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Abstract: Various studies have been conducted on object detection, tracking, and action recognition
based on thermal images. However, errors occur during object detection, tracking, and action
recognition when a moving object leaves the field of view (FOV) of a camera and part of the object
becomes invisible. However, no studies have examined this issue so far. Therefore, this article
proposes a method for widening the FOV of the current image by predicting images outside the FOV
of the camera using the current image and previous sequential images. In the proposed method,
the original one-channel thermal image is converted into a three-channel thermal image to perform
image prediction using an image prediction generative adversarial network. When image prediction
and object detection experiments were conducted using the marathon sub-dataset of the Boston
University-thermal infrared video (BU-TIV) benchmark open dataset, we confirmed that the proposed
method showed the higher accuracies of image prediction (structural similarity index measure (SSIM)
of 0.9839) and object detection (F1 score (F1) of 0.882, accuracy (ACC) of 0.983, and intersection over
union (IoU) of 0.791) than the state-of-the-art methods.

Keywords: image prediction; thermal videos; deep learning; generative adversarial network

1. Introduction

Various studies have been conducted on object detection [1–4], tracking [5–9], action
recognition [10–12] using a camera-based video surveillance system in addition to depth,
ego-motion, and optical flow estimation [13]. However, when a walking or running object
leaves the field of view (FOV) of the camera, part of the object’s body becomes invisible,
which leads to a failure in human detection and tracking, thus inducing errors in action
recognition. However, no studies have considered this issue so far. To solve this problem,
this study conducted an experiment for the first time for predicting the region outside
the FOV that is not included in the current image (t), as shown in the image (t’), which is
illustrated in Figure 1, to restore the part of the object’s body that is invisible.
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The proposed method widens the FOV of the current image using the current im-
age, previous sequential images, and an image prediction generative adversarial network
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(IPGAN)-based method. Furthermore, the original one-channel thermal image is con-
verted into a three-channel thermal image to be used as an input in the IPGAN. In this
study, various experiments were conducted using the marathon sub-dataset of the Boston
University-thermal infrared video (BU-TIV) benchmark open dataset [14]. Existing studies
related to the proposed method are explained in Section 2.

2. Related Works

The following studies attempted to predict the next image based on previous sequen-
tial images. In studies [15–19], image prediction methods were proposed for creating a
future frame using a current frame and previous sequential frames. In [15], image pre-
diction was performed using an encoder and decoder model based on long short-term
memory (LSTM) and a 3D convolution layer. In [16], image prediction was performed
using PhyDNet based on LSTM and the newly suggested PhyCell. In [17], image prediction
was performed using LSTM and a convolutional neural network (CNN). In [18], image
prediction was performed using an encoder and decoder model. In [19], image prediction
was performed using a stochastic variational video prediction (SV2P) method.

Instead of predicting the current image based on previous sequential images, image
inpainting methods were proposed in [20–24] where the deleted information is restored
from a current image. In [20], image inpainting was performed using a fine deep-generative-
model-based approach with a novel coherent semantic attention (CSA) layer. In [21],
image inpainting was performed based on gated convolution and SN-PatchGAN. In [22],
image inpainting was performed based on a parallel extended-decoder path for semantic
inpainting network (PEPSI). In [23], image inpainting was performed using a context
encoder method based on a channel-wise fully connected layer. In [24], image inpainting
was performed using edge prediction and image completion based on the predicted
edge map.

Furthermore, the following review and survey studies have been conducted. In a
review paper [25], the datasets created between 2004 and 2019 that were used in image
prediction were compared with the image prediction models created between 2014 and
2020. In a survey paper [26], papers and datasets based on image prediction were described.
In another review paper [27], sequential-based, CNN-based, and generative adversarial
network (GAN)-based image inpainting methods and the datasets used in image inpainting
were described.

As explained, studies have been extensively conducted on image inpainting and the
prediction of the next image based on previous sequential images. However, no study has
examined an image prediction method for generating an image region outside the FOV,
which is proposed in this article. In addition, no previous study on image prediction and
image inpainting adopted thermal images. Table 1 presents a summary of the comparisons
between the present and previous studies. This study is novel in the following four ways
compared with the previous works:

- This study performed image prediction using thermal videos for the first time.
- This study designed an image prediction method that generates an image region

outside the FOV for the first time.
- A new IPGAN for performing image prediction is proposed herein.
- The IPGAN model proposed herein is disclosed for a fair performance assessment [28]

to other researchers.

