Pacific Ethanol, Inc. NASDAQGS Oil & Gas

SPWR SunPower Corporation NASDAQGS Solar
CSIQ Canadian Solar Inc. NASDAQGS Solar

These companies represent various subsectors such as solar, wind, geothermal and
specialty chemicals, among others. The first of these, which includes First Solar, SunPower
and Canadian Solar, might be the most recognizable renewable energy sector because it
is affordable, efficient, and reliable. We could say the same about wind power, which is
represented by NextEra Energy. This is an unsaturated industry exhibiting rapid growth.
Other sectors, such as geothermal (ORA) and chemical companies (GPRE), have been
attracting the attention of investors in recent years and, therefore, we consider them
interesting for this study. Finally, it must be pointed out that a nuclear power company
(LEU) is also included because of all the reports suggesting that nuclear power will play
an increasingly important role in the near future as an environmentally benign way of
producing reliable electricity on a large scale. It should also be noted that nuclear power,
together with wind power, has the highest benefit-cost ratio, meaning that it should
be considered by investors. All these companies are quoted on North American stock
exchanges and all their prices are in US dollars.

3. Results

The summary statistics of the companies returns, which are calculated as the differ-
ences between two consecutive natural logarithms, are reported in Table 2 while Figure 1
shows their closing price graphs.

In order to visualize the different performances of these companies over time, in
Figure 1 we set out their daily closing graphs. Sharp upward and downward trends which
lead us to initially question the profitability of investing in these companies are found.

Having a rolling window to estimate the performance measures that condition portfo-
lio composition resulted in the use of an out-of-sample period which runs from 4 January
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2010 through 31 December 2019 (amounting to 2516 usable observations). All the results
shown from this point refer to that period.
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Figure 1. Daily closing prices graphs.

Table 2. Descriptive statistics.

Mean Std. Dev. Skewness Kurtosis Jarque-Bera p-Value

ALB 0.000429 0.020861 −0.333687 7.127706 2016.413 0.00000
CQP 0.000857 0.024491 −0.314810 24.54554 53,584.65 0.00000
FSLR −0.000326 0.034260 0.179488 15.41668 17,796.26 0.00000
GPRE 0.000768 0.036203 1.111.078 14.55838 15,977.61 0.00000
LEU −0.001875 0.065786 0.925393 46.40219 217,654.2 0.00000
NEE 0.000568 0.010875 −0.139638 5.274692 605.7561 0.00000
ORA 0.000307 0.019170 −0.082899 7.538235 2378.527 0.00000
PEIX −0.001540 0.064073 0.748120 15.79248 19,132.20 0.00000

SPWR −0.000562 0.040899 0.466874 11.98336 9408.036 0.00000
CSIQ 0.000444 0.043297 0.245409 7.350927 2211.109 0.00000

Equality Test 16.056
(0.1072)

3.540.200
(0.0000)

This table contains the descriptive statistics for the daily return series for the renewable energy companies for the
sample period from 2 January 2009 through 31 December 2019. The last column reports the mean and variance
equality tests using the ANOVA and Levene statistics, respectively. The p values of these tests are reported
in brackets. Skewness and Kurtosis refer to the series skewness and kurtosis coefficients. The Jarque–Bera
statistic tests the normality of the series. This statistic has an asymptotic X2(2) distribution under the normal
distribution hypothesis.

Table 3 shows the results of the different strategies estimated in this study. The first
column displays the name of the performance measures, while the second shows the
different ratios estimated to evaluate the performance of each strategy. These ratios are the
cumulative return (C. Return), which is expressed in percent, and the Sharpe, Sortino and
Omega (with a threshold of zero) ratios, which are shown as annualized terms. The third
column shows the results of the previous ratios for the naïve strategy. This strategy holds
weights equal to 1/N in each of the N assets (ten in this case). This is in fact a buy and hold
strategy where weights do not change over time and it is usually used by non-professional
investors who base their investments on it. It is a very elementary strategy but [56,57]
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and [58] among others show that it is able to outperform other strategies. For that reason,
we employ it as the benchmark and develop other strategies with the objective of beating it.

The previous apprehension about the profitability of investing in renewable energy
companies due to the sharp rises and falls we observed in Figure 1 is confirmed when a
negative cumulative return of 54.96% is obtained. With that return, negative values for the
Sharpe (−0.2880) and Sortino (−0.3973) ratios and a value of less than 1 (0.9524) for the
Omega ratio are obtained. This means that this strategy is not suitable for any investors
who should look for better investment strategies. The following twelve columns show the
results for the three strategies proposed in this study (long-only, long-only with risk free
and long-short), and four rebalancing periods (monthly, quarterly, biannual, and annual).
The results that outperform the naïve (benchmark) are highlighted in bold, while the best
strategy in each performance measure is also highlighted in red.

It can be drawn some conclusions from these results. Firstly, the naïve strategy is
clearly outperformed for most performance measures and rebalancing periods. Excess
return on VaR (ERONVAR), Conditional VaR Sharpe (CVARSHARPE) and Modified Sharpe
(MODSHARPE) are the performance measures with the best performing ratios when
compared to the naïve ones.

More specifically, the combination of using the Excess return on VaR measure and
the Long-short strategy displays a cumulative return of 289.43%, a Sharpe ratio of 0.6905,
a Sortino value of 1.0049 and an Omega ratio of 1.1280, which are the best of all the
approaches. In contrast, we find that the Omega, Kappa and Upside performance measures
lead to poor results when they are employed to determine the assets, and then the portfolio
returns, for any strategy or rebalancing period.

