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Abstract: The article brings a brief revision of the two-degree-of-freedom (2-DoF) internal model
control (IMC) and the 2-DoF Smith-Predictor-based (SP) control of unstable systems. It shows that the
first important reason for distinguishing between these approaches is the limitations of the control
action. However, it also reminds that, in addition to the seemingly lucrative dynamics of transients,
the proposed approaches can conceal a tricky behavior with a structural instability, which may
manifest itself only after a longer period of time. Instead, as one of possible reliable alternatives,
two-step IMC and filtered Smith predictor (FSP) design are applied to unstable first-order time-
delayed (UFOTD) systems. Firstly, the 2-DoF P controller yielding a double real dominant closed
loop pole is applied. Only then the 2-DoF IMC or FSP controllers are designed, providing slightly
slower, but more robust transients. These remain stable even in the long run, while also showing
increased robustness.

Keywords: dead time compensator; 2-DoF smith predictor; 2-DoF IMC

1. Introduction

First-order time-delayed (FOTD) systems with input U(s), output Y(s), time delay Td,
gain Ks and pole −a

1S(s) =
Y(s)
U(s)

= 1S0(s)e−Tds; 1S0(s) =
Ks

s + a
(1)

are the most commonly used models in control design [1]. Index “1” stands for first-order
systems. Later on we will also deal with control of higher order systems with the integer
index j > 1.

Notation (1) is especially suitable when dealing with stable, integrating and unstable
systems at the same time, which affects only the parameter a. Namely, a = 0 represents
integrating processes, while a < 0 represents unstable FOTD (UFOTD) systems, which
are (mainly in connection with longer delays) an area of intensive research for several
decades. This is, for example, well evidenced by the wide spectrum of control approaches
based on model (1) ranging from traditional (one-degree-of-freedom, 1-DoF) PID [2],
two-degrees-of-freedom (2-DoF) PI and PID [3–5] or different variations of the so called
dead-time compensators (DTCs) [6–12]. The number of different approaches to time-
delayed systems is constantly growing [13–18]. However, some of the existing approaches
also employ debatable solutions, which require more consistent and rigorous use of reliable
mathematical methods, rigorous definitions and procedures.

As an illustrative example of the inconsistent use of mathematics, we will firstly
discuss an application of a filtered Smith predictor [19] to control the UFOTD systems (1).
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Thereby, to stress the differences among the considered plant and its model, where relevant,
the overlined symbols will be used in the plant model (2):

1S(s) =
Ks

s + a
e−Tds. (2)

After we show that when controlling UFOTD systems using SP, even a stabilised
disturbance response does not guarantee the stability of transients; we show another
way to use derived SP structures. In contrast to [20], where stability of the loop with
disturbance reconstruction and compensation was guaranteed by the superior structure of
the stabilising controller, we will now show the reversed approach. With the stabilising P
controller, we first guarantee the stability of the controlled system. Then we can use the
methodology of SP design for the case of stable systems.

The rest of the paper is structured as follows. Section 2 deals with typical features of
the 2-DoF IMC and 2-DoF SP design, whereby the main ideas are illustrated for delay-free
first order plants with Td = Td = 0. In Section 3, they are then also developed with
regard to control of UFOTD systems with Td = Td > 0. The two-stage controller design
for UFOTD systems, which first assumes system stabilisation using a 2-DoF P controller
and in the second step applies the SP design for stable higher order systems, is analysed
in Section 4. The main paper results are then illustrated in Section 5 by simulation and
discussed in Section 6. Section 6 summarises the basic results of the article and outlines
possible directions for their further development.

2. Setpoint Feedforward with Compensation of Output Disturbances by IMC

Next we will show how the control of UFOTD systems can be transformed into the
control of stable systems of the jth order.

The basic idea of the internal model control (IMC) designed for the jth order system
jS(s) is a combination of setpoint feedforward control jCw(s) with reconstruction of the
output disturbance do by the parallel plant model jS(s) and its compensation by means of
a negative disturbance feedback applied to the reference setpoint signal w (Figure 1). By
replacing simple negative feedback from do with jCon(s) = 1 (typical for 1-DoF IMC) by a
more complex disturbance feedforward jCon(s), we get the so called 2-DoF IMC.

Figure 1. 2-DoF IMC design for the stabilised j-th order plant model.

Since the control of time-delayed unstable systems brings several problems, in the
following, in order to simplify the explanation as in [20], we first deal with the control
of simpler first-order systems without transport delay, i.e., with Td = 0. Because this
simplified analysis is limited to the control of 1st order systems, the index j will be omitted
in the following subsections.
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2.1. Two Ways of the Setpoint Feedforward Implementation for First-Order Delay-Free Plants

A practical application of the setpoint feedforward usually demands a low-pass filter
Qw(s) combined with inversion of the delay-free part of the plant model S0(s) = 1S0(s)
expressed by the feedforward transfer function

Cw(s) =
Uw f (s)
W(s)

=
Qw(s)
S0(s)

=
s + a

Ks(1 + Tcs)
; Qw(s) =

1
1 + Tcs

. (3)

In (3) Tc represents a time constant of the resulting setpoint tracking transfer function

Fwy(s) =
Y(s)
W(s)

= Qw(s) =
1

1 + Tcs
, (4)

which is determining speed of the transients. Choice of Tc in (4) should guarantee admissi-
ble and realisable amplitudes of the setpoint control signal uw f (t).

The second way of accomplishing the setpoint feedforward uses a feedback from
output y(t) of the plant model S0(s) (see the gray area in Figure 2). To get a dynamics
equivalent to (3) and (4), the 2-DoF pole-assignment proportional (P) control with the pole
λ = −1/Tc given by equations

u = KP(w− y)+aw/Ks;
KP = −(λ+a)/Ks = (1/Tc−a)/Ks

(5)

will be used, yielding for S0(s) = S0(s) the setpoint-to-control behavior (3)

Fwu(s) =
U(s)
W(s)

=
s + a

Ks(1 + Tcs)
, (6)

where
Tc =

1
a + KpKs

. (7)

It means that this “primary loop” generates the feedforward u(t) = u f f (t). The loop
with (5) and (7) will be stable for Tc > 0 (λ < 0), which corresponds to

KPKs > −a (8)

Thereby, for stable and integrating plants with a ≥ 0 the stability condition (8) nom-
inally holds for any KPKs > 0. For unstable plants the product KPKs may not decrease
below the value −a.