The remainder of the paper is organized as follows. A detailed explanation of the
proposed method is provided in Section 3. The experiment results and analysis with
discussions are provided in Section 4. Finally, the discussion and the conclusion are
presented in Sections 5 and 6.
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Table 1. Comparison between the present and previous studies.

Category Methods Advantages Disadvantages

Using
visible-light

images

Future
image

prediction

Encoder–decoder model [15,18],
PhyDNet [16], CNN + LSTM [17],

SV2P [19], and review and
survey [25,26]

High performance of
future image prediction

based on a current frame
and previous frames

Do not consider the image
prediction out of FOV

Do not use thermal image
of low resolution and low

image qualityImage inpainting

CSA layer [20], gated convolution
+ SN-PatchGAN [21], PEPSI [22],

context encoder [23], edge
prediction and image

completion [24], and review [27]

High performance of
image inpainting based

on a current frame

Using
thermal
images

Image
region

prediction out
of FOV

Three-channel thermal image and
IPGAN (proposed method)

Consider the image
prediction out of FOV

Use thermal image of low
resolution and low

image quality

The predicted image out of
FOV has a size limit

3. Materials and Methods
3.1. Overall Procedure of Proposed Method

In this section, the method proposed in this study is described in detail. The proposed
method performs the image region prediction based on sequential three-channel thermal
images using preprocessing, IPGAN, and postprocessing. In Sections 3.2–3.5. prepro-
cessing, the IPGAN architecture, postprocessing, and the dataset for image prediction,
respectively, are described in detail. Figure 2 shows the overall flowchart of the proposed
method. The length of the sequential input images is 20 frames (t − 0, t −1, . . . , t −19), the
size of each image is 85 × 170 pixels, and the size of the output image is 105 × 170 pixels.
Specifically, the output image is created by combining a generated image region (an image
outside the FOV) and the current image (an image inside the FOV).
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3.2. Preprocessing

The preprocessing step is described in detail in this subsection. For thermal images
captured with a thermal camera, a one-channel thermal image is converted into a three-
channel thermal image using a colormap function. The jet colormap array [29] is used for
performing color conversion. The jet colormap array is a mapping function that expresses
heat in the most appropriate color compared with other colormaps. It maps a one-channel
image into a three-channel image for 256 pixel values from 0 and 255. For example, the
hottest part of a one-channel image has a pixel value of 255 (white), whereas the coldest
part has a pixel value of 0 (black). Conversely, the pixel value of the hottest part of a
three-channel (red, green, blue) image is [255,0,0] (red color), whereas that of the coldest
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part is [0,0,255] (blue color). A color conversion example is shown in Figure 3. A one-
channel thermal image is converted into a three-channel thermal image because several
studies have shown that performing object detection, recognition, and classification using
color visible light images results in a better performance than using grayscale visible
light images [30–32]. Furthermore, for making the input and output sizes of the IPGAN
structure identical, the region being predicted (the black area of 85 × 170 pixels) in the
input image is created through the zero padding, thus changing the size of the input image
from 85 × 170 pixels to 170 × 170 pixels.
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3.3. Proposed IPGAN Model

The three-channel image (170 × 170 pixels) obtained through preprocessing, as shown
in Figure 3, is used as an input for the IPGAN proposed in this study. The structure
of the IPGAN is illustrated in Figure 4. The generator shown in Figure 4 includes a
concatenate layer (L1), convolution blocks (L2 and L7), residual blocks (L3–L5 and L8–L11),
and convolution layers (L12 and L13) in that order. The discriminator includes convolution
blocks (L1–L6) and a fully connected layer (L7) in that order.

In addition, the details of the IPGAN structure are presented in Tables 2–6. In
Tables 2–4, the filter size, stride, and padding are (3 × 3), (1 × 1), and (1 × 1), respectively.
In Table 2, two different numbers of filters, 128 and 64, are used for conv_block_1 and
conv_block_2. In Table 5, the filter size, stride, and padding in conv_block_1–conv_block_3
are (3 × 3), (1 × 1), and (0 × 0), respectively, whereas in conv_block_4–conv_block_6, the
filter size, stride, and padding are (3 × 3), (2 × 2), and (0 × 0), respectively. Prelu, lrelu,
tanh, res_block, conv2d, add, conv_block, dense, and sigmoid represent the parametric
rectified linear unit (relu), leaky relu, hyperbolic tangent activation function, residual block,
two-dimensional convolution layer, addition operation, convolution block, fully connected
layer, and sigmoid activation function, respectively. In Table 2, 20 sequential three-channel
thermal images (170 × 170 × 3) are used as input as shown in Figure 4, whereas the output
image is an image of size (170 × 170 × 3).
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Table 2. Description of the generator of the proposed IPGAN.