Secondly, it is clear that taking long and short positions is the best strategy for investors,
while the long-only strategy is the worst option. Its results are similar to those obtained
from a long-only with risk free strategy, but for the long-only strategy the ratios are slightly
worse for all rebalancing periods. Finally, in accordance with León et al. [19] we find
that most of the best results are obtained using a monthly rebalancing period. However,
it must also be pointed out that using quarterly rebalancing periods leads to notable
positive returns.
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Table 3. Performance evaluation from the strategies.

Long Only Strategy Long Only Risk Free Strategy Long-Short Strategy

Naive Monthly Quarterly Biannual Annual Monthly Quarterly Biannual Annual Monthly Quarterly Biannual Annual

Sharpe C. Return (%) −54.96 44.41 −19.33 −70.70 2.01 23.32 −7.83 −44.45 −40.81 220.64 79.11 −34.94 −26.13
Sharpe −0.2880 0.1067 −0.0904 −0.4331 −0.0171 0.1067 −0.0904 −0.4331 −0.4039 0.5935 0.2797 −0.2593 −0.1982
Sortino −0.3973 0.1494 −0.1252 −0.5889 −0.0236 0.1494 −0.1252 −0.5889 −0.5419 0.8510 0.3964 −0.3541 −0.2665
Omega 0.9524 1.0190 0.9843 0.9273 0.9969 1.0190 0.9842 0.9272 0.9324 1.1089 1.0501 0.9555 0.9656

Treynor C. Return (%) −54.96 36.14 16.76 −62.24 −75.99 19.73 10.88 −36.94 −49.72 202.26 159.23 −16.15 −46.69
Sharpe −0.2880 0.0841 0.0342 −0.3428 −0.4677 0.0841 0.0342 −0.3428 −0.4677 0.5490 0.4663 −0.1203 −0.3590
Sortino −0.3973 0.1188 0.0482 −0.4716 −0.6459 0.1188 0.0482 −0.4716 −0.6459 0.7943 0.6669 −0.1667 −0.4994
Omega 0.9524 1.0150 1.0061 0.9414 0.9194 1.0151 1.0061 0.9413 0.9193 1.1007 1.0849 0.9791 0.9388

Omega C. Return (%) −54.96 −85.05 −72.68 −31.93 −43.96 −60.31 −46.37 −15.34 −31.08 −66.78 −39.35 51.14 0.14
Sharpe −0.2880 −0.4928 −0.3378 −0.1102 −0.1972 −0.4928 −0.3378 −0.1102 −0.2100 −0.6119 −0.2905 0.1939 −0.0277
Sortino −0.3973 −0.6886 −0.4768 −0.1585 −0.2883 −0.6886 −0.4768 −0.1585 −0.3016 −0.8506 −0.4102 0.2848 −0.0408
Omega 0.9524 0.9169 0.9423 0.9810 0.9641 0.9168 0.9422 0.9809 0.9639 0.8990 0.9506 1.0346 0.9951

Sortino C. Return (%) −54.96 34.88 −18.99 −70.70 9.81 19.18 −7.64 −44.45 −40.81 199.47 79.88 −34.94 −26.13
Sharpe −0.2880 0.0833 −0.0881 −0.4331 0.0226 0.0833 −0.0881 −0.4331 −0.4039 0.5529 0.2798 −0.2593 −0.1982
Sortino −0.3973 0.1165 −0.1221 −0.5889 0.0313 0.1165 −0.1221 −0.5889 −0.5419 0.7910 0.3966 −0.3541 −0.2665
Omega 0.9524 1.0148 0.9847 0.9273 1.0041 1.0148 0.9846 0.9272 0.9324 1.1010 1.0499 0.9555 0.9656

Kappa C. Return (%) −54.96 −85.51 −74.54 −27.67 −28.70 −60.94 −48.22 −12.73 −19.87 −67.84 −43.47 60.59 35.37
Sharpe −0.2880 −0.4995 −0.3564 −0.0952 −0.1235 −0.4995 −0.3564 −0.0952 −0.1381 −0.6266 −0.3252 0.2275 0.1404
Sortino −0.3973 −0.6977 −0.5025 −0.1369 −0.1828 −0.6977 −0.5025 −0.1369 −0.2001 −0.8728 −0.4579 0.3335 0.2094
Omega 0.9524 0.9157 0.9389 0.9835 0.9774 0.9156 0.9388 0.9835 0.9761 0.8968 0.9450 1.0407 1.0251

Upside C. Return (%) −54.96 −63.69 −60.72 −61.69 8.04 −38.17 −35.68 −36.49 −15.17 −19.39 −12.78 −14.94 51.74
Sharpe −0.2880 −0.3585 −0.3263 −0.3206 0.0117 −0.3585 −0.3263 −0.3206 −0.1417 −0.1469 −0.1017 −0.1128 0.1914
Sortino −0.3973 −0.4923 −0.4502 −0.4449 0.0166 −0.4923 −0.4502 −0.4449 −0.1966 −0.2046 −0.1405 −0.1548 0.2678
Omega 0.9524 0.9400 0.9449 0.9453 1.0022 0.9399 0.9448 0.9452 0.9755 0.9746 0.9823 0.9802 1.0347

Calmar C. Return (%) −54.96 7.99 −30.74 −74.14 1.41 6.64 −14.60 −47.82 −39.07 139.77 53.79 −42.58 −21.71
Sharpe −0.2880 0.0085 −0.1416 −0.4680 −0.0201 0.0085 −0.1416 −0.4680 −0.3801 0.4355 0.1999 −0.3256 −0.1659
Sortino −0.3973 0.0118 −0.1957 −0.6352 −0.0275 0.0118 −0.1957 −0.6352 −0.5100 0.6160 0.2817 −0.4443 −0.2237
Omega 0.9524 1.0015 0.9755 0.9220 0.9964 1.0015 0.9755 0.9219 0.9362 1.0787 1.0355 0.9445 0.9711