Both these implementation methods also apply to circuits augmenting the setpoint
feedforward Cw(s) with reconstruction and compensation of output disturbances (Figure 2).
Such control schemes have been broadly investigated within the internal model control
(IMC) [21].

Definition 1 (TF-IMC and PL-IMC). The setpoint feedforward implemented with a single transfer
function (TF) Cw(s) will be denoted as TF-IMC. The implementation with a primary loop (PL) will
be denoted as PL-IMC.

Both TF-IMC and PL-IMC can be proposed as 1-DOF and 2-DoF structures. We will
later show that in time-delayed systems, the PL-IMC will correspond to a structure also
known as the Smith predictor.

Remark 1 (When and why TF-IMC, or PL-IMC?). Because these two options for generating
the setpoint feedforward are crucial to understanding the dead time compensator denoted as Smith
predictor (SP) [22], attention should be paid firstly to the question of when they differ and what
their advantages are, from which the application areas then emerge. Furthermore, although the
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PL-IMC implementation represents a typical SP structure used for dead time compensation, [20]
points out an unexpected and mostly unnoticed Property 1.

Property 1 (Application area of PL-IMC). As shown in [20], attractiveness of PL-IMC feedfor-
ward implementation is not tied to the transport delay itself but to the limitations of the control
signal. Taking into account the control saturation block using feedback allows faster transients that
correspond to the use of TF-IMC

Figure 2. 2-DoF IMC control of the first-order plants (1) based on the model (2) with Td = Td = 0
and a setpoint feedforward generated either by a single transfer function Cw(s) (TF-IMC) or by
the primary loop (PL-IMC) with 2-DoF P control of the plant model S0(s); both augmented by a
disturbance feedforward Co(s) considering n = 1 in (9).

Property 2 (PL-IMC still includes parallel unstable blocks). Implementation according to
Figure 2 illustrates the possibility of a simple replacement of the primary loop (considering control
of the delay-free plant model with Td = Td = 0) by a feedforward transfer function Cw(s). In this
way it is further possible to spare the parallel plant model used in do reconstruction by replacing
the signal x by the signal xP of the model output S0(s) used in the primary loop for feedforward
generation. However, even after such simplification, the control action u is still used to stabilise two
unstable systems (the plant S(s) and its delay-free model S0(s) embedded in the (stabilised) primary
loop). Since a single control action u cannot stabilise two unstable, even if identical, systems (with
possibly diverging states), the structure must be internally unstable. Use of Co(s) is not able to
eliminate this problem and the only possibility is to eliminate the unstable model (and with it also
the reconstructed output disturbance do) from the structure.

Property 3 (Elimination of the plant pole from the input disturbance response). Some useful
properties may be achieved by elimination of the plant pole s = −a from the input disturbance
response by the feedback controller Co (e.g., in control of systems with a slow open-loop response),
which does not influence dynamics in the feedforward path [19,20]. However, use of such a Co (9) is
still not enough to guarantee stability of unstable plant control.

To accomplish the Property 3, the output disturbance feedforward Con(s) may be
taken in a form of a filtered PD control

Con(s) =
1 + βs

(1 + Tf s)n ; n ≥ 1 , (9)

Theorem 1 (Tuning of the disturbance feedforward Con(s)). To eliminate the plant pole
s = −a from the input disturbance response Fiy(s) = Y(s)/Di(s) of an FOTD plant, the
parameter β of the disturbance feedforward (9) has to be chosen as

β =
[
1− (1− aTf )

n(1− aTc)
]
/a, a 6= 0 (10)
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or
β0 = lim

a→0
β = nTf + Tc, a = 0 (11)

Proof. For the sake of simplicity, let Con = Co. With the simplified denotation, the loop
from Figure 1 will first be split into feedforward and the rest denoted as equivalent plant
(Figure 3 above). In simplifying its structure it is possible to introduce an equivalent
controller

R(s) =
1

1− SQwS−1Co
=

1
1−QwCo

(12)

Figure 3. Interpretation of the disturbance feedforward impact in 2-DoF IMC transformed to a
feedforward control of an equivalent plant Se(s). Modification of Figure 1 by moving block Cw before
summation point (above); replacement of internal feedback with blocks S and CoCw by controller
R (below).

Using R(s) (12), the input disturbance response (see Figure 3 below) may be derived as

Fiy(s) =
Y(s)
Di(s)

=
S

1 + RSCwCo
=

SS(1−QwCo)

S(1−QwCo) + SQwCo
(13)

In the nominal case with S = S, Co in (13) is determined to cancel the plant pole
s = −a from the disturbance response transfer function

Fiy(s) = S(s)(1−QwCo) =
Ks

s + a

(
1− 1 + βs

(1 + Tf s)n(1 + Tcs)

)
(14)

For a 6= 0 and Fiy(s) = NFiy(s)/DFiy(s) it may be guaranteed by (14) fulfilling

Fiy(0) = 0; NFiy(−a) = 0 (15)
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which yields (10) and the disturbance responses (16)

n = 1; Fiy(s) =
sKsTf Tc

(1 + Tcs)(1 + Tf s)

n = 2; Fiy(s) =
sKsTf [Tc(2− Tf a + Tf s) + Tf ]

(1 + Tcs)(1 + Tf s)2

n = 3; Fiy(s) =
sKsTf [Tc(γ0 + γ1Tf s) + γ1Tf ]

(1 + Tcs)(1 + Tf s)3

γ0 = 3− 3aTf + a2T2
f ; γ1 = 3− aTf + Tf s

(16)

Obviously, the plant pole s = −a disappeared from the denominator of Fiy(s).
For integrating systems with a = 0, β (11) has to guarantee a double zero of NFiy(s) at

s = 0.

