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Abstract: Although the direct sampling method (DSM) has demonstrated its feasibility in identifying
small anomalies from measured scattering parameter data in microwave imaging, inaccurate imaging
results that cannot be explained by conventional research approaches have often emerged. It has
been heuristically identified that the reason for this phenomenon is due to the coupling effect
between the antenna and dipole antennas, but related mathematical theory has not been investigated
satisfactorily yet. The main purpose of this contribution is to explain the theoretical elucidation
of such a phenomenon and to design an improved DSM for successful application to microwave
imaging. For this, we first survey traditional DSM and design an improved DSM, which is based on
the fact that the measured scattering parameter is influenced by both the anomaly and the antennas.
We then establish a new mathematical theory of both the traditional and the designed indicator
functions of DSM by constructing a relationship between the antenna arrangement and an infinite
series of Bessel functions of integer order of the first kind. On the basis of the theoretical results,
we discover various factors that influence the imaging performance of traditional DSM and explain
why the designed indicator function successfully improves the traditional one. Several numerical
experiments with synthetic data support the established theoretical results and illustrate the pros
and cons of traditional and designed DSMs.

Keywords: direct sampling method; microwave imaging; scattering parameter; Bessel functions;
simulation results

1. Introduction

The main purpose of microwave imaging is to retrieve the parameter (permittivity or
conductivity) distribution in a domain from scattering parameter data. This is an old and
difficult problem due to its intrinsic ill-posedness and nonlinearity [1]. Nevertheless, it is
a very important problem to current scientists and engineers in developing reliable tools
and techniques that can be applied to real-world problems such as medical imaging [2–4],
damage detection in civil structure [5–7], radar imaging [8–10], etc. In order to solve
this problem, various techniques have proposed various reconstruction algorithms. For
example, Newton method [11] for reconstructing crack shape, Gauss–Newton method
for 3D imaging [12] and biomedical imaging [13], Levenberg–Marquadt algorithm for
detection and monitoring of leukemia [14] and reconstructing permittivity distribution [15],
level-set technique [16] for inverse scattering problem, and optimal control approach [17]
for reconstructing extended targets.

For a successful application of iterative-based techniques, one must begin the iteration
procedure with a good initial guess. Otherwise, they will encounter the nonconvergence is-
sue or the occurrence of a local minimizer. Moreover, a huge amount of computational cost
will be required to perform the large number of iteration procedures; refer to [18]. Hence,
it is natural to consider the generation of a good initial guess before the iteration procedure.
Due to this reason, various noniterative techniques have been investigated and applied to
inverse scattering problems and microwave imaging, for example, MUltiple SIgnal Classifi-
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cation (MUSIC) algorithm [19,20], Kirchhoff and subspace migrations [21,22], Factorization
method [23,24], topological sensitivity [25,26], and linear sampling method [27,28].

Direct sampling method (DSM) is a fast, effective, and stable noniterative technique
for identifying the location or the outline shape of small or extended targets related to
various inverse problems. As such, DSM is currently widely applied in many fields,
including the identification of two- and three-dimensional small scatterers [29–34] or
perfectly conducting cracks [35], diffusive optical tomography [36], electrical impedance
tomography [37], detecting sources in a stratified ocean waveguide [38], phaseless inverse
source scattering problem [39], and mono-static imaging [40].