Eronvar C. Return (%) −54.96 75.40 −7.32 −69.58 −5.15 35.90 −1.12 −43.40 −39.25 289.43 105.77 −32.45 −22.18
Sharpe −0.2880 0.1684 −0.0421 −0.4040 −0.0495 0.1684 −0.0421 −0.4040 −0.3642 0.6905 0.3490 −0.2363 −0.1665
Sortino −0.3973 0.2386 −0.0587 −0.5545 −0.0694 0.2386 −0.0587 −0.5545 −0.4975 1.0049 0.4979 −0.3260 −0.2279
Omega 0.9524 1.0304 0.9925 0.9309 0.9906 1.0304 0.9925 0.9308 0.9378 1.1280 1.0630 0.9594 0.9710
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Table 3. Cont.

Long Only Strategy Long Only Risk Free Strategy Long-Short Strategy

Naive Monthly Quarterly Biannual Annual Monthly Quarterly Biannual Annual Monthly Quarterly Biannual Annual

Cvarsharpe C. Return (%) −54.96 31.36 −24.39 −71.95 7.43 17.61 −10.77 −45.66 −40.81 191.65 67.87 −37.73 −26.13
Sharpe −0.2880 0.0752 −0.1132 −0.4481 0.0108 0.0752 −0.1132 −0.4481 −0.4039 0.5435 0.2467 −0.2832 −0.1982
Sortino −0.3973 0.1051 −0.1564 −0.6088 0.0149 0.1051 −0.1564 −0.6088 −0.5419 0.7775 0.3482 −0.3863 −0.2665
Omega 0.9524 1.0133 0.9803 0.9248 1.0020 1.0133 0.9803 0.9247 0.9324 1.0994 1.0440 0.9515 0.9656

Modsharpe C. Return (%) −54.96 44.39 −9.20 −66.18 11.35 23.31 −2.22 −40.33 −31.40 220.59 101.60 −24.92 −0.77
Sharpe −0.2880 0.1058 −0.0501 −0.3859 0.0295 0.1058 −0.0501 −0.3859 −0.3071 0.5788 0.3323 −0.1788 −0.0319
Sortino −0.3973 0.1483 −0.0695 −0.5259 0.0407 0.1483 −0.0695 −0.5259 −0.4162 0.8338 0.4740 −0.2454 −0.0434
Omega 0.9524 1.0188 0.9912 0.9345 1.0054 1.0189 0.9912 0.9344 0.9481 1.1068 1.0597 0.9692 0.9944

This table shows the results for the different strategies considering a set of performance measures for selecting the assets in the portfolio over different rebalancing periods. Values in bold are those which
outperform the naïve (benchmark) and those in red are the best for each performance measure. Sharpe, Sortino and Omega ratios are reported in annualized terms.
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To reinforce understanding of the good performance of the proposed strategies, in
Table 4 we give a summary of the best results from the previous approach along with the
number and percentage of ratios that outperform those obtained by the naïve strategy, with
the two values being labeled “Naïve” and “%” respectively.

Table 4. Summary and outperformance percentages.

Strategy Cr Sharpe Sortino Omega Naive % ALL %

Naive −54.96 −0.2880 −0.3973 0.9524
Sharpe LS-M 220.64 0.5935 0.8510 1.1089 38 79.17 17 35.42
Treynor LS-M 202.26 0.5490 0.7943 1.1007 31 64.58 24 50.00
Omega LS-B 51.14 0.1939 0.2848 1.0346 26 54.17 5 8.33
Sortino LS-M 199.47 0.5529 0.7910 1.1010 38 79.17 20 40.00
Kappa LS-B 60.59 0.2275 0.3335 1.0407 26 54.17 8 13.33
Upside LS-A 51.74 0.1914 0.2678 1.0347 27 56.25 8 13.33
Calmar LS-M 139.77 0.4355 0.6160 1.0787 35 72.92 17 36.67
Eronvar LS-M 289.43 0.6905 1.0049 1.1280 38 79.17 16 33.33

Cvarsharpe LS-M 191.65 0.5435 0.7775 1.0994 37 77.08 20 40.00
Modsharpe LS-M 220.59 0.5788 0.8338 1.1068 38 79.17 20 40.00

This table contains a summary of the best results from each strategy where LO, LRF and LS denote Long-only,
Long-only with risk free and Long-Short strategy respectively over different rebalancing periods (Monthly, M;
Quarterly, Q; Biannual, B; and Annual, A). The Naïve column shows the total of performance ratios that improve
those obtained with the benchmark (naïve) while the column labeled as All displays the amount of performance
ratios that also have positive values (cumulative returns and Sharpe and Sortino ratios) or higher than 1 (Omega
ratio). The columns labeled as % show values in percentage for each amount. Sharpe, Sortino and Omega ratios
are reported in annualized terms.

The last two columns in Table 4, labeled “All” and “%”, show the number of ratios
that are an improvement on the naïve results but with positive values for the cumulative
return, Sharpe and Sortino ratios and an Omega ratio higher than 1.