Layer
Number Layer Type Number of

Filters
Number of
Parameters

Layer Connection
(Connected to)

0 input_layers_1–20 0 0 input_1–20
1 concat 0 0 input_layers_1–20
2 conv_block_1 128/64 143,232 concat
3 res_block_1 64 73,920 conv_block_1
4 res_block_2 64 73,920 res_block_1
5 res_block_3 64 73,920 res_block_2
6 add 64 0 res_block_3 & conv_block_1
7 conv_block_2 64 147,840 add
8 res_block_4 64 73,920 conv_block_2
9 res_block_5 64 73,920 res_block_4

10 res_block_6 64 73,920 res_block_5
11 res_block_7 64 73,920 res_block_6
12 conv2d_1 256 147,712 res_block_7
13 conv2d_2 3 6915 conv2d_1
14 tanh 0 conv2d_2

Total number of trainable parameters: 963,139

Table 3. Description of a convolution block of the generator.

Layer Number Layer Type Number of Filters Layer Connection (Connected to)

1 conv2d_1 128 input
2 prelu_1 conv2d_1
3 conv2d_2 64 prelu_1
4 prelu_2 conv2d_2

Table 4. Description of a residual block of the generator.

Layer Number Layer Type Number of Filters Layer Connection (Connected to)

1 conv2d_1 64 input
2 prelu conv2d_1
3 conv2d_2 64 prelu
4 add conv2d_2 & input
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Table 5. Description of the discriminator of the proposed IPGAN.

Layer
Number Layer Type Number of

Filters
Number of
Parameters

Layer Connection
(Connected to)

0 input layer 0 0 input
1 conv_block_1 32 896 input layer
2 conv_block_2 64 18,496 conv_block_1
3 conv_block_3 128 73,856 conv_block_2
4 conv_block_4 128 147,584 conv_block_3
5 conv_block_5 256 295,168 conv_block_4
6 conv_block_6 256 590,080 conv_block_5
7 dense 92,417 conv_block_6
8 sigmoid 0 dense

Total number of trainable parameters: 1,218,497

Table 6. Description of a convolution block of the discriminator.

Layer Number Layer Type Layer Connection (Connected to)

1 conv2d input
2 lrelu conv2d

3.4. Postprocessing

During postprocessing, the final output is acquired from the RGB output image
obtained using the IPGAN as shown in Figure 5. The region predicted in the output image
obtained using the IPGAN is cropped as illustrated in Figure 5. The cropped region is
combined with the original three-channel image (t − 0) to acquire the final output. The
reasons for the smaller predicted region and the poor prediction of the remaining region
are explained in Section 4.2 (ablation study) based on the experimental results.
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3.5. Dataset and Experimental Setup

The experiment in this study was conducted using the marathon sub-dataset [14]
of the BU-TIV benchmark open thermal dataset. The task of the marathon dataset was
for multi-object tracking. The dataset has included various objects, namely, pedestrians,
cars, motorcycles, bicycles, etc. The dataset consists of four videos (image sequences) with
different sizes. The total number of images used in this experiment is 6552. Moreover, the
size of an image in the marathon sub-dataset is 1024× 512× 1, and the pixel depth is 16 bits.
The pixel value ranges between 3000 and 7000 units of uncalibrated temperature [14].
Images in the dataset are provided in portable network graphics (PNG) format. The
four sequences were provided with annotations for the object detection. The dataset
was collected using FLIR SC800 cameras (FLIR Systems, Inc., Wilsonville, OR, USA) [14].
We cropped all images into 170 × 170 × 1 and converted the image depth into 8 bits in
this study.
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The experiment was conducted in two-fold cross validation. In other words, half of
the total data were used for training, the other half for testing, and the average value of the
two testing accuracies (obtained by repeating the same process after swapping the training
and testing data) was set as the final accuracy. In this study, the region was cropped with
respect to the road on which people are running (the region of interest (ROI) of the red
dashed box in Figure 6) in the original image. Ground-truth images (green dashed box)
and input images (an image with zero paddings) were generated by cropping the ROI
images into images of size 170 × 170. The process of creating the dataset used in this study
is shown in Figure 6.