Recently, the application of DSM has been extended to microwave imaging that uses
synthetic [41] and real [42] data for a noniterative identification of small anomalies from
the collected scattering parameter data. The rapid identification of unknown anomalies
is crucial in microwave imaging and DSM can be regarded as a suitably fast microwave
imaging technique because it has certain advantages, such as the requirement of only a
few (e.g., one or two) sources for generating incident fields and the low computational
cost for performing the imaging procedure. However, difficulties can emerge in terms
of identifying why inaccurate results had been obtained (see [41,43]). Heuristically, it
has turned out that this phenomenon is due to the coupling effect between the anomaly
and antennas, and the distance between the transmitter and the anomaly. However, a
related mathematical theory of this phenomenon has yet to be satisfactorily established
because previous studies do not consider the coupling effect between teh anomaly and
antennas. Motivated by this issue, we attempted to identify the factors that influence the
measurement data and correspondingly introduced another indicator function of DSM for
a better imaging performance by removing certain scattering parameter data influenced
by the coupling effect. This is based on the hypothesis that there exists a coupling effect
between anomaly and antennas. We subsequently determined the mathematical structure
of both the traditional and the introduced indicator functions by establishing relationships
among the Bessel functions of the integer order of the first kind, the antenna setting, and
the material properties. The theoretical results revealed the reason behind the appearance
of inaccurate results using the traditional DSM and allowed for achieving a better imaging
performance with the introduced indicator function.

Various simulation results from synthetic data generated by the CST STUDIO SUITE
demonstrate the theoretical result and explored behaviors of traditional and designed DSM.
It is worth emphasizing that once the outline shape of the anomaly is recognized, it can
be selected as a good initial guess and one can retrieve a complete shape via iteration-
based schemes.

The remainder of this paper is organized as follows. In Section 2, we outline the
basic concept of the scattering parameter, introduce the traditional indicator functions of
DSM, and design another DSM indicator function for improving the imaging performance.
In Section 3, we investigate the structure of the indicator functions by establishing rela-
tionships among the Bessel functions of the integer order of the first kind, the antenna
configuration, and the material properties. In Section 4, a set of simulation results with
synthetic data are presented to support the investigation. A short conclusion including an
outline of the current and future work is given in Section 5.

2. Scattering Parameter and Indicator Functions of Direct Sampling Method

Suppose that there exists a circular cylindrical obstacle with infinite length in the ver-
tical direction (parallel to the z-axis) in a given region of interest (ROI) and it is surrounded
by a number of dipole antennas in the vertical direction. Then, based on mathematical
treatment of the scattering of time-harmonic electromagnetic waves from thin infinitely
long cylindrical obstacles, this can be considered the two-dimensional inverse problem. An
illustration of the experimental setup and the two-dimensional cross-section of the obstacle
is given in Figure 1; refer to [20] for a detailed description.



Mathematics 2021, 9, 1065 3 of 16

(a) Without anomaly (b) With anomaly

Figure 1. Illustration of the simulation configuration.

We denoteD as the 2D cross section of a cylindrical obstacle with radius α and location
r? ∈ Ω such that

D = r? + αB,

where B denotes the two-dimensional unit circle centered at the origin (in general, B is
a simply connected domain with smooth boundary that describes the shape of D) and
An ∈ Ext(Ω) is the dipole antenna located at an, n = 1, 2, · · · , N to transmit or receive
signals. Here, Ω denotes the homogeneous background, which is the intersection between
the ROI and R2, and Ext(Ω) is the exterior of Ω. Throughout this paper, we consider
the single-source case, i.e., an antenna Am is used for signal transmission only and the
antennas An, n = 1, 2, · · · , N are used for signal reception.

All materials involved are nonmagnetic i.e., they are characterized by their dielectric
permittivity and electrical conductivity at a given angular frequency ω = 2π f . Corre-
spondingly, we set the value of magnetic permeability to be constant at every location
r ∈ Ω such that µ(r) = µb = 1.256× 10−6 H/m. Meanwhile, we denote ε? = εr? · ε0 and
εb = εrb · ε0 as the permittivity ofD and the Ω, respectively, where ε0 = 8.854× 10−12 F/m
is the vacuum permittivity. The conductivities σ? and σb could then be defined analogously.
Following this, we introduce the piecewise constant permittivity ε(r) and conductivity σ(r)
as follows:

ε(r) =
{

ε? if r ∈ D
εb if r ∈ Ω\D and σ(r) =

{
σ? if r ∈ D
σb if r ∈ Ω\D,

respectively. With this, let k be the background wave number that satisfies k2 = ω2µb(εb +
iσb/ω) and assume that ωεb � σb.