The naïve results are outperformed at least 70% when Sharpe, Sortino, Calmar, Eronvar,
Cvarsharpe and Modsharpe are the performance measures determining the portfolio
composition and, therefore the returns on the strategies. These percentages are reduced to
50% for Treynor and 40% for Sortino, Cvarsharpe and Modsharpe performance measures
when we search for those ratios which also show positive values or values higher than 1. In
contrast, ratios obtained from the strategies where Omega, Kappa and Upside performance
measures condition the portfolio composition led to the worst outperforming percentages
in all cases.

These results are interesting and demonstrate that performance measures are useful
in outperforming the naïve strategy. However, it remains an important problem which is
the non-normality of the returns. Following the methodology of Molnár [22] and Miralles
Quirós et al. [23], in Table 5 the standard deviations and kurtosis values of the initial
returns employed for each asset are shown, but also those related to the standardized
returns, that is, the returns divided by the standard deviations, of the range-based volatility
estimators employed in this study: Parkinson (P), Garman-Klass (GK) and Meilijson
(M). The normal distribution model, which is motivated by the Central Limit Theorem
developed by Polya [59], states that the mean is zero, the standard deviation is 1 and the
kurtosis is 3. The use of standardized returns leads us to obtain the expected figures in
all cases, as shown in Table 5, and then all errors derived from using non-normal returns
should be avoided. This fact should lead us to improve the screening test results but also
the performance of the strategies.
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Table 5. Standard deviations and kurtosis of the initial and standardized returns.

ALB CQP FSLR GPRE LEU NEE ORA PEIX SPWR CSIQ

Panel A: Standard deviations

Initial 0.020861 0.024491 0.034260 0.036203 0.065786 0.010875 0.019170 0.064073 0.040899 0.043297
P 0.908727 0.801400 0.897651 0.865702 0.854906 0.860285 0.891783 0.835885 0.903612 0.889834

GK 1.000866 0.877836 0.985618 0.967012 1.005566 0.939365 0.993124 0.957405 1.005182 0.978530
M 1.000196 0.875899 0.987726 0.964287 0.981749 0.941366 0.990697 0.939586 1.006803 0.980891

Panel B: Kurtosis

Initial 7.127706 24.54554 15.41668 14.55838 46.40219 5.274692 7.538235 15.79248 11.98336 7.350927
P 1.996978 2.128441 1.952674 2.074428 2.240335 2.035012 2.028354 2.153861 1.964415 1.997254

GK 2.794666 3.224822 2.668988 3.074902 3.623357 2.894969 2.842952 3.612813 2.706132 2.789992
M 2.558242 2.891464 2.476586 2.754540 3.059132 2.648927 2.614634 2.986445 2.503920 2.558183

This table contains the standard deviations and kurtosis values for the ten assets using the initial returns from the continuously compounded
return and the returns standardized by the three range-based volatility estimators: Parkinson (PK), Garman–Klass (GK) and Meilijson (M).

The results reported in Table 6 show the performance ratios derived from re-estimating
the different strategies but using the standardized results to calculate the performance
measures determining the assets included in each portfolio. For the sake of brevity, from
this point on only the results for the best strategy in each performance measure and
volatility estimator are shown, although the other figures are available upon request. In this
case, we have highlighted in bold those results showing an improvement on the previous
best strategy for each performance measure, and in red those that have the best ratios.

The previous best performance ratios are clearly improved on in most cases, especially
when Garman-Klass and Meilijson are the volatility measures used for standardizing the
returns. Therefore, an investor using the Treynor performance measure and a long-short
strategy with monthly rebalancing is able to increase the cumulative return from 202.26%
to 352.36% by using the same strategy but with returns standardized through the Meilijson
volatility estimator. At the same time, the Sharpe, Sortino and Omega ratios rise from
0.5490, 0.7943 and 1.1007 to 0.7779, 1.1213 and 1.1457 respectively. However, while these
results are good, they are not the best that can be obtained using the approach proposed
in this study. The best results are mostly provided when the Garman-Klass estimator is
used. By using this volatility measure to standardize the returns plus the Treynor ratio as
the performance measure and adopting a long-short strategy with monthly rebalancing, a
404.68% cumulative return, a 0.8389 Sharpe ratio, a 1.2122 Sortino ratio and a 1.1576 Omega
ratio, are obtained which are clearly an improvement on any of the best performances
using non-standardized returns.

Table 6. Performance evaluation from the strategies using the initial and standardized returns.

Initial

Strategy C. Return (%) Sharpe Sortino Omega

Sharpe LS-M 220.64 0.5935 0.8510 11.089
Treynor LS-M 202.26 0.5490 0.7943 11.007
Omega LS-B 51.14 0.1939 0.2848 10.346
Sortino LS-M 199.47 0.5529 0.7910 11.010
Kappa LS-B 60.59 0.2275 0.3335 10.407
Upside LS-A 51.74 0.1914 0.2678 10.347
Calmar LS-M 139.77 0.4355 0.6160 10.787
Eronvar LS-M 289.43 0.6905 10.049 11.280

Cvarsharpe LS-M 191.65 0.5435 0.7775 10.994
Modsharpe LS-M 220.59 0.5788 0.8338 11.068
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Table 6. Cont.