The training and testing of the algorithm proposed in this study were conducted using
a desktop computer equipped with Intel Core i7-6700 CPU @ 3.40 GHz (Intel Corp., Santa
Clara, CA, USA), Nvidia GeForce GTX TITAN X graphic processing unit (GPU) card [33]
(Nvidia Corp., Santa Clara, CA, USA), and a random-access memory (RAM) of 32 GB.
The model and algorithm proposed in this study were implemented using the OpenCV
library (version 4.3.0) [34] (Intel Corp., Santa Clara, CA, USA), Python (version 3.5.4)
(Python Software Foundation, Wilmington, NC, USA), and Keras application programming
interface (API) (version 2.1.6-tf) (MIT, Boston, MA, USA) with the TensorFlow backend
engine (version 1.9.0) [35] (Google LLC, Mountain View, CA, USA).
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and an input image.

4. Results

The experiment conducted in this study was a two-fold cross validation. In other
words, half of the data were used for training, whereas the remaining half were used for
testing; then, the training data and testing data were switched to repeat the process, and
the average of the two testing accuracies was determined as the final accuracy. In this
section, the experimental results for the training, testing, and comparison are described in
three separate subsections. In the training section, the hyperparameters and training loss
used for training are described. In the testing section, the results obtained through ablation
studies are compared. Finally, in the comparison section, the results obtained using the
proposed method and the state-of-the-art methods are compared.
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4.1. Training

The IPGAN structure proposed in this study was trained as follows. The batch size,
training iterations, and learning rate of the IPGAN were set to 1, 800,000, and 0.0001,
respectively. Furthermore, for both the generator and discriminator losses, we used the
binary cross-entropy loss, and adaptive moment estimation (Adam) optimizer [36] was
used as optimizer. Twenty sequential images of size 170 × 170 pixels were used in all the
methods for both training and testing. Figure 7 shows the training loss curves of the IPGAN
by iteration. In Table 7, detailed information of the hyperparameter tuning is presented.
The remaining hyperparameters were determined according to the default values by Keras
API [35].
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Table 7. Detailed information of hyperparameter tuning.

Parameters Search Space Selected Value

Weight decay (Weight regularization L2) [0.001, 0.01, 0.1] 0.01
Loss ‘mse’, ‘VGG-19 loss’ ‘mse’

Kernel initializer ‘glorot uniform’ ‘glorot uniform’
Bias initializer ‘zeros’ ‘zeros’

Optimizer ‘SGD’, ‘adam’ ‘adam’
Learning rate [0.0001, 0.001, 0.01, 0.1] 0.0001

Beta_1 [0.7, 0.8, 0.9] 0.9
Beta_2 [0.8, 0.9, 0.999] 0.999
Epsilon [1 × 10−9, 1 × 10−8, 1 × 10−7] 1 × 10−8

Iterations [1~1638 K ] 723,996
Batch size [1, 4, 8] 1

4.2. Testing (Ablation Study)

In this section, the results of ablation studies for the proposed method are presented.
The experiments were conducted using the same dataset and two types of GAN structures.
For measuring the image prediction accuracy, the image region cropped in the resulting
image (Figure 5) was compared with respect to the ground-truth region based on similarity.
The accuracy was measured using three types of metrics shown in Equations (1)–(3).

MSE =

(√
∑H

y=1 ∑W
x=1(T(x, y)−O(x, y))2

)2

MN
(1)

PSNR = 10log10

(
2552

MSE

)
(2)

SSIM =
(2µOµT + R1)(2σOT + R2)

(µO
2 + µT2 + R1)(σO

2 + σT2 + R2)
(3)
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MSE represents the mean squared error [37] in Equation (1). W and H represent the
image width and height, respectively, in Equation (1). Furthermore, in Equations (1) and (3),
O and T represent the output image and target image (ground-truth image), respectively.
PSNR represents the peak signal-to-noise ratio [38] in Equation (2). In Equation (3), the
structural similarity index measure (SSIM) [39] is presented, in which µT and σT represent
the mean and standard deviation of the pixel values of the ground-truth image, respectively,
and µO and σO represent the mean and standard deviation of the pixel values of the output
image, respectively. σOT represents the covariance of the two images. R1 and R2 are
positive constants so as not to make the denominator zero.