Let us denote Sscat(n, m) as the S-parameter (or scattering parameter) defined as

Sscat(n, m) =
V−n
V+

m
,

where V+
m denotes the input voltage (or incident wave) at Am and V−n is the corresponding

output voltage (or reflected wave) at An. We also denote Stot(n, m) and Sinc(n, m) as the
total and incident S-parameters in the presence and absence of D. Throughout this paper,
the measurement data are the scattered-field S-parameter defined as

Sscat(n, m) = Stot(n, m)− Sinc(n, m).
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Note that this subtraction is essential to remove unknown modeling errors and is
useful in designing an indicator function because it can be expressed as the following
integral equation:

Sscat(n, m) =
ik2

4ωµb

∫
Ω
O(r)E(z)

inc(am, r)E(z)
tot (r, an)dr, (1)

where O(r) denotes the objective function

O(r) = ε(r)− εb
εb

+ i
σ(r)− σb

ωεb
,

E(z)
inc(am, r) denote the z-component of the incident field Einc(am, r) in a homogeneous

medium due to the point current density at Am, and E(z)
tot (r, an) is the z-component of

the total field Etot(r, an). Notice that, based on the Maxwell equation, the incident field
Einc(am, r) ∈ C1×3 satisfies

curl Einc(am, r) = −iωµbHinc(am, r) and curl Hinc(am, r) = (σb + iωεb)Einc(am, r)

and the corresponding total field Etot(r, an) ∈ C1×3 satisfies

curl Etot(r, an) = −iωµbHtot(r, an) and curl Htot(r, an) = (σ(r) + iωε(r))Etot(r, an),

with a transmission condition at the boundary ∂D. Here, Hinc and Htot denote the magnetic
fields defined analogously.

At this moment, we cannot use Sscat(n, m) to design an indicator function because the
total field E(z)

tot (r, an) of (1) cannot be formulated without a priori information of D. Now,
let us assume that the cross section D is a small ball such that(√

ε?
εb
− 1
)

α <
λ

4
,

where λ denotes the background wavelength. Then, based on [44], it is possible to apply the
Born approximation so that the total field E(z)

tot (r, an) can be approximated by the incident

field E(z)
inc(r, an). With this, on the basis of the reciprocity property of the incident field,

Sscat(n, m) can be approximated as follows:

Sscat(n, m) ≈ ik2

4ωµb

∫
Ω
O(r)E(z)

inc(am, r)E(z)
inc(r, an)dr

≈ ik2

4ωµb
area(D)O(r?)E(z)

inc(am, r?)E
(z)
inc(r?, an)

=
ik2

4ωµb
area(D)O(r?)E(z)

inc(am, r?)E
(z)
inc(an, r?).

(2)

Let Γ be the set of measurement data Γ = {Sscat(n, m) : n = 1, 2, · · · , N} and U be the
unit vector, which is the arrangement of measurement datain Γ:

U =
1

||Sscat(n, m)||`2(Γ)

[
Sscat(1, m), Sscat(2, m), · · · , Sscat(N, m)

]T

,

where the inner product and corresponding norm are defined as

〈 f (n), g(n)〉`2(Γ) =
N

∑
n=1

f (n)g(n) and || · ||`2(Γ) =
√
〈·, ·〉`2(Γ), (3)
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respectively. Then, based on (2), U can be written by

U =
ik2 area(D)O(r?)

4ωµb||Sscat(n, m)||`2(Γ)
E(z)

inc(am, r?)
[

E(z)
inc(a1, r?), E(z)

inc(a2, r?), · · · , E(z)
inc(aN , r?)

]T

.