PARKINSON

Strategy C. Return (%) Sharpe Sortino Omega

Sharpe LS-M 238.03 0.6209 0.8925 11.146
Treynor LS-M 293.70 0.7059 10.192 11.314
Omega LS-A −42.33 −0.3335 −0.4798 0.9430
Sortino LS-M 241.35 0.6264 0.9009 11.157
Kappa LS-B −30.94 −0.2374 −0.3445 0.9594
Upside LS-M 214.99 0.5824 0.8392 11.078
Calmar LS-M 220.48 0.5910 0.8490 11.086
Eronvar LS-M 232.60 0.6129 0.8794 11.129

Cvarsharpe LS-M 238.03 0.6209 0.8925 11.146
Modsharpe LS-M 241.35 0.6264 0.9009 11.157

GARMAN-KLASS

Strategy C. Return (%) Sharpe Sortino Omega

Sharpe LS-M 277.70 0.6781 0.9785 11.256
Treynor LS-M 404.68 0.8389 12.122 11.576
Omega LS-A −40.06 −0.3200 −0.4633 0.9453
Sortino LS-M 286.75 0.6903 0.9964 11.280
Kappa LS-A −37.40 −0.2941 −0.4252 0.9496
Upside LS-M 238.45 0.6191 0.8886 11.147
Calmar LS-M 229.96 0.6085 0.8683 11.121
Eronvar LS-Q 282.40 0.6873 0.9921 11.273

Cvarsharpe LS-Q 266.68 0.6631 0.9563 11.244
Modsharpe LS-M 270.63 0.6681 0.9640 11.237

MEILIJSON

Strategy C. Return (%) Sharpe Sortino Omega

Sharpe LS-M 211.16 0.5765 0.8269 11.063
Treynor LS-M 352.36 0.7779 11.213 11.457
Omega LS-A −40.06 −0.3200 −0.4633 0.9453
Sortino LS-M 255.41 0.6468 0.9298 11.201
Kappa LS-A −37.40 −0.2941 −0.4252 0.9496
Upside LS-M 244.87 0.6376 0.9144 11.183
Calmar LS-M 209.79 0.5714 0.8181 11.050
Eronvar LS-Q 300.50 0.7176 10.387 11.352

Cvarsharpe LS-M 239.10 0.6188 0.8885 11.145
Modsharpe LS-Q 241.30 0.6349 0.9149 11.187

This table shows the results for the different strategies considering a set of performance measures for selecting the
assets in the portfolio over different rebalancing periods (Monthly, M; Quarterly, Q; Biannual, B; and Annual,
A) and where LO, LRF and LS denote Long-only, Long-only with risk free and Long-Short strategy respectively.
Values in bold are those which outperform the best initial estimation and those in red are the best for each
performance measure. Sharpe, Sortino and Omega ratios are reported in annualized terms.

Once again, it should be noted that combining a long-short strategy and monthly
rebalancing provides the best results in most cases, but quarterly or even annual rebalanc-
ing periods are also serious options for investors. Finally, it should be noted that not all
standardized returns lead to better results compared to the initial approach because the
Omega and Kappa performance measures show negative values for all strategies and
volatility measures. In keeping with the way, we previously displayed a summary, in
Table 7 the number of performance ratios that outperform the naïve ones, along with their
best previous estimation using non-standardized returns is shown.
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Table 7. Outperformance summary using standardized returns.

Parkinson Garman-klass Meilijson

All % All % All %

Sharpe 28 58.33 44 91.67 25 52.08
Treynor 20 41.67 40 83.33 40 83.33
Omega 0 0 0 0 0 0
Sortino 28 58.33 44 91.67 44 91,67
Kappa 0 0 0 0 0 0
Upside 30 62.5 37 77.08 37 77.08
Calmar 28 58.33 36 75 44 91.67
Eronvar 12 25 38 79.17 44 91.67

Cvarsharpe 28 58.33 44 91.67 44 91.67
Modsharpe 28 58.33 44 91.67 37 77.08

This table contains a summary of the best results from each strategy where the rows labeled as All display the
amount of performance ratios that outperform the naïve values but also their previous estimation using the initial
returns and have positive values (cumulative returns and Sharpe and Sortino ratios) or higher than 1 (Omega
ratio), while the rows labeled as % show the percentages from each amount.

Additionally, the ones that have positive Cumulative returns or Sharpe and Sortino
ratios and an Omega ratio higher than 1 are also shown. As expected, we observe an
improvement in the percentages compared to those reported in Table 4. In this case, we
find that more than 90% of the performance ratios are improved in several cases. This
means that not only is the naïve strategy outperformed, but the initial estimation is too,
so it is clear that using standardized returns results in improved ratios and, therefore,
investor profitability.

4. Discussion

The previous results were shown net of transaction costs. However, it is understood
that these have a significant impact on the profitability of the strategies. Not only are these
costs important, but we also need to take into account the fact that shorter rebalancing
periods lead to higher costs. For that reason, in Table 8 a summary of the best strategies
considering a one-way transaction cost of 0.2% is shown.

As expected, when compared to the results shown in Table 6, the values of the
ratios fall when transaction costs are taken into account. However, even when these
costs are included, most of the ratios remain better than those obtained using the initial
approach (which is also shown including transaction costs). There are some changes in
the best strategies, mostly due to alterations in the rebalancing periods. Therefore, the
quarterly rebalancing option appears to be the best in many cases as a result of its lower
turnover. In this case, the combination of using Excess Return on VaR with a long-short
strategy, quarterly rebalancing and standardized returns using the Meilijson volatility
measure appears to be the approach reporting the best results in terms of Cumulative
return (241.28%), the Sharpe ratio (0.6303), Sortino ratio (0.9075) and Omega ratio (1.1179).
There are other good combinations which are also profitable, all of them using the long-
short strategy, such as the combination of Meilijson volatility standardized returns and the
Treynor or Modified Sharpe performance measure with quarterly rebalancing periods, but
none can outperform that one previously mentioned.