However, as may be shown by sufficiently long simulation (similarly as in [20]),
the transients will still be unstable. For integrating systems with a = 0, there exists
one significant reason for not using the output disturbances reconstruction: the output
disturbance do are unobservable. In such a case, the controller design has to be completely
modified—the unobservable disturbance estimate signal do has to disappear from the
controller structure. Next, we will clarify the whole problem also for a < 0.

2.2. 2-DoF PL-IMC: Impact of the Stabilising Feedback on the Loop Behavior

To summarise, with respect to Property 1, to control stable first order plants with
long time constants we have to use PL-IMC with the tuning (10) and (11). However, as
we will show below, in the case of unstable systems, this is still not enough to achieve
stable transients. Similarly as in disturbance-observer-based control (see e.g., [20,23]), the
disturbance feedforward makes the controlled plant to behave as the nominal model S0.
For stable systems, it may be used to optimise performance of the feedforward control
against the model uncertainty and external disturbances. The problem, however, is that
unstable systems cannot be controlled using open-loop setpoint feedforward, even if we
know their model relatively accurately.

To show the lingering reasons for instability, the 2-DoF IMC structure from Figure 1
will firstly be transformed into a series combination of the feedforward controller Cw(s)
and of an equivalent plant (Figure 3 above). This may yet be simplified by introducing an
equivalent controller R(s) (12) (Figure 3 below), which yields the equivalent plant dynamics

Se(s) =
RS

1 + RSCoCw
=

SS
S(1−QwCo) + QwCoS

(17)

Theorem 2 (Instability of IMC loop with unstable nominal plant model). For the unsta-
ble plant (1) and unstable model (2) the IMC loop from Figure 3 must be unstable even with
Td = Td = 0.

Proof. The proof is nearly a repetition of the proof of Theorem 1 in [20] and deals just with
the limit values of Qw(s)Co(s) in (17).

For relatively low frequencies, if s → 0, Qw(s)Co(s) → 1, Se(s) → S and Fiy(s) → 0.
This means that the input disturbances at low frequencies have no effect on the process
output. At the same time, the feedforward term Cw(s) (designed for model S) cancels
the unstable plant pole. Therefore, the setpoint tracking seems to be achieved accurately.
However, such a control structure cannot remain stable for a long time. Indeed, the
control term Cw(s) with the unstable Se(s) cannot guarantee stability. Any mismatch
between the actual and the modelled plant or the process disturbance would trigger closed
loop instability.

The mentioned mismatch is particularly pronounced at higher frequencies when, for
s → ∞, Qw(s)Co(s) → 0. Then both Fiy(s) → S(s) as well as Se(s) → S(s). Now, since
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Se(s) 6= S(s), the unstable plant pole cannot be completely eliminated by the term Cw(s).
This leads to a divergence of the plant output S(s) and to instability of the control loop.

Remark 2 (Asymmetry of disturbance compensation in stable and unstable systems). As an
addendum to Remark 4 in [20], it is again to note that the asymmetry in disturbance compensation of
stable and unstable plants, which has been formulated for the case of input disturbance compensation,
applies universally also to structures based primarily on output disturbances. It leads to conflicting
requirements, when with regard to the stability of the state it is not possible to impose the dynamics
of an unstable model but with respect to the aptness of the model we get the best short term results
with unstable model S(s) close to controlled dynamics S(s). It also led to the mistake that the
stability of disturbance responses was considered to be sufficient for the stability of the system state,
but this is not the case.

2.3. Cascade SL-IMC Design Based on Stabilised Plants

As we have just shown, even 2DOF IMC does not eliminate the disadvantage of 1DOF
IMC, namely the impossibility of direct use for integral and unstable systems (a ≤ 0).

Another application of 2-DoF P control is encountered in the case of cascaded structure
according to Figure 4. It avoids disadvantages of 2DOF IMC and brings a whole new
functionality to the structure. For Td = 0, stabilisation of the first order system (1) by
2-DoF P control (5) with the time constant (7) gives nominally the transfer function of the
stabilised loop (SL) 1/(1 + Tcs) (4).

Definition 2 (Cascade SL-IMC). Combination of the stabilised loop (SL) with the first order plant
(Td = 0), the 2-DoF P control (5), the parallel model 1/(1 + Tcs) and the feedforward controller (3)
Cw(s) = (1 + Tcs)/(1 + Tcs) = 1 (see Figure 4), will be denoted as SL-IMC controller. It yields a
plant independent disturbance response

Fiy(s) =
sKsTc

(1 + Tcs)2 (18)

SL-IMC not only has a simple structure (simpler than 2DoF-IMC in Figure 2), a simple
derivation and descriptive relationships (the setpoint response (4) and the disturbance
response (18)), but it also avoids the disturbance feedforward Co(s) (9) with a derivative ac-
tion. This is all while eliminating instability in the control of unstable systems and enabling
measurement of acting disturbances. Although SL-IMC is based on the reconstruction
and compensation of output disturbance, it can also be used for the reconstruction of
input disturbance. It may easily be calculated that in a steady state with y = w = 0 and
di = const, the value of input disturbance must fulfil the condition (Kp + a/Ks)do = di,
which yields an estimate

di = (Kp + a/Ks)do (19)

Figure 4. Cascade SL-IMC with the first order plant stabilisation by 2-DoF P control (Td = 0).
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3. Model Based Feedforward Control Design for UFOTD Plants

Let us now again consider UFOTD system (1) with Td > 0. After specifying the closed
loop transfer functions Fwy(s), Fiy(s), the necessary control algorithms can be designed,
either in the form of the proportional-integrative-derivative (PID) controllers [2] or various
dead-time compensators (DTCs). By DTC, the solution with an explicit model of the plant
including the transport delay in the control structure are taken into account [19]. Due to
problems related to dead-time modelling by analogue circuitry, the first DTCs appeared
relatively late, just in the second half of the 1950s [22,24].