Based on the above expression, let us define the following unit vector: for r ∈ Ω

W(r) =
1

||E(z)
inc(an, r)||`2(Γ)

[
E(z)

inc(a1, r), E(z)
inc(a2, r), · · · , E(z)

inc(aN , r)
]T

.

Then, by testing orthonormality relation between U and W(r), it will be possible to
extract r? so that the location of D can be identified. To this end, the typical indicator
function FDSM(r, m) has been designed as follows (see [29–31,33]):

FDSM(r, m) = |U ·W(r)| =
|〈Sscat(n, m), E(z)

inc(an, r)〉`2(Γ)|

||Sscat(n, m)||`2(Γ)||E
(z)
inc(an, r)||`2(Γ)

.

Then, it is expected that the map FDSM(r, m) will contain a peak of largest magnitude
1 at r = r? ∈ D and a small magnitude at r ∈ Ω\D so that the location D can be identified
via the map of FDSM(r, m).

However, judging by the simulation results presented in Section 4, the imaging perfor-
mance of FDSM(r, m) is somehow poor. Note that the imaging performance of FDSM(r, m)
significantly depends on the location of the source Am. Moreover, if the antenna Am is
used for both signal transmission and reception, the measurement data Sscat(m, m) will be
influenced not only by the anomaly but also by the other antennas An, n 6= m. In contrast,
if m 6= n, Sscat(n, m) is influenced by the anomaly only. For a detailed description, refer
to ([21] Section 1). Hence, it is feasible to design a new indicator function by disregarding
the measurement data Sscat(m, m), i.e., an antenna Am is used for signal transmission only
and the antennas An, n = 1, 2, · · · , N and n 6= m, are used for signal reception. With this,
let us introduce the set of measurement data Γm = {Sscat(n, m) : n = 1, 2, · · · , N, n 6= m}
and an arrangement of measurement data:

Um =
1

||Sscat(n, m)||`2(Γm)

[
Sscat(1, m), Sscat(2, m), · · · ,

Sscat(m− 1, m), Sscat(m + 1, m), · · · Sscat(N, m)

]T

,

where the inner product and corresponding norm are defined as

〈 f (n), g(n)〉`2(Γm) =
N

∑
n=1,n 6=m

f (n)g(n) and || f (n)||`2(Γm) =
√
〈 f (n), f (n)〉`2(Γm), (4)

respectively. Based on the structure of Um, let us introduce the following unit vector: for
r ∈ Ω

Wm(r) =
1

||E(z)
inc(an, r)||`2(Γm)

[
E(z)

inc(a1, r), E(z)
inc(a2, r), · · · ,

E(z)
inc(am−1, r), E(z)

inc(am+1, r), · · · , E(z)
inc(aN , r)

]T

and corresponding indicator function FDSE(r, m) such that
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FDSE(r, m) = |Um ·Wm(r)| =
|〈Sscat(n, m), E(z)

inc(am, r)〉`2(Γm)|

||Sscat(n, m)||`2(Γm)||E
(z)
inc(am, r)||`2(Γm)

.

Then, it is expected that the imaging performance of FDSE(r, m) is better than the
traditional performance of FDSM(r, m).

3. Theoretical Results and Related Discussion

To compare the imaging performance of FDSM(r, m) and FDSE(r, m), we established a
mathematical structure of the indicator functions, as outlined below.

Theorem 1 (Structure of the indicator functions with single source). Let r − r? = |r −
r?|[cos φ?, sin φ?]T , r− am = |r− am|[cos φm, sin φm]T , θn = an/|an| = [cos θn, sin θn]T , and
|an| = R for all n. If an satisfies |k(an − r)| � 1/4 for n = 1, 2, · · · , N and k = k1 + ik2,
k1, k2 > 0, then the following relations hold uniformly:

FDSM(r, m) ≈ |Φ1(r) + Φ2(r)|
max
r∈Ω
|Φ1(r) + Φ2(r)|

and FDSE(r, m) ≈ |Φ3(r)|
max
r∈Ω
|Φ3(r)|

, (5)

where

Φ1(r) =N area(D)O(r?)e−ikθn ·r?