In order to reinforce the robustness of the results, in Figure 2 the cumulative returns
from the naïve strategy, the best strategy using logarithm returns (Excess return on VaR,
long-short and monthly rebalancing), which is labeled as initial, and the best one using
standardized returns (Excess return on VaR, Meilijson volatility measure, long-short posi-
tions and quarterly rebalancing periods), which is labeled as final are shown. Values in the
y-axis are shown in percent and include transaction costs. We can clearly see that the last
one, where standardized returns are included, outperforms the other two over the entire
out-of-sample period.
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Table 8. Performance evaluation (including transaction costs).

Initial

Strategy C. Return (%) Sharpe Sortino Omega

Sharpe LS-M 98.40 0.3367 0.4759 10.604
Treynor LS-Q 120.91 0.3834 0.5448 10.693
Omega LS-B 39.52 0.1512 0.2213 10.268
Sortino LS-M 85.31 0.2983 0.4207 10.533
Kappa LS-B 48.25 0.1847 0.2697 10.329
Upside LS-A 45.79 0.1704 0.2381 10.309
Calmar LS-M 48.36 0.1811 0.2525 10.320
Eronvar LS-M 140.97 0.4361 0.6253 10.791

Cvarsharpe LS-M 80.47 0.2866 0.4042 10.512
Modsharpe LS-M 98.37 0.3288 0.4668 10.593

Parkinson

Strategy C. Return (%) Sharpe Sortino Omega

Sharpe LS-M 109.17 0.3642 0.5167 10.657
Treynor LS-M 143.61 0.4477 0.6380 10.815
Omega LS-B −41.52 −0.3266 −0.4699 0.9446
Sortino LS-M 111.22 0.3695 0.5246 10.668
Kappa LS-B −36.25 −0.2828 −0.4090 0.9520
Upside LS-B 113.94 0.3871 0.5440 10.704
Calmar LS-M 98.31 0.3349 0.4749 10.601
Eronvar LS-M 105.81 0.3559 0.5042 10.641

Cvarsharpe LS-M 109.17 0.3642 0.5167 10.657
Modsharpe LS-M 111.22 0.3695 0.5246 10.668

Garman-Klass

Strategy C. Return (%) Sharpe Sortino Omega

Sharpe LS-Q 179.90 0.5226 0.7484 10.966
Treynor LS-Q 211.18 0.5855 0.8398 11.092
Omega LS-A −42.41 −0.3430 −0.4956 0.9415
Sortino LS-Q 187.46 0.5363 0.7677 10.995
Kappa LS-A −39.86 −0.3169 −0.4574 0.9459
Upside LS-Q 137.98 0.4351 0.6138 10.797
Calmar LS-Q 156.62 0.4825 0.6855 10.891
Eronvar LS-Q 212.01 0.5828 0.8367 11.085

Cvarsharpe LS-Q 210.41 0.5764 0.8269 11.074
Modsharpe LS-Q 176.31 0.5154 0.7376 10.953

Meilijson

Strategy C. Return (%) Sharpe Sortino Omega

Sharpe LS-Q 141.03 0.4480 0.6406 10.825
Treynor LS-Q 222.63 0.6041 0.8676 11.129
Omega LS-A −42.41 −0.3430 −0.4956 0.9415
Sortino LS-Q 192.36 0.5474 0.7826 11.018
Kappa LS-A −39.86 −0.3169 −0.4574 0.9459
Upside LS-M 113.40 0.3785 0.5353 10.687
Calmar LS-Q 147.28 0.4572 0.6542 10.843
Eronvar LS-Q 241.28 0.6303 0.9075 11.179

Cvarsharpe LS-Q 144.11 0.4500 0.6436 10.830
Modsharpe LS-Q 190.84 0.5473 0.7845 11.016

This table shows the results for the different strategies considering a set of performance measures for selecting the
assets in the portfolio over different rebalancing periods (Monthly, M; Quarterly, Q; Biannual, B; and Annual,
A) and where LO, LRF and LS denote Long-only, Long-only with risk free and Long-Short strategy respectively.
Values in bold are those which outperform the best initial estimation and those in red are the best for each
performance measure. Sharpe, Sortino and Omega ratios are reported in annualized terms.
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Additionally, following Bessler and Wolf [60], rolling samples with 5-year estimation
windows of cumulative returns and Sharpe, Sortino and Omega ratios for the previous
three strategies are shown in Figures 3–6. As expected, it is evident that the proposal of
using standardized returns leads to the best ratios over the entire sample in all cases.

Mathematics 2021, 9, x FOR PEER REVIEW 20 of 26 
 

 

Cvarsharpe LS-Q 144.11 0.4500 0.6436 10.830 

Modsharpe LS-Q 190.84 0.5473 0.7845 11.016 

This table shows the results for the different strategies considering a set of performance measures 

for selecting the assets in the portfolio over different rebalancing periods (Monthly, M; Quarterly, 

Q; Biannual, B; and Annual, A) and where LO, LRF and LS denote Long-only, Long-only with risk 

free and Long-Short strategy respectively. Values in bold are those which outperform the best initial 

estimation and those in red are the best for each performance measure. Sharpe, Sortino and Omega 

ratios are reported in annualized terms. 

 

-80

-40

0

40

80

120

160

200

240

280

10 11 12 13 14 15 16 17 18 19

CR NAIVE

CR INITIAL

CR FINAL  

Figure 2. Cumulative returns of strategies. This figure displays the cumulative returns over the out-of-

sample period for the naïve strategy, the best strategy using logarithm returns, labeled as initial, and the best 

one using standardized returns, labeled as final. 