One of the DTCs, known as Smith predictor (SP), significantly influenced develop-
ments of DTCs to date. Its broader use was conditioned mainly by the development of
discrete models, which are far more appropriate for delayed systems. In this paper, in
order to simplify the derivations, the continuous-time domain, with sampling period Ts
significantly smaller compared to the process dominant time constants, will be used.

In early publications such as [25–28] the unstable plant has been stabilised by a
controller placed between the control error and the process input. In contrast to this, SP
and its later appearing modifications, as filtered Smith predictor (FSP), do not consider
plant stabilisation. Instead, they introduced the disturbance response stabilisation via the
disturbance rejection channels but without paying attention to the plant state stabilisation.

In order to bring everything to the right level and to be specific, SP will be interpreted
here according to the following definitions.

Definition 3 (Smith Predictor (SP)). Traditional SP represents a PL-IMC implementation of
feedforward control extended by an output disturbance reconstruction and compensation.

The given definition brings severe structural restrictions. Since the proposed SP
structure represents a series combination of a feedforward controller (producing a filtered
plant dynamics inversion) and the considered plant model (1), with respect to Theorem 2,
SP is only suitable for controlling stable systems. Many works proclaim that in the form
of 2-DoF PL-IMC structure and after being augmented by a suitable stabilisation filter
to the reconstructed disturbance (denoted as Co(s) in Figure 2, or Fr(s) in Figure 5 [19]),
unstable poles of the system can be eliminated from the transfer function of the input
disturbance. (Such a 2-DoF PL-IMC structure is denoted as a (conceptual) filtered Smith
predictor (FSP).) However, a stable response to disturbances does not stabilise the state of
unstable controlled systems.

Figure 5. FSP structure for analysis according to [19] with PI controller in the setpoint feedfor-
ward loop, prefilter F and output disturbance feedforward filter Fr from the reconstructed output
disturbance do for UFOTD.

Since the correct understanding of the SP role is crucial for understanding remaining
of this paper, we may start with noting its different interpretations from references. They
are denoting its role as elimination of the dead-time from the closed loop characteristic
polynomial [29,30] or prediction of the actual system output from its time-delayed mea-
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surement [29,31]. Here one asks how far they may be generalised to cover more general
context, for example, control of UFOTD plants.

In the following, we will show that SP is only one of the modifications of the distur-
bance observer, which in the low frequency range modifies the controlled system to the
dynamics selected by the nominal model [23]. Then, it is impossible for the closed loop in-
cluding the unstable model mode to remain stable. The unsuitability of the conceptual FSPs
for unstable systems stems entirely from the characteristics of the disturbance observers
expressed by the following hypothesis.

Theorem 3 (Role of the SP). Suppose that, according to Definition 3, SP represents a setpoint
feedforward with output disturbance reconstruction and compensation. Then, as all the disturbance
observer based solutions [23], it has the task of forcing the controlled system to the dynamics given
by the selected (nominal) model even in the presence of uncertainties and acting disturbances. Its
feedback keeps the total disturbance related to the output (or input) of the selected model at zero
at least in the low frequency region. However, if it tries to maintain the nominal dynamics of an
unstable model, it must result in the instability of the whole circuit.

Based on long-standing interpretations, it could be argued that the original SP does not
act like this. It only “controls” the undelayed part of the process by using an appropriate
controller (as, e.g., the PI controller in Figure 5). However, the role of this controller is
very often interpreted incorrectly. For example, when considering the opinion-forming
textbook in the field of PID control [32], the feedforward control and the Smith predictor are
discussed in two completely independent chapters, without mentioning existence of some
relationships. In other words, these two problems are not generally known as related each
other. In numerous works on FSP (as, e.g., [19,33]) you will not find the term “feedforward”.
Thus, the SP interpretation expressed in above Theorem and Definition 3 denoting SP as
“setpoint feedforward+output disturbance rejection” may for numerous readers represent a
new information which deserves a deeper attention. Correct interpretation is especially
important in the case of unstable systems.

By forcing the controlled system to the dynamics given by the selected (nominal)
model even in the presence of uncertainties and acting disturbances, under ideal conditions
and for limited periods of time, the transfer functions based conceptual FSP design may
give excellent results. Nevertheless, it is certain that the functionality of the loop will
be degraded due to the unstable mode.In this respect, the FSP application to control of
unstable FOTDs (UFOTDs) can be considered as faulty design, similar to the one in the
Chernobyl power plant.

3.1. Example: Concentration Control of an Unstable Reactor by FSP

Main drawbacks of the FSP structure for application, presented in [19], will be illus-
trated on a model of the unstable chemical reactor, according to Figure 5. The dynamics of
some chemical reactors with non-ideal mixing has been approximated by the following
UFOTD transfer function (see [19])

P(s) =
Y(s)
U(s)

= P0(s)e−Lns; P0(s) =
3.433

Tns− 1
; Tn = 103.1; Ln = 20 (20)

The primary loop controller for generating the setpoint feedforward control signal
u f f (s) (Figure 5) was

C(s) =
U f f (s)

E(s)
= Kc

1 + Tis
Tis

; Ti = 43.87; Kc = 3.29 (21)
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Use of PI controller in the primary loop made the task complex. It required introducing
a prefilter F(s) to cancel the zero of C(s), appearing also in the primary loop transfer
function, by the prefilter denominator

F(s) =
20s + 1

43.87s + 1
(22)

and the disturbance feedforward filter was the following

Fr(s) =
(20s + 1)2(93.16s + 1)
(43.87s + 1)(26s + 1)2 (23)

Since not all the parameters of simulations were specified in the initial work [19], we
tried to estimate them from the given time responses (di step amplitude was specified as
di = 0.5 and initial output value was simply set to y0 = 0). Thereby, for the setpoint and
disturbance feedforward filters (22) and (23), the time constants equal to the nominal dead
time value Ln = 20, have been chosen.