In this section, seven different experiments were conducted. In Figures 8–10 the It
image, the tth image of the 20 sequential images, is shown as the input image (far left). In
Figure 8a, the target image (ground-truth (GT) image) (right image) is the subsequent image
of the It image (left image), where GT and It do not include the same region. Specifically,
the entire GT image that does not include any region of It was predicted in Method 1.
However, the results obtained using this method varied significantly from the ground-truth
image as shown by the output image (middle image) in Figure 8a. Accordingly, only the
region R (zero padded black area of 30 × 170 pixels) of the image was predicted as shown
in Figure 8b (Method 2). This method aims to predict the spatial information R which is
not included in It when It is included in GT. However, gray noise is generated within the R
region being predicted in the output image obtained using this method.
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Figure 8. Examples of result images obtained using Methods 1 and 2. From left to right, the input,
output, and ground-truth images, respectively, obtained using (a) Method 1 and (b) Method 2. The
size of the input, output, and ground-truth images is 80 × 170 pixels.

For improving the accuracy, unlike Methods 1 and 2 in Figure 8, which used the size
of the input, output, and ground-truth images as 80 × 170 pixels, Methods 3 and 4 in
Figure 9 set the size of the input, output, and ground-truth images to 170 × 170 pixels in
order to use the spatial information that is wider in the horizontal direction. In addition,
the experiment was conducted by setting the region R being predicted to be larger for
Method 4 in Figure 9b (in Methods 3 and 4, the sizes of R were 17 × 170 pixels). However,
the gray noise generated in R’ became larger in Figure 9b. As the width of R increased,
the gray noise also became larger in this experiment. Therefore, the region can only be
predicted between the red and yellow lines of R’ in Figure 9b, and it was difficult to predict
the region to the left of the yellow line in this experiment. Therefore, as shown in Figure 5,
the predicted region was cropped to a fixed size (20 × 170 pixels).
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Moreover, the experiment was conducted as shown in Figure 10a by paddings with
the average value of It to examine the effects of zero padding. In Method 6, the padding
was performed using an empty background as in an input image shown in Figure 10b.
The empty background was selected manually from marathon thermal images in order to
examine the effects of zero padding. Moreover, in Figure 10, the size of the input, output,
and ground-truth images was set to 170 × 170 pixels in order to use wider spatial infor-
mation in the horizontal direction. However, the result obtained through zero paddings
(Method 4) as shown in Figure 9b demonstrated the best performance among the results
thus far. Finally, as shown in Figure 10c, the experiment was conducted using the converted
three-channel color image (Method 7), and the accuracy was compared. A comparison
of all the experimental results is presented in Table 8. The results of using a one-channel
color image (Method 4) and a three-channel color image (Method 7) were compared in the
images in Figure 11. As shown in Figures 8–11 and Table 8, Method 7 exhibited the best
image prediction performance. In Table 8, Method 4 exhibited a better performance than
Method 7 in terms of PSNR; however, it has been reported that the PSNR is a poor measure
for evaluating the difference and similarity in the human visual-image quality [40,41]. SSIM
can better evaluate the similarity in the image quality [39]. Thus, Method 7 demonstrated
the highest accuracy. Figure 12 shows the examples of the output images obtained using
the proposed method.

Table 8. Comparison of various region prediction methods.

Methods PSNR SSIM

Method 1 10.468 0.6157
Method 2 13.214 0.7817
Method 3 12.565 0.7423
Method 4 20.320 0.9131
Method 5 17.181 0.8814
Method 6 15.001 0.8303
Method 7 18.813 0.9535Mathematics 2021, 9, x FOR PEER REVIEW 13 of 20 
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For inspecting the efficiency of the proposed method, the results of detecting humans
in the original input and ground-truth images were compared with the result of detecting
humans in the predicted image using the proposed method. Mask R-CNN [42] was used
for conducting the experiment on human detection. Figure 13 shows the result of detecting
humans using Mask R-CNN as mask images.