Additionally, following Bessler and Wolf [60], rolling samples with 5-year estimation 

windows of cumulative returns and Sharpe, Sortino and Omega ratios for the previous 

three strategies are shown in Figures 3–6. As expected, it is evident that the proposal of 

using standardized returns leads to the best ratios over the entire sample in all cases. 

-100

-50

0

50

100

150

200

250

300

I II III IV I II III IV I II III IV I II III IV I II III IV

2015 2016 2017 2018 2019

CR 5Y NAIVE
CR 5Y INITIAL

CR 5Y FINAL  

Figure 3. Cumulative returns of strategies (5-year rolling window). This figure displays the 5-year 

rolling window cumulative returns over the out-of-sample period for the naïve strategy, the best 

strategy using logarithm returns, labeled as initial, and the best one using standardized returns, 

labeled as final. 

Figure 3. Cumulative returns of strategies (5-year rolling window). This figure displays the 5-year
rolling window cumulative returns over the out-of-sample period for the naïve strategy, the best
strategy using logarithm returns, labeled as initial, and the best one using standardized returns,
labeled as final.



Mathematics 2021, 9, 1047 20 of 25
Mathematics 2021, 9, x FOR PEER REVIEW 21 of 26 
 

 

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

I II III IV I II III IV I II III IV I II III IV I II III IV

2015 2016 2017 2018 2019

SHARPE 5-Y NAIVE
SHARPE 5-Y INITIAL

SHARPE 5-Y FINAL  

Figure 4. Sharpe ratios of strategies (5-year rolling window). This figure displays the 5-year rolling 

window Sharpe ratios over the out-of-sample period for the naïve strategy, the best strategy using 

logarithm returns, labeled as initial, and the best one using standardized returns, labeled as final. 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

I II III IV I II III IV I II III IV I II III IV I II III IV

2015 2016 2017 2018 2019

SORTINO 5-Y NAIVE
SORTINO 5-Y INITIAL

SORTINO 5-Y FINAL  

Figure 5. Sortino ratios of strategies (5-year rolling window). This figure displays the 5-year rolling 

window Sortino ratios over the out-of-sample period for the naïve strategy, the best strategy using 

logarithm returns, labeled as initial, and the best one using standardized returns, labeled as final. 

Figure 4. Sharpe ratios of strategies (5-year rolling window). This figure displays the 5-year rolling
window Sharpe ratios over the out-of-sample period for the naïve strategy, the best strategy using
logarithm returns, labeled as initial, and the best one using standardized returns, labeled as final.

Mathematics 2021, 9, x FOR PEER REVIEW 21 of 26 
 

 

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

I II III IV I II III IV I II III IV I II III IV I II III IV

2015 2016 2017 2018 2019

SHARPE 5-Y NAIVE
SHARPE 5-Y INITIAL

SHARPE 5-Y FINAL  

Figure 4. Sharpe ratios of strategies (5-year rolling window). This figure displays the 5-year rolling 

window Sharpe ratios over the out-of-sample period for the naïve strategy, the best strategy using 

logarithm returns, labeled as initial, and the best one using standardized returns, labeled as final. 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

I II III IV I II III IV I II III IV I II III IV I II III IV

2015 2016 2017 2018 2019

SORTINO 5-Y NAIVE
SORTINO 5-Y INITIAL

SORTINO 5-Y FINAL  

Figure 5. Sortino ratios of strategies (5-year rolling window). This figure displays the 5-year rolling 

window Sortino ratios over the out-of-sample period for the naïve strategy, the best strategy using 

logarithm returns, labeled as initial, and the best one using standardized returns, labeled as final. 

Figure 5. Sortino ratios of strategies (5-year rolling window). This figure displays the 5-year rolling
window Sortino ratios over the out-of-sample period for the naïve strategy, the best strategy using
logarithm returns, labeled as initial, and the best one using standardized returns, labeled as final.

Finally, some data snooping tests (Reality Check and Superior Predictive Ability) are
carried out to test the null hypothesis that the better performance of the proposed strategies
compared to the rest is just based on luck. Table 9 shows the p-values from the Reality
Check test and the lower, centered, and upper p-values from the Superior Predictive Ability
(SPA) test, but also their nominal p-values.
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Table 9. Data snooping tests.

Index Best Strategy Pnom, W Pnom, H p-Value (RC) p-Value (SPAl) p-Value (SPAc) p-Value (SPAu)

Sharpe LS-Q-GK 0.1250 0.1050 0.1250 0.1200 0.1080 0.0990 *
Treynor LS-Q-M 0.0680 * 0.0740 * 0.0680 * 0.0660 * 0.0660 * 0.0570 *
Omega LS-B-P 0.5060 0.5080 0.5750 0.5150 0.5010 0.5350
Sortino LS-Q-M 0.0720 * 0.0810 * 0.0720 * 0.0630 * 0.0800 * 0.0750 *
Kappa LS-B-P 0.5130 0.4950 0.5890 0.5060 0.4940 0.4580
Upside LS-Q-GK 0.1630 0.1360 0.1630 0.1460 0.1380 0.1510
Calmar LS-Q-GK 0.1170 0.1120 0.1170 0.1080 0.1250 0.1030
Eronvar LS-Q-M 0.0520 * 0.0620 * 0.0520 * 0.0590 * 0.0510 * 0.0440 **

Cvarsharpe LS-Q-GK 0.0760 * 0.0780 * 0.0760 * 0.0730 * 0.0810 * 0.0800 *
Modsharpe LS-Q-M 0.0870 * 0.0940 * 0.0870 * 0.0990 * 0.0820 * 0.0830 *