The transients in Figure 6 fully demonstrate the consequences of the Theorem 2, when
the apparently perfect transients are ultimately devalued by internal instability caused by
an unbounded increase in the reconstructed disturbance and the unstable plant mode. The
primary loop with the controller C(s) (21) and delay-free plant model P0(s) (20) may be
namely replaced by the IMC-like feedforward controller with the transfer function

1Cw(s) =
C(s)

1 + C(s)P0(s)
≈ 103.1s− 1

3.433
43.87s + 1
(1 + 20s)2 (24)
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Figure 6. Transient responses corresponding to the FSP controller from Figure 5 according to [19] and
demonstrating internal instability due to unbounded reconstructed disturbance signals dorec = do

and do f = do f .
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Multiplication with the prefilter F(s) (22) then yields the effective feedforward

Cw(s) = 1Cw(s)F(s) =
103.1s− 1

3.433
1

1 + 20s
(25)

representing a filtered inversion of the delay-free plant model P0(s) (20).
The loop may further be simplified by introducing equivalent controller

1Ce(s) =
1Cw(s)

1− 1Cw(s)P0(s)e−LnsFr(s)
(26)

which then yields the input disturbance response

Fiy(s) =
Y(s)
Di(s)

=
P(s)

1 + P(s)Fr(s)Ce(s)
(27)

In the nominal case, from (20)–(26) follows

1Ce(s) =
P−1

0 (1 + Tis)
(1 + Trs)2[(1 + T0s)2 − (1 + βs)e−Ls]

Fiy(s) =
Ke−Ls

Tns− 1
(1 + T0s)2 − (1 + βs)e−Ls

(1 + T0s)2

β = Tn

[
(1 + T0/Tn)2eLn/Tn − 1

]
= 93.16

(28)

Thereby, the parameter β of Fr(s) is designed so as to remove the unstable plant pole
s = 1/Tn from the input disturbance transfer function Fiy(s) = NFiy(s)/DFiy(s) (28). Such
a plant pole independent response (29) corresponds to

Fiy(0) = 0; NFiy(1/Tn) = 0 (29)

All this relatively complex setting, in which the unexplained constant Tr = 20 appears
in the article, is a tax for unnecessary use of the PI controller in the primary loop. This
will be compounded by problems typically occurring mainly in controlled integrative
and unstable systems associated with the limitation of the action variable and the need to
compensate for the windup effect [34,35].

3.2. FSP: Structure for Analysis Versus Structure for Implementation

Thus, as already mentioned, FSP [10,19,36,37] represent one of numerous modifica-
tions of the SP introduced originally in [22]. For more than half a century the mainstream
SP interpretation has been proclaimed as an enhancement of the PI control by removing the
transport delay from the characteristic closed-loop quasipolynomial. Only some alternative
works [35,38–42] mentioned that the primary SP loop is used for generating the setpoint
feedforward by inversion of the plant dynamics. In this respect the integral action of the PI
control is unnecessary (even harmful) and for the first-order plants it has been proposed to
be replaced by 2-DoF P controller. This has unified and simplified SP primary loop setup
for all stable, unstable and integrating systems and eliminated the problem of excessive
integration in the control of constrained systems. The above conclusions were adopted by
some works [33,43–46] after the original paper. However, except for the last contribution,
the mentioned works did not cite the original work and they forgot to provide a detailed
justification for this change in their work. Moreover, the mentioned works did not explain
the advantages of the proposed schemes over the PI controller in the main control loop.

However, in control of UFOTD plants numerous publications still present much more
serious defects than the PI in the feedforward generation.

As demonstrated by Figure 6, the stable disturbance response is not a sufficient but
only a necessary condition for the loop stability. From this point of view, Theorem 3 also
plays an important role in the case of unstable systems. Therefore, initially, shapes of the
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transients at the plant input and output in Figure 6 may seem to show very nice dynamics
and fully confirm results of [19]. However, due to Theorem 2, the choice of an unstable
nominal model cannot ensure the long-term stability of the circuit, even if the response to
disturbances is stable. It is leading to an unconstrained grow of reconstructed disturbance
signals and output instability (as demonstrated in Figure 6 for t > 2000 by an output
decrease). Unstable plant modes are necessarily initiated, even in a circuit without external
disturbances, by imperfections of numerical integration and a plant-model mismatch.
Hence, regardless of the simulation parameters and the chosen integration methods, the
close-loop response would eventually become unstable.

In each case, the above transients fully confirm that application of the FSP “for analysis”
structure to UFOTD systems, according to [19], represents a conceptual mistake. At the
same time, however, it shows the limits of achievable performance, which we would like
to address together with long-term stability and robustness.

Aware of the stability problem, but without a proper explanation of the necessary
details, the authors then introduce the term FSP “implementation structure” in [19]. The
essence of the implemented modifications (see Figure 7 below) can be described as the
elimination of unbounded and in the case of integrative plants also unobservable recon-
structed disturbance signals. This is achieved by including the inner loop of the circuit
according to Figure 7 above in the equivalent controller Ce(s) in Figure 7 below. The
slightly different structure given in [19] is (without further explanation) also suitable for
circuits with a limited action variable. However, in view of these differences, it should
be noted that if we define SP as a setpoint feedforward extended by disturbance recon-
struction and compensation, the modified structure contains neither setpoint feedforward
nor disturbance reconstruction and compensation. Based on this, the name FSP can be
considered misleading and it would be far more appropriate to call it “SP inspired solution”
[42]. In the following, we will therefore focus on solutions that achieve the internal stability
while ensuring the original functionality of the SP. It will still be possible to distinguish a
feedforward setpoint and have a reconstructed input disturbance signal available.

Figure 7. IMC-like structure of the internally unstable FSP controller scheme “for analysis” from
Figure 5, with feedforward controller 1Cw(s) (24), prefilter F(s) (22) and disturbance feedforward
filter Fr(s) (23) of the reconstructed output disturbance do for UFOTD according to [19] (above) and
the structure “for implementation” after eliminating the unbounded reconstructed disturbance do

and introducing an equivalent controller 1Ce(s) (26) corresponding to the feedforward 1Cw(s) with
the internal feedback blocks Fr(s) and the nominal plant model P0(s)e−Lns (20) (below).
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4. Main Results: Two-Step FSP Design by Stabilisation of UFOTD Plants

Remark 3. Let us first briefly recall that it makes sense to distinguish between the TF-IMC and
PL-IMC control only if we want to take into account situations with unrestricted, resp. with limited
control signal. Thereby, PL-IMC control is the equivalent of SP for stable time-delayed systems.
Only SL-IMC may be directly applied to integral and unstable systems. Therefore, we further
develop this structure for the case of UFOTD systems.