(
J0(k|r− r?|) +

1
N

N

∑
n=1

∑
s∈Z∗

is Js(k|r− r?|)eis(φ?−θn)

)
,

Φ2(r) =(N − 1) area(A)O(a)

×
(

J0(k|r− 2am|) +
1

N − 1

N

∑
n=1,n 6=m

∑
s∈Z∗

is Js(k|r− 2am|)eis(2φm−θn)

)
,

(6)

and

Φ3(r) = J0(k|r− r?|) +
1

N − 1

N

∑
n=1,n 6=m

∑
s∈Z∗

is Js(k|r− r?|)eis(θn−φ?). (7)

Here, Js denotes the Bessel function of integer order s of the first kind, Z∗ = Z ∪ {−∞, ∞}\{0}
with Z is the set of integer numbers, area(A) = area(An), and O(an) = O(a) for all n.

Proof. Let us recall that, since D is a small anomaly, Sscat(n, m) is given by (2):

Sscat(n, m) ≈ ik2

4ωµb
area(D)O(r?)E(z)

inc(am, r?)E
(z)
inc(an, r?) (8)

when n 6= m. If n = m, then because the measurement data are influenced by the antennas
An, n = 1, 2, · · · , N and n 6= m, An can also be regarded as anomalies with permittivity
εn and conductivity σn that significantly depend on the applied frequency. Generally, all
antennas are the same size and made of the same material; it is feasible to assume that
area(An) ≡ area(A) and O(a) ≡ O(an) for all n. It should be noted that, because the
size of antenna An is small enough, it is possible to apply the Born approximation to (1)
such that

Sscat(m, m) ≈ ik2

4ωµb

(
area(D)O(r?)E(z)

inc(am, r?)E
(z)
inc(am, r?)

+
N

∑
n′=1,n′ 6=m

area(An′)O(an′)E
(z)
inc(am, an′)E

(z)
inc(am, an′)

)
. (9)
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Thus, applying (2) and (9) to (3), we can examine

〈Sscat(n, m), E(z)
inc(am, r)〉`2(Γ)

≈ ik2

4ωµb
area(D)O(r?)E(z)

inc(am, r?)
N

∑
n=1

E(z)
inc(an, r?)E

(z)
inc(an, r)

+
ik2

4ωµb

N

∑
n′=1,n′ 6=m

area(An′)O(an′)E
(z)
inc(am, an′)E

(z)
inc(am, an′)E

(z)
inc(am, r).

As demonstrated in ([1] Theorem 2.5), given that for |k(an − r)| � 1/4,

E(z)
inc(an, r) = − i

4
H(1)

0 (k|an − r|) ≈ − (1− i)e−ik|an |

4
√

kπ|an|
eikθn ·r, (10)

and the following Jacobi–Anger expansion holds uniformly

eix cos θ =
∞

∑
s=−∞

is Js(x)eisθ = J0(x) + ∑
s∈Z∗

is Js(x)eisθ , (11)

we can derive

N

∑
n=1

E(z)
inc(an, r?)E

(z)
inc(an, r) ≈

N

∑
n=1

1
8Rkπ

eikθn ·(r?−r) =
1

8Rkπ

N

∑
n=1

eik|r?−r| cos(φ?−θn)

=
1

8Rkπ

N

∑
n=1

(
J0(k|r− r?|) + ∑

s∈Z∗
is Js(k|r− r?|)eis(φ?−θn)

)

=
N

8Rkπ

(
J0(k|r− r?|) +

1
N

N

∑
n=1

∑
s∈Z∗

is Js(k|r− r?|)eis(φ?−θn)

)
.