As shown in Figure 13, the result of human detection in the ground-truth image is
similar to the result of human detection in the image predicted by the IPGAN for which a
three-channel color image is input. Furthermore, the detection result from the predicted
image is closer to the detection result from the ground-truth image than that from the
original input image.

Additionally, the detection (detection 1) accuracy was measured between the results
obtained with the original input images and the results obtained with the ground-truth
images. The detection (detection 2) accuracy was also measured between the results
obtained with the images predicted using our method and the results obtained with the
ground-truth images. These detection results (detection 1 and detection 2) were compared
in Table 9. To this end, the true positive rate (TPR) (#TP/(#TP + #FN)) and positive
predictive value (PPV) (#TP/(#TP + #FP)) [43], as well as the accuracy (ACC) [43], F1 score
(F1) [44], and intersection over union (IoU) [43], which are expressed in Equations (4)–(6),
respectively, were used to measure the accuracy for a comparison. Here, TP, FP, FN, and TN
denote true positive, false positive, false negative, and true negative, respectively. Positive
and negative in this experiment indicate the pixels detected in the ground-truth image
(white pixel in Figure 13) and those not detected (black pixel in Figure 13), respectively.
More specifically, TP refers to the case when positive pixels are detected correctly, whereas
TN refers to the case when negative pixels are not detected correctly. FP refers to the case
when negative pixels are incorrectly detected as positive pixels, whereas FN refers to the
case when positive pixels are incorrectly detected as negative pixels. Here, “#” denotes
“the number of.”
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Table 9. Comparisons of object detection accuracies by detections 1 and 2.

Methods TPR PPV F1 ACC IoU

Detection 1 0.82 0.81 0.815 0.941 0.713
Detection 2 0.901 0.864 0.882 0.983 0.791
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As shown in Table 9, detection 2 was more accurate than detection 1, which indicates
that using the image predicted with our method produced the detection results closer to
the results of using the ground-truth image than using the original input image.

ACC =
#TP + #TN

#TP + #TN + #FP + #FN
(4)

F1 = 2· PPV·TPR
PPV + TPR

(5)

IoU(X, Y) =
|X∩ Y|
|X∪ Y| =

#TP
#TP + #FP + #FN

(6)

4.3. Comparisons of Proposed Method with the State-of-the-Art Methods

In this section, the results of comparing the proposed method and the state-of-the-art
methods are presented. For measuring the image prediction accuracy, the entire image
(including R’ and I’t as in Figure 8b) obtained using the proposed method was compared
with respect to the ground-truth based on similarity. In Table 10, the existing image
prediction [15] method and inpainting [20,22,24] methods are compared with the IPGAN-
based image region prediction method proposed in this study. In Figure 14, the result
images obtained using all the methods are compared. The methods that originally used
a single image [20,22,24] are made to use sequential images as inputs, as in our method,
for a fair performance evaluation; the input layer of these methods [20,22,24] was changed
to layers 0 and 1 of Table 2, as in the proposed method. Moreover, a three-channel color
image was used as the input and output of all the methods, as in our method, for a fair
comparison and evaluation. As shown in Table 10 and Figure 14, the proposed method
exhibited a better performance than the state-of-the-art methods.

For the next experiment, all the methods were compared using Mask-R-CNN-based
human detection. Table 11 and Figure 15 show the accuracy of the detection results as well
as the output images. The experiment showed that the proposed method demonstrated
the best performance.

Table 10. Comparison of the image prediction methods.

Methods PSNR SSIM

Haziq et al.’s [15] 23.185 0.9523
Liu et al.’s [20] 22.210 0.9310
Shin et al.’s [22] 22.813 0.9451

Nazeri et al.’s [24] 22.742 0.9131
Proposed method 23.243 0.9839

Table 11. Comparisons of object detection accuracies obtained using our method with those of the
state-of-the-art methods based on Mask R-CNN.

Methods TPR PPV F1 ACC IoU

Haziq et al.’s [15] 0.825 0.684 0.747 0.957 0.589
Liu et al.’s [20] 0.652 0.687 0.669 0.961 0.491
Shin et al.’s [22] 0.739 0.676 0.706 0.959 0.558

Nazeri et al.’s [24] 0.71 0.662 0.685 0.931 0.522
Proposed method 0.901 0.864 0.882 0.983 0.791
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human detection. Table 11 and Figure 15 show the accuracy of the detection results as well 
as the output images. The experiment showed that the proposed method demonstrated 
the best performance. 