The unsuitability of unstable nominal dynamics in the design of the SP is far from
new. In such a case, e.g., dePaor [47] preferred to choose a stable model, although the large
plant-model mismatch led to a deterioration of the control performance and significantly
limited dynamic properties of the circuit.

Other possible solutions include preliminary stabilisation of the controlled system,
which allows the application of SP or other design methods (see e.g., [47–53] and the
references therein) or an additional design of a superior stabilisation solution for FSP (as in
[20]), which may then be applied directly to an unstable system. Below we address the first
of these options yielding broadly applicable analytical controller tuning.

4.1. UFOTD Plant Stabilisation by 2-DoF P Control

In order to simplify further derivations with both stable and unstable processes,
the original FOTD systems described by (1) will be used in combination with the 2-DoF
proportional (P) control with the gain KP (Figure 8). In the nominal case with a = a,
Ks = Ks and Td = Td, it leads to the following closed loop transfer functions:

Fwy(s) =
Y(s)
W(s)

=
a + KPKs

(s + a)eTds + KPKs
,

Foy(s) =
Y(s)
Do(s)

=
(s + a)eTds

(s + a)eTds + KPKs
,

Fiy(s) =
Y(s)
Di(s)

=
Ks

(s + a)eTds + KPKs
.

(30)

All these transfer functions (30) have the characteristic quasipolynomial with infinitely
many roots:

A(s) = (s + a)eTds + KsKP. (31)

As the limit case of the controller gains not yet exhibiting oscillations, A(s) (31) has to
include a double real dominant pole so [20]:

A(s) = (s− so)
2 Ared(s). (32)

If so are dominant poles, the remaining roots of Ared(s) (32), which are left and
sufficiently far from so in the complex plane, may be neglected. Thereby, as a double pole,
so has to fulfil equations A(so) = 0 and dA(s)/ds = 2(s− so)Ared(s) + dAred(s)/ds = 0
written as: {

A(s);
d
ds

A(s)
}

s=so

= 0 (33)

Figure 8. Stabilisation of UFOTD plant model by 2-DoF P controller.
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From (34)
d
ds

A(s) = eTds + (s + a)TdeTds = 0 (34)

substituted into (33) follows that the double dominant pole and the corresponding domi-
nant primary loop time constant are:

so = −(1 + aTd)/Td; To = −1/so = Td/(1 + aTd) (35)

A substitution of (35) into (33) yields the “optimal” controller gain

KPo =
e−1−aTd

KsTd
(36)

The closed-loop system is stable, when the dominant pole (35) fulfils

so < 0 =⇒ aTd > −1 (37)

In other words, with respect to (37), the unstable processes with aTd < −1 cannot be
stabilised by P control. For a < 0, the value of To increases compared to the integrative
plants with a = 0, which makes it especially difficult to eliminate disturbances, when for

aTd → −1⇒ To → ∞ (38)

It follows from (38) that for aTd → −1, the transient rate in the stabilisation
loop decreases.

Remark 4 (Impact and reconstruction of disturbances acting under P control). The following
facts are important for disturbance reconstruction and compensation:

• From the disturbance transfer functions Foy(s) and Fiy(s) (30) follows that the acting constant
disturbances have non-zero effect on the output variable in steady states. Thus, an appropriate
disturbance reconstruction and compensation have to be considered;

• In the 2-DoF PL-IMC implementation with 2-DoF P control according to Figure 2 applied
to stabilise the plant, in steady states, the reconstructed input disturbance signal di required
to eliminate the input disturbance di (see the derivation of (19)) may be calculated from the
reconstructed filtered output disturbance do f according to

di = (KP + a/Ks)do f (39)

4.2. 1-DoF and 2-DoF SL-IMC Design Based on the TF-IMC with 2nd-Order SL Approximation

Since for Td = 0 the transfer function of the stabilised loop does not depend on the
pole of the system, the scheme according to Figure 4 suffices to be considered with 1-DoF.
Since the closed loop in Figure 8 with a stabilising P controller (36) and the FOTD plant (1)
has a double real dominant pole depending on the possibly unstable plant pole, it opens
up space for the design of 1-DoF and 2-DoF SL-IMC structures.

In the nominal case, SL may be approximated by a second-order transfer function
(with the order appearing as the left upper index) denoted as

2S(s) =

[
1 +

1
K1

PoS(0)

]
KPo

1S(s)
1 + KPo 1S(s)

(40)

This can be used in an IMC design according to Figure 1, which will yield a generali-
sation of SL-IMC controller according to Figure 4 for FOTD systems.

Nominally, 2S(s) (40) has a unit steady-state gain

2S(0) = 1 (41)
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and a stable double real dominant pole so. Thus, when neglecting all “faster” closed loop
poles of Ared(s) in (32), it may be approximated by a stable second-order time delayed
(SOTD) model

2S(s) = 2S0(s)e−Tds; 2S0(s) =
α2

(s + α)2

α = −so = (1 + aTd)/Td = a + 1/Td > 0

T2 = −1/so =
Td

1 + aTd

(42)

satisfying (41). Then, under condition (37), the 1-DoF SL-IMC design, or its modification to
2-DoF SL-IMC (see Figures 1 and 3) may be safely applied.

If required (e.g., with respect to control constraints), the feedforward transfer function

2Cw(s) =
Q2(s)
2S0(s)

=
(s + α)2

α2(Tcs + 1)2 (43)

may be generated by the primary loop of a PL-IMC based on a 2-DoF PD controller and
the plant model (42) (Such a design will be illustrated in the next section).