Here, H(1)
0 denotes the Hankel function of order zero of the first kind. Thus, we can

examine

ik2

4ωµb
area(D)O(r?)E(z)

inc(am, r?)
N

∑
n=1

E(z)
inc(an, r?)E

(z)
inc(an, r)

≈− (1 + i)
√

kNe−ikR

128ωµb(πR)3/2 area(D)O(r?)e−ikθn ·r?

×
(

J0(k|r− r?|) +
1
N

N

∑
n=1

∑
s∈Z∗

is Js(k|r− r?|)eis(φ?−θn)

)
.

(12)

Similarly, since

E(z)
inc(am, an′)E

(z)
inc(am, an′)E

(z)
inc(am, r) ≈ − (1− i)e−ikR

32(kπR)3/2 eikθn′ ·(2am−r),

we can derive

N

∑
n′=1,n′ 6=m

E(z)
inc(am, an′)E

(z)
inc(am, an′)E

(z)
inc(am, r)

≈ − (1− i)e−ikR

32(kπR)3/2

(
(N − 1)J0(k|r− 2am|) +

N

∑
n=1,n 6=m

∑
s∈Z∗

is Js(k|r− 2am|)eis(2φm−θn)

)
.
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Thus,

ik2

4ωµb

N

∑
n=1,n 6=m

area(An)O(an)E
(z)
inc(am, an)E

(z)
inc(am, an)E

(z)
inc(an, r)

≈− (1 + i)
√

k(N − 1)e−ikR

128ωµb(πR)3/2 area(A)O(a)

×
(

J0(k|r− 2am|) +
1

N − 1

N

∑
n=1,n 6=m

∑
s∈Z∗

is Js(k|r− 2am|)eis(2φm−θn)

)
.

(13)

By applying (12), (13), and Hölder’s inequality

|〈Sscat(n, m), E(z)
inc(an, r)〉`2(Γ)| ≤ ||Sscat(n, m)||`2(Γ)||E

(z)
inc(an, r)||`2(Γ),

we can obtain (6).
To derive (7), let us apply (8) and (10) to (4). Then since

〈Sscat(n, m), E(z)
inc(am, r)〉`2(Γm)

=
ik2

4ωµb
area(D)O(r?)E(z)

inc(am, r?)
N

∑
n=1,n 6=m

E(z)
inc(an, r?)E

(z)
inc(an, r),

similar to the derivation of (13), we have

〈Sscat(n, m), E(z)
inc(am, r)〉`2(Γm) ≈ −

(1 + i)
√

k(N − 1)e−ikR

128ωµb(πR)3/2 area(D)O(r?)

×
(

J0(k|r− r?|) +
1

N − 1

N

∑
n=1,n 6=m

∑
s∈Z∗

is Js(k|r− r?|)eis(φ?−θn)

)
and by applying Hölder’s inequality

|〈Sscat(n, m), E(z)
inc(an, r)〉`2(Γm)| ≤ ||Sscat(n, m)||`2(Γm)||E

(z)
inc(an, r)||`2(Γm),

we can obtain (7), thereby completing the proof of theory.

Now, let us discuss some properties of FDSM(r, m) and FDSE(r, m) based on the result
in Theorem 1.

Remark 1 (Performance of the indicator functions). Based on (6) and (7), the imaging perfor-
mance of FDSM(r, m) is significantly affected by

1© the material properties of the anomaly and the antennas due to the factors area(D)O(r?) and
area(A)O(a);

2© the antenna configuration such as total number (factors N and N − 1) and arrangement
(factors eis(φ?−θn) and eis(2φm−θn));

3© the applied frequency (factors k and ω); and

4© the location of the transmitter Am and the distance between the transmitter and the anomaly
due to the factors Js(k|r− 2am|) of Φ2(r).