Table 11. Comparisons of object detection accuracies obtained using our method with those of the 
state-of-the-art methods based on Mask R-CNN. 

Methods TPR PPV F1 ACC IoU 
Haziq et al.’s [15] 0.825 0.684 0.747 0.957 0.589 

Liu et al.’s [20] 0.652 0.687 0.669 0.961 0.491 
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Figure 14. Comparisons of the original images, ground-truth images, and prediction results obtained using the state-of-
the-art methods and our method: (a) original images; (b) ground-truth images. Images predicted using: (c) Haziq et al.’s
method; (d) Liu et al.’s method; (e) Shin et al.’s method; (f) Nazeri et al.’s method; (g) the proposed method.
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Figure 15. Comparisons of detection results using the original images, ground-truth images, and the predicted images
obtained using the state-of-the-art methods and our method. (a) Original images. Detection results using the (b) original
images, (c) ground-truth images, (d) images predicted using Haziq et al.’s method, (e) images predicted using Liu et al.’s
method, (f) images predicted using Shin et al.’s method, (g) images predicted using Nazeri et al.’s method, and (h) images
predicted using our method.

4.4. Processing Time

In Table 12, the processing time of each sub-part of the proposed method (Figure 2) is
presented. The processing time was measured in the environments described in Section 3.5.
As shown in Table 12, the processing time of the Mask R-CNN is higher than other
sub-parts. The frame rate of the proposed prediction method is about 23.4 frames per
second (1000/(9.97 + 32.8 + 0.01)), and the total frame rate including image prediction
and detection method is about 10.6 frames per second (1000/94). Thus, the processing
time of the proposed method to perform both image prediction and object detection is
sufficiently short.

Table 12. Processing time of the proposed method per image (unit: ms).

Sub-Part Processing Time

Preprocessing 9.97
Image prediction by IPGAN 32.8

Postprocessing 0.01
Object detection by Mask R-CNN 51.22

Total 94
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5. Discussion

In this study, a method was proposed for predicting the image outside the FOV of
a camera. The proposed method was studied for accurately detecting humans who are
leaving the FOV of a camera, by which the object detection error, due to a part of a human
body being invisible in the input image, can be reduced. As shown in the result images of
Figures 13–15, the invisible body parts of humans leaving the FOV of a camera became
visible in the images by the proposed image prediction method. Therefore, it is confirmed
that the proposed method is efficient to predict missing parts of a human body as well as is
sufficient to increase the accuracy of a human detection.

However, it is confirmed that the size of region being predicted is limited when the
images outside of the FOV of a camera are predicted as shown in Figure 9b. In addition,
the gray noises are generated in the R region (Figure 8b). As the width of R increased, the
gray noise also became larger in this experiment, and the consequent size of the predicted
region became limited. Therefore, our method can be used for the applications where the
region of limited size is predicted for human detection in thermal videos.

6. Conclusions

In this study, a method was proposed for predicting the image outside the FOV of a
camera using a one-channel thermal image converted into a three-channel thermal image
as an input of the IPGAN. Various ablation studies based on different image size and
image channels were conducted and compared in this study. The method based on a three-
channel thermal image showed a higher SSIM (0.9535) value compared to one-channel
thermal image-based methods. Moreover, it was confirmed that the image prediction
method increased the accuracy of object detection as shown in Table 9. For example, the
TPR = 0.82, PPV = 0.81, F1 score = 0.815, ACC = 0.941, and IoU = 0.713 were increased
to TPR = 0.901, PPV = 0.864, F1 score = 0.882, ACC = 0.983, and IoU = 0.791. In addition,
the proposed method was compared with the state-of-the-art methods, and our method
showed higher PSNR = 23.243 and SSIM = 0.9839 values than the state-of-the-art methods
as shown in Table 10. Our method was also compared with the state-of-the-art methods in
terms of human detection, and the proposed method showed the TPR = 0.901, PPV = 0.864,
F1 score = 0.882, ACC = 0.983, and IoU = 0.791 which were higher than the state-of-the-art
methods as shown in Table 11.

In future work, the methods for predicting a wider region will be studied. Furthermore,
an image prediction method in which the front viewing angle of a vehicle’s visible-light
camera is expanded in horizontal directions will be investigated by expanding the scope of
this study.
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