In 2-DoF SL-IMC, the disturbance feedforward filter will be chosen in form of the
filtered proportional-derivative-accelerative (PDA) controller with unity gain:

2Con(s) =
1 + β1s + β2s2

(Tf s + 1)n ; n ≥ 2 (44)

In the 1-DoF design, simply apply β1 = β2 = 0 and n ≥ 0 in (44). (As an intermediate
stage between 1-DoF and 2-DoF IMC, cancelling no or two plant model poles, it would also
make sense to consider an intermediate stage with just one plant-model-pole cancelled.
Because we expect such a suggestion to lead to properties between the two limit cases, we
will omit it for simplicity.)

The inner positive feedback loop may then be replaced by an equivalent feedforward
controller (Figure 9)

2Cen(s) =
2Cw(s)

1−2 Cw(s) 2S(s) 2Con(s)
(45)

In the simplest case with Tf = Tc and the minimum feasible value n = 2 yielding
proper 2Con(s) (44), the proposed design yields an input disturbance response

2Hi2(s) =
Y(s)
Di(s)

=
2S(s)

1 +2 S(s) 2Ce2 2Con(s)
=

=2 S(s)
(1 + Tf s)4 − (1 +2 β1s +2 β2s2)e−Tds

(1 + Tf s)4 e−Tds
(46)

Figure 9. Equivalent scheme of the 2-DoF IMC control for the stabilised jth order plant model.
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Thereby, 2β1 and 2β2 will be determined to cancel the stable double pole s = −α = so
from the disturbance response, which for 2Hi2(s) = Ni2(s)/Di2(s) requires to
fulfil equations [

Ni2(s);
d Ni2(s)

ds

]
s=so

= 0 (47)

In this way it is possible to speed up transients. From (47), the corresponding
solutions are

2β1 =
2(eτd − 1) + 2τf (2− 2τf + τ3

f )− τd(1− τf )
4

aeτd

2β2 =
eτd − 1 + τ3

f (3τf − 8)− τd(1− τf )
4

a2eτd

τd = αTd; τf = αTf

(48)

4.3. PD Controller for SL-IMC Design Based on the PL with 2nd Order SL Approximation

In Definition 1 and Remark 1, we have already pointed to the possibility of imple-
menting TF-, or PL-IMC using setpoint feedforward based on a single transfer function
or primary loop. We will further develop these possibilities in generalising the SL-IMC
loop according to Definition 2 and Figure 4 with an UFOTD system and a stabilising 2-DoF
P controller.

When using the second-order transfer function (42) as the stabilising loop approxi-
mation (as in (43) or in Figure 10), due to the neglected loop dynamics corresponding to
Ared(s), a non-zero reconstructed disturbance signal appeared also in situations without
external disturbances (see Figure 11).

For both the TF- and PL-IMC 2-DoF SP implementations, the settings (48) of 2Con(s)
remain the same.

The stabilising loop approximation by 2S0(s) (42) will also be used to set the parame-
ters of the primary loop PD controller, which inverts the dynamics of the stabilised loop.
When firstly neglecting the PD implementation filter, required by the derivative action,
i.e., for

R f f (s) =
UPD(s)

E(s)
= KPD + KDs (49)

combined with the delay-free part of the system model (42) 2S0(s) = α2/(s + α)2, we get
for (49) the following primary loop characteristic polynomial (42)

APD(s) = s2 + (2α + KDα2)s + α2(1 + KPD) (50)

Figure 10. 2-DoF PL-IMC with PD controller (49) for 2nd order model of SL (42) (blue) approximating
the UFOTD plant (1) stabilised by 2DoF P controller (white background) designed to yield a double
real dominant pole; the disturbance reconstruction & disturbance feedforward (44) designed for the
2nd order SL approximation (42) (green); setpoint prefilter with the time constant TD f used to reduce
the PD controller output kicks after setpoint step changes.
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After some modifications, it is possible to express (50) as

s2

α2(1 + KPD)
+

(2α + KDα2)s
α2(1 + KPD)

+ 1 = T2
c s2 + 2Tcs + 1 (51)

which yields
KPD = 1/(αTc)

2 − 1; KD = 2(1/(αTc)− 1)/α (52)

Due to the dead-time value neglected in PD tuning, such a simplified tuning (52) is
expected to give usable results when

Tc ≥ Td; Tf ≥ Td (53)

Similar specifications as (53) can be applied to the disturbance feedforward filter Tf ,
as well.

In order to get a proper PD controller transfer function, it is necessary to use an
appropriate filter. For example, Figure 10 uses the series filter specified with the time
constant chosen as TD f ∈ [Tf /20, Tf /10]. A prefilter with the same time constant may also
be used to decrease derivative kicks of u f f after steps of the setpoint w.

Figure 11. Transient responses of the plant (20) for a setpoint step w = 5 at t = 50 and an input
disturbance step di = 0.5 at t = 400, nominal plant parameters Ks = Ks, a = a, Td = Td, Tc =

Tf = Td: with the 2-DoF FSP according to [19], 1-DoF and 2-DoF SL-IMC controllers (denoted as
P-FSP1 and P-FSP2) for unstable plant stabilised by 2-DoF P control derived by a two-step design
from Sections 4.2 and 4.3 and the controller with setpoint and disturbance reference models and
disturbance observer from [20]; dorec = do and do f = do f , direc = di.
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5. Simulation: Nominal Dynamics and the Robustness Evaluation

Transient responses corresponding to 2-DoF FSP according to [19] from the rxample
in Section 3.1 and to modified SL-IMC controllers from Sections 4.2 and 4.3 with nominal
tuning are in Figure 11. Thereby, the transients 1-2 correspond to 1-DoF and 2-DoF
IMC according to Figure 1 for SL approximated by 2nd order transfer functions (42). In
comparison with the controller based on disturbance observer (DOB) and a stabilising
master controller with the setpoint and disturbance reference models (RMs) from [20] they
are rather slow. Its feedforward tuning corresponds to (5) with Tc = Ln, the stabilising
controller to (36) and the DOB filter time constant is Tf = Ln.

Imperfect approximation of the stabilised loop SL is demonstrated by non-zero distur-
bance reconstructed during the setpoint steps, when no external disturbances are active.
The decreased speed of these transient responses is demonstrated by the Integral of Abso-
lute Error (IAE) values in Figure 12 calculated according to

IAE =
∫ ∞

0
|e(t)|dt ; e = w− y (54)

However, the seemingly “perfect” responses of the 2DOF SP do not guarantee stability
and, in turn, the modifications used in the so called Filtered Smith predictor eliminate the
reconstructed disturbance signal from the circuit (which would be diverging to infinity).
Although the simplified design of the IMC controller with stabilisation of the controlled
UFOTD system gives the transients close to the optimal responses, the question arises
whether it will still not work better in the case of unstable systems with observers derived
directly for input disturbance reconstruction [20].

FSP P-FSP1 P-FSP2 RM-DOB
0

50

100

150

200

250

--
->

 I
A

E
s
, 

IA
E

d

IAE
s

IAE
d

Figure 12. IAE values corresponding to transients in Figure 11.

However, a different situation arises when dealing with perturbed models (Figure 13),
when for Td = Td/1.3 the IAE values corresponding to the stabilised model and 2DOF
SP (Figure 14) roughly correspond to the use of (unstable) FSP. However, to get stable
responses, for the DOB-RM controller, the setting of the Tc parameter had to be reduced to
Tc = 0.9Ln.

More importantly, the shapes corresponding to the stabilised systems are much
smoother, which plays an important role in terms of equipment wear, excess energy con-
sumption, acoustic noise produced, mechanical vibrations, unwanted heat, etc. To quantify
them, we will use the modifications of total variation (TV) introduced by Skogestad [2].
The deviation from the monotonicity, which is current in setpoint steps, is evaluated with
the help of

TV0(y) = ∑
i
|yi+1 − yi| − |y∞ − y0| (55)
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When evaluating deviations from pulses composed of two monotone sections, which
are current in the course of the control action and the reactions of the output variable to the
disturbance steps, we get by a double application of TV0 performance measures

TV1(y) = ∑
i
|yi+1 − yi| − |2ym − y∞ − y0| (56)

A point with the value ym (local extreme) divides the two considered monotone
sections of y between the initial and final values y0 and y∞. Evaluation results in Figure 15
confirm very high sensitivity of the original FSP control (questioned e.g., in [54]) but also
very high sensitivity of the RM-DOB solution from [20] and the possibility of its substantial
reduction by stabilising the system (due to the several orders of magnitude higher excessive
effort of FSP and RM-DOB setpoint responses, a logarithmic representation had to be used).

Figure 13. Transient responses of the plant (20) for a setpoint step w = 5 at t = 50 and an input
disturbance step di = 0.5 at t = 400, nominal plant parameters Ks = Ks, a = a, Td = Td/1.3 ,
Tc = Tf = Td: with the 2-DoF FSP according to [19], 1-DoF and 2-DoF SL-IMC controllers (denoted
as P-FSP1 and P-FSP2) for unstable plant stabilised by 2-DoF P control derived by a two-step design
from Sections 4.2 and 4.3 and the controller with setpoint and disturbance reference models and
disturbance observer from [20] with the modified tuning Tc = 0.9Ln; dorec = do and do f = do f ,
direc = di.
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Figure 14. IAE values corresponding to transients in Figures 13.
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Figure 15. The shape related TVy and TVu values corresponding to transients in Figures 13.

6. Discussion

Based on the thorough application of Theorem 1 from [23], it was possible to uncover
and interpret the hidden asymmetry of FSP properties when applied to the control of
unstable and stable processes and point out the need for modification of the unstable
case. At the same time, we avoided the commonly used solution, which eliminates the
unbounded signal of output disturbance reconstruction by connecting two inner loops of
the 2-DoF SP (equivalent to PL-IMC), while losing one of the basic functional advantages
of SP—the possibility of offering information on the acting disturbances.

Two modifications of solutions of different complexity, based on the stabilisation of an
unstable system by the 2-DoF P controller, allow different approximations to the unstable
dynamics of FSP, i.e., the possibility of achieving practically the same transient speed while
substantially increasing their robustness. Solutions based on second-order stabilising loop
approximations are typically with a monotonic response to setpoint steps.

7. Conclusions

The paper revealed the unusual behaviour of the filtered Smith predictor applied to
the control of unstable FOTD systems and it points out that such a solution is inappropriate
without additional corrections.

As one of possible alternatives, the paper designed, verified and applied the 1-DoF
or 2-DoF IMC design to a circuit with the UFOTD plant stabilised by a 2-DoF P controller
tuned by the double real dominant pole method. Although the proposed controllers lead
to a partial reduction in the dynamics of the nominal solution, they also yield improved
robustness of the perturbed systems. Therefore, given the persistent reservations of the
scientific community about the robustness of FSP [54], it will be interesting to analyse the
proposed solutions in more detail. At this point, however, there is again the need to look for
new innovative solutions. The traditional robustness analysis based on sensitivity functions
does not always confirm the intuitively expected and experimentally verified results [55].
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One of the basic problems in the control of unstable systems is the fact that the necessary
values of sensitivity functions [56] can far exceed the textbook recommendations valid
for stable systems. Alternative approaches to robustness analysis can again be based on
deviations from ideal transient shapes [57]. In any case, a deeper analysis of the robustness
problems of the controllers proposed in this paper will require separate work.

Another interesting issue, which remains for future research, is the evaluation of the
noise effects. In the future work it will be necessary to evaluate the influence of the order
of filters used and a low-pass filter in the stabilising loop with P controller or even with
higher order stabilising controllers.
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The following abbreviations are used in this manuscript:

1-DoF One Degree of Freedom
2-DoF Two Degree of Freedom
DTC Dead Time Compensator
FOTD First Order Time Delayed
FSP Filtered Smith Predictor
IMC Internal Model Control
PID Proportional-Integrative-Derivative
PL Primary Loop
SL Stabilised Loop
SP Smith Predictor
TF Transfer Function
UFOTD Unstable First Order Time Delayed
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