Notice that the factor 4© is due to the coupling effect so that the imaging performance of tradi-
tional DSM is significantly influenced by the coupling effect. However, the imaging performance of
the FDSE(r, m) is independent from the factor 4©, which means that, instead of using FDSM(r, m),
a good result can be obtained via the map of FDSE(r, m).
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Remark 2 (Performance of the indicator functions with multiple frequencies). Generally,
the application of multiple frequencies should guarantee a good imaging result [32,45,46]. However,
based on 4© of Remark 1, the application of multiple frequencies to FDSM(r, m) will not guarantee a
good imaging performance, while it is expected that such an application of FDSE(r, m) will. This is
the theoretical reasoning behind why negative results have surfaced [43].

4. Simulation Results and Discussion

To demonstrate the theoretical results and to compare the imaging performance of
FDSM(r, m) and FDSE(r, m), simulation results with synthetic data are presented in this
section. To this end, N = 16 dipole antennas with a location of

an = 0.09 m(cos θn, sin θn), θn =
3π

2
− 2π(n− 1)

N

were selected. Meanwhile, the background was selected as a homogeneous medium with
εrb = 20 and σb = 0.2 S/m, while the ROI Ω was set to the interior of a circle with a
diameter of 0.16 m centered at the origin. We then selected an anomaly D as a circle with
the following properties: diameter = 0.02 m, location r? = (0.01 m, 0.03 m), permittivity
εr? = 55, and conductivity σ? = 1.2 S/m. We refer to Figure 1 for illustration. The
measurement data Sscat(n, m) and incident field data E(z)

inc(an, r) for every r ∈ Ω were
generated using CST STUDIO SUITE.

Example 1 (Simulation Result at f = 0.925 GHz). Figure 2 shows the maps of FDSM(r, m)
and FDSE(r, m) for m = 1, 4, 15 at f = 0.925 GHz. As discussed above, the identified location
of D via the map of FDSM(r, m) is not exactly in line with the actual location. Moreover, for
each m, the identified locations of the anomaly obtained via FDSM(r, m) were different. This
supports the observations discussed in Remark 1. In contrast, the identified location of D via the
map of FDSE(r, m) is very close to the actual location and is independent from the location of the
transmitter. Hence, we could assess the imaging performance of the FDSE(r, m) in relation to that
of the FDSM(r, m).

Example 2 (Simulation Result at f = 1.245 GHz). Figure 3 shows the maps of FDSM(r, m) and
FDSE(r, m) for m = 1, 4, 15 at f = 1.245 GHz. When comparing these with those presented in
Figure 2, it is clear that, even if the location of the transmitter is the same, the identified location
of the anomaly is different. Meanwhile, almost the same result can be obtained via the map of
FDSM(r, m) with a different frequency.

Example 3. Figure 4 shows the maps of FDSM(r, m) and FDSE(r, m) for m = 6, 9, 10 at f =
0.750 GHz. Notice that, although the distance between a9 and r? is close, the identified location
of D via the map of FDSM(r, 9) is not accurate. Additionally, it is very hard and easy to identify
the locations of D via the maps of FDSM(r, m) at m = 6 and m = 10, respectively. Thus, as
we mentioned in Remark 1, the imaging performance of FDSM(r, m) significantly depends on the
applied frequency and distance between the anomaly and the transmitter. Meanwhile, fortunately,
the identified location of D via the map of FDSE(r, m) is very accurate to the actual location and
is independent of the location of the transmitter. Hence, on the basis of the results in Figures 2
and 3, we can conclude that imaging performance of FDSE(r, m) is better in relation to that of the
FDSM(r, m).