This table reports the data snooping test from the universe of 10 strategies where LO, LRF and LS denote Long-only, Long-only with
risk free and Long-Short strategy respectively over different rebalancing periods (Monthly, M; Quarterly, Q; Biannual, B; and Annual,
A) and the approach for standardizing the returns are denoted as Parkinson (PK), Garman–Klass (GK) and Meilijson (M). Pnom, W and
Pnom, H denote White’s Reality Check and Hansen’s Superior Predictive Ability nominal p-values which are calculated by applying each
methodology to the best trading rule only, thereby ignoring the effect of data snooping. p-value RC denotes White’s Reality Check p-value
while p-value SPAl, SPAc and SPAu denote Hansen’s Superior Predictive Ability lower, consistent, and upper p-values, respectively. Those
p-values are computed by applying each methodology to the strategies and incorporate the effects of data snooping bias. * and ** represent
the levels of significance of 5% and 10% respectively.

The results show that the null hypothesis is clearly rejected when the Treynor, Sortino,
Excess Return on VaR, Conditional VaR Sharpe and Modified Sharpe performance measures
are used, which are those that lead to the best results in all the estimations. Therefore,
we can conclude that the good performances shown in this study were not obtained after
scanning and re-scanning searching for the objective.

These results are relevant not only for investors and the CEOs of these renewable
energy companies but also for policymakers and citizens. As Brunnschewiler [61] point
out, nowadays one of the crucial challenges for our society is to achieve a diversified and
sustainable energy supply for future generations. To that end, it is necessary to continue
changing the current dependence on non-renewable and polluting hydrocarbon fuels for
clean energies. Moreover, as Ntanos et al. [62] reveal, public perception of renewable
energies is positive and citizens are willing to pay for the use of clean energies as they are
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aware of the fact that these energies can bring numerous economic, environmental and
social benefits [63].

However, renewable energy projects often require high levels of financing. In addition,
as noted in the introductory section, these projects often have high initial costs and long
payback periods. Therefore, commercial banks are unwilling to assume those risks [64].
In this context, the role of stock markets is decisive because they can connect investors
concerned about environmental and social issues to these companies. Moreover, it is
essential that the academia contribute to this field by providing simple but very effective
investment strategies that offer economic benefits. This is the aim of this research in which
the suggested portfolio strategy allows investors to obtain substantial positive returns
while contributing to accelerating the transition to a clean energy economy.

5. Conclusions

Nowadays, clean energy is one of the most urgent problems facing the world as has
been explicitly exposed by the United Nations in one of the 17 Sustainable Development
Goals to be achieved by 2030. Specifically, Goal 7 consists of ensuring access to affordable,
reliable, sustainable and modern energy for all and the aim of one of its targets is to increase
substantially the share of renewable energy in the global energy mix. In this context, not
only the public sector but also the private sector is needed to make progress toward this
specific goal and accelerate the transition to a clean energy economy. Particularly, investors
may contribute to improving the commitment of this goal by increasing their investments
in renewable energy companies.

The main objective of this paper has been to develop a feasible portfolio strategy for
investors interested in renewable energy companies due to their leading role in fighting
energy and climate change, but also because they are considered a lucrative investment
opportunity. Given a set of candidate assets, we selected a small subset to build our
strategies. We consider that this feature is useful in practice since it reduces transaction
costs, execution risks and the burden of monitoring many stock prices.

From the initial results, we show that using the approach of selecting the best assets by
employing different performance measures combined with taking long and short positions
in the portfolios reports positive values. However, the fact that this procedure has a
significant weakness, namely the assumption that asset returns are normally distributed,
dead us to propose a new approach that use standardized returns with range-based
volatility estimators (namely Parkinson, Garman-Klass and Meilijson). This proposed
methodology not only solves the inefficiency of using non-normal distributed returns,
initially present in the traditional approach, but also gives us better results.

More precisely, we observe that taking a long-short strategy, with quarterly rebal-
ancing periods, after selecting the assets in the portfolio using the Excess Return on VaR
performance measure and returns standardized by the Meilijson volatility proxy, gives us
the best results from among the various options that also have high positive ratios, even
when we take into account transaction costs.

To summarize, we demonstrate that there is a simple but very effective way to invest
in renewable energy companies and obtain substantial positive returns. This suggested
procedure has the advantage of allowing investors to contribute to a cleaner world but still
obtain appreciable economic returns.

A possible limitation of this study is that a reduced number of renewable energy
companies have been employed, specifically ten companies listed in the US stock markets
over the 2009–2019 period. This is due to the fact that the universe of listed renewable
energy companies is still limited. However, the current context is characterized by the
increase in public initiatives with the aim of intensifying the change towards a green and
sustainable economy. An example is the European Green Deal, an action plan to make
the European Union climate neutral in 2050. This implies numerous achievements such
as decarbonizing the energy sector, investing in environmental–friendly technologies and
cleaner private and public transportation, among others. As a consequence of this trend all
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over the world, it is foreseeable that the renewable energy sector will grow exponentially
in the coming years and, therefore, investors will have more opportunities to participate
with their allocation decisions in the transition towards a clean energy economy.

For these reasons, future research in this field should continue analyzing the impli-
cations of renewable energy companies in stock markets as well as the profitability of
investing in this specific sector. More precisely, it is necessary to increase the sample under
study employing more companies not only listed in the US stock market but also on other
geographical areas such as the European one. Moreover, future research in this field should
extend the time period including the analysis of the effect of the current health crisis caused
by the Covid-19 pandemic. Finally, more focused attention is also needed in the analysis of
the attractiveness for investors of specific types of renewable energies.
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