Remark 3 (Discussion of Examples 1, 2, and 3). Based on the results in Examples 1, 2, and 3,
we can examine that the imaging performance of FDSE(r, m) is better than the one of FDSM(r, m).
Moreover, as we observed 3© in Remark 1, the imaging performance of FDSM(r, m) is significantly
dependent on the applied frequency. The imaging performance of FDSE(r, m) is also influenced by
the applied frequency; however, recognization of the location of anomaly is very stable.
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(a) Map of FDSM(r, 1)
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(b) Map of FDSE(r, 1)
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(c) Map of FDSM(r, 4)
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(d) Map of FDSE(r, 4)
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(e) Map of FDSM(r, 15)
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(f) Map of FDSE(r, 15)

Figure 2. Maps of FDSM(r, m) and FDSE(r, m) at f = 0.925 GHz. White-colored dashed line describes
the ∂D.
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(b) Map of FDSE(r, 1)

(c) Map of FDSM(r, 4)
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(d) Map of FDSE(r, 4)

(e) Map of FDSM(r, 15)
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(f) Map of FDSE(r, 15)

Figure 3. Maps of FDSM(r, m) and FDSE(r, m) at f = 1.245 GHz. White-colored dashed line describes
the ∂D.
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(a) Map of FDSM(r, 1)
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(b) Map of FDSE(r, 1)
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(c) Map of FDSM(r, 4)
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(d) Map of FDSE(r, 4)
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(e) Map of FDSM(r, 15)
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(f) Map of FDSE(r, 15)

Figure 4. Maps of FDSM(r, m) and FDSE(r, m) at f = 0.750 GHz. White-colored dashed line describes
the ∂D.

Example 4. Figure 5 presents the results of the multi-frequency imaging of FDSM(r, m) and
FDSE(r, m) for m = 1, 4, 15 with a frequency band of f ∈ [0.925 GHz, 1.245 GHz]. As was
discussed in Remark 2, the identified location via the multi-frequency FDSM(r, m) is not accurate in
the case of certain m(= 1), which means that there is no improvement to the imaging performance.
However, the location of the anomaly can be identified clearly via the multi-frequency FDSE(r, m)
because the magnitudes of several artifacts were reduced successfully.
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(b) Map of FDSE(r, 1)
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(c) Map of FDSM(r, 4)
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(d) Map of FDSE(r, 4)
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(e) Map of FDSM(r, 15)
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(f) Map of FDSE(r, 15)

Figure 5. Multi-frequency imaging of FDSM(r, m) and FDSE(r, m). White-colored dashed line de-
scribes the ∂D.

Throughout the theoretical and simulation results, we can examine that established
structures (5) and (6) prove the main research question about the coupling effect and
provide answers to some phenomena that cannot be explained via previous research, and
various imaging results of FDSM(r, m) successfully support the theoretical result. Moreover,
the established structures (5) and (7) illustrate the improvement in imaging performance,
and various imaging results of FDSE(r, m) show not only the verification of theoretical
results but also the stability.
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5. Concluding Remarks

In this contribution, two different indicator functions of DSM were introduced and
designed for the fast identification of small anomalies from collected scattered-field S-
parameters. To explain the influence of the coupling effect of traditional DSM and the
improvement in the imaging performance of the designed indicator function, mathematical
structures of traditional and designed indicator functions were analyzed by establishing a
relationship between an infinite series of Bessel functions of integer order of the first kind
and the antenna configuration.

We presented various simulation results from synthetic data computed by CST-
STUDIO SUITE, and we examined that the imaging performance of traditional DSM
is significantly influenced by the coupling effect, the designed indicator function is inde-
pendent from the coupling effect and successfully improves the traditional one. Moreover,
we confirmed that the designed DSM is very fast, stable, and effective for identifying small
anomalies in microwave imaging. It is worth noticing that the identified shape of anomaly
does not guarantee the accurate shape. Fortunately, it can be regarded as an initial guess
and one can evolve it to retrieve a better shape via the iterative schemes. Therefore, it will
be possible to examine that only a few iteration procedures are required, i.e., it will not
require tremendous computations.

Here, we considered the two-dimensional problem. Following to [30], we expect that
the designed indicator function can be extended to the more-realistic three-dimensional
microwave imaging. It has been confirmed that DSM can be applied to the limited-
aperture inverse scattering problem. The application of DSM in real-world limited-aperture
microwave imaging and designing an improved DSM will be interesting research topics